
Reports for Conversion of MPJ Benchmark Programs
(Written by Vivian Chan - June 6, 2004)

Introduction

This research classes requires conversion of three MPJ benchmark programs. They are

1. JGFSeriesBench,
2. JGFLuFactBench, and
3. JGFRayTracerBench.

The original requirement was to convert four programs, which includes the conversion of
JGFMonteCarloBench. Since JGFMonteCarloBench requires serialization of class
objects, the conversion was not successful at this point. Additional functionalities are
needed in the GridTcp programs to serialize class objects. The other three programs are
converted successfully in terms of the user program level.

The conversion of each program involves a two step process. The first process is to
convert the JGF bench that is using MPI to use Java Socket. The second process is to
convert the Java Socket program to use the Grid Tcp Socket program. The rest of the
programs that involves no communication process have no need to convert.

Implementation

The implementation of the conversion is based on the sample of an already converted
program, JGFCryptBench. All three converted programs are based on the same
implementation as follows.

Rank 0

Rank 1

Input Output

Input_s Output_s

Rank 2

Input_s Output_s

Rank 3

Input_s Output_s

Rank 0 node will have two arrays of sockets. The input[i] will get the input stream of
rank i node. The output[i] will get the output stream of rank i node. In other words, if
rank 0 wants to read data that was sent from rank 1, rank 0 would read the data from
input[1]. If rank 0 wants to write some data to other ranks, it sends the data through
output[i] where i is the rank of the destination node.

On the other hand, if the nodes other than rank 0 want to read data from rank 0, it reads
the data through input_s. If they want to write data to rank 0, they write the data through
output_s.

From JGF to Java Socket

When converting to Java Socket version, all of the above java sockets are initialized. The
sockets of rank 0 are java sockets while the sockets of the other nodes are java server
sockets. Then the effort is focused on how to convert the MPI calls to java socket
communications. During reads, the nodes will read a stream of bytes from the
corresponding sockets and the bytes will be reconstructed into the expected object. When
writes, the nodes will convert the sending objects into to a stream of byte and send it
through the corresponding sockets.

From Java Socket to GridTcp Socket

When converting to GridTcp Sockets, the sockets are initialized to use GripTcp sockets
and server sockets. Furthermore, declarations of the four variables are required. The
declarations are as follows.

int myRank;
GridTcp tcp;
GridIpEntry ipTable[];
int funcId;

These variables are automatically initialized the User Program Wrapper. Then, the names
of the functions in the program will be converted into some function numbers. The
following shows an example.

int main(){
 x = x + 1;

 someFunctionA();

 anotherFunctionB();

 lastFunctionC();
}

someFunctionA(){

}

anotherFunctionB(){

}

lastFunctionC(){

}

Assume above is the Java Socket version, the GridTcp version should look like the
following.

func_0(){ //correspond to main
 x = x + 1;

 return -1;
}

func_1(){ //correspond to someFunctionA

 return -1;
}

func_2(){
 return -1;
}

func_3(){
 tcp.disconnect();
 return -2;
}

When a function returns -1, it tells the User Program Wrapper to continue to the next
function by increasing the function id. If it returns -2, it signals the User Program
Wrapper to terminate the user program. Before terminating the program tcp.disconnect
needs to be called.

Since the GridTcp Socket inherited from the java socket, the code for communicating
among nodes will remain the same as the java socket version.

Series Implementation

The communications among the nodes are taken place at the kernel() function. Rank 0 is
receiving double data from other nodes. The JGF version uses Ssend and Recv to transfer
the double data to rank 0 node from other nodes.

The sending nodes convert the double data into bytes and write the bytes to the output_s
socket. Since the original implementation is using non-blocking send, the receiving node,
rank 0, will use a buffered input stream to read the data through input[i] where i is the
rank of a sending node.

LuFact Implementation

The communications among the nodes are taken place at the dgefa(). In that function,
each node will have a chance to broadcast some double and integer data to the other
nodes. Then rank 0 receives a vector data from the other nodes.

Based on the design, the communications are running from rank 0 to other ranks and vice
versa. Communication cannot take place from rank 1 to rank 2 etc. Therefore, in
implementing broadcast, if the source node is not rank 0, the source node will need to
send the data to rank 0 and then rank 0 would send the data to all the other nodes.

For sending and receiving vector data, the same implementation of Series is used. The
sending nodes converts the vector data into byte stream and send it through the output_s
socket. Since blocking send is used this time, therefore, rank 0 is not using the buffer
input stream instead it is only using the object input stream.

Ray Tracer Implementation

The communications among the nodes are taken place at the render() function in
RayTracer.java file. The original implementation uses MPI reduce function and send/recv
functions.

Nodes other than rank 0 are sending a double number to rank 0 to calculate the sum of
those numbers. When the calculation is done, the sum is sent from rank 0 to the other
nodes.

Basically, the MPI reduce function works the same way as rank 0 making individual
connection to the other nodes to get the data. Therefore, the implementation is the same
as implementing send and recv functions, i.e. the sending nodes converts the data into
byte stream and write it to output_s. Then, rank 0 reads the object input stream through
input[i] where i is the rank of a sending node.

Execution Output

Series

Rank 0:

Rank 1:

Rank 2:

Lufact

Rank 0:

Rank 1:

Rank 2:

Ray Tracer

Rank 0:

Rank 1:

Rank 2:

Results Evaluation

Both Series and Ray Tracer are completed with no exceptions thrown. Lufact test has
exceptions thrown. The exception is not thrown from the user program. However, when
Koichi Kashiwagi ran the Lufact test, no exceptions are thrown. Therefore, this could be
an inconsistent error. The exception is stated as “java.io.IOException: Input/ output
error”.

Instructions to Run the Test

Java Socket programs

To test the version of java socket programs, the rank 0 node should run last. For example,
if the test will use three machines, rank 1 and rank 2 nodes should run the program before
rank 0.

To run the java socket version, enter the following command.

java yourProgName #triplets rank programArgs

Series

The valid program arguments of series are a, b or c, which specifies the size of the data.

Rank 0:

java Series 2 0 a

Rank 1:
java Series 2 1 a

Lufact

The valid program arguments of Lufact are a b or c, which specifies the size of the data.

Rank 0:
java Lufact 2 1 b

Rank 1:
java Lufact 2 1 b

RayTracer
Ray Tracer requires no program argument.

Rank 0:
java RayTracerBenchSizeA 2 0

Rank 1:
java RayTracerBenchSizeA 2 1

GridTcp Socket programs

To run test on GridTcp Socket benchmark programs, there is no need to run the program
in the order of the rank. The program can be started in different rank order. However, in
order to run the test, the GridTcp.jar and UserProgWrapper.class files are needed to be
present in the current directory.

In general, the command to run the tests is as follows.

java –cp GridTcp.jar:. UserProgWrapper – #triplets myrank ip – [yourrank ip -]
yourProgName [args]

Assume that the following examples are using uw1-320-20 and uw1-320-21 nodes to run
the test.

Series

The valid arguments are a, b or c.

Rank 0:
java –cp GridTcp.jar:. UserProgWrapper – 2 0 uw1-320-20 - 1 uw1-320-21 –
GridTcpSeries 2 a

Rank 1:
java –cp GridTcp.jar:. UserProgWrapper – 2 1 uw1-320-21 - 0 uw1-320-20 –
GridTcpSeries 2 a

Lufact
The valid arguments are a, b or c.

Rank 0:
java –cp GridTcp.jar:. UserProgWrapper – 2 0 uw1-320-20 - 1 uw1-320-21 –
GridTcpLufact 2 b

Rank 1:
java –cp GridTcp.jar:. UserProgWrapper – 2 1 uw1-320-21 - 0 uw1-320-20 –
GridTcpLufact 2 b

Ray Tracer
The valid arguments can be any number. However, the recommended arguments are 0 or
1.

Rank 0:
java –cp GridTcp.jar:. UserProgWrapper – 2 0 uw1-320-20 - 1 uw1-320-21 –
GridTcpRayTracer 2 0

Rank 1:
java –cp GridTcp.jar:. UserProgWrapper – 2 1 uw1-320-21 - 0 uw1-320-20 –
GridTcpRayTracer 2 0

File Storage

The converted programs are saved in medusa machine at the path of
/home/uwagent/MA/ChanV. Each benchmark program has its own directory. The java
versions are saved under the java directory while the GridTcp versions are saved under
GridTcp directory.

