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AgentTeamwork

User requests AgentTeamwork for some 
computing nodes.
AgentTeamworking manages the resources for 
performance and fault tolerance automatically.

AgentTeamwork



AgentTeamwork Layers

User Program Wrapper
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Java Virtual Machine

AgentTeamwork
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mpiJava API

User applications in Java



AgentTeamwork



GridTCP

Extends TCP by adding message 
saving and check-pointing features.
Automatically saves messages.
Provides check-pointing, or snapshots 
of program execution.
Ultimately allows programs to recover 
from errors.

Node crashes, etc.



GridTcp
public class MyApplication {
public GridIpEntry ipEntry[];            // used by the GridTcp socket library
public int funcId;                       // used by the user program wrapper
public GridTcp tcp;                      // the GridTcp error-recoverable socket
public int nprocess;                     // #processors
public int myRank;                       // processor id ( or mpi rank)
public int func_0( String args[] ) {     // constructor
MPJ.Init( args, ipEntry, tcp ); // invoke mpiJava-A
.....;                                 // more statements to be inserted
return 1;                              // calls func_1( )

}
public int func_1( ) {                   // called from func_0
if ( MPJ.COMM_WORLD.Rank( ) == 0 )
MPJ.COMM_WORLD.Send( ... );

else
MPJ.COMM_WORLD.Recv( ... );

.....;                                 // more statements to be inserted
return 2;                              // calls func_2( )

}
public int func_2( ) {                   // called from func_2, the last function
.....;                                 // more statements to be inserted
MPJ.finalize( ); // stops mpiJava-A
return -2;                             // application terminated

}
}



Message Passing Interface

API that facilitates communications (or message passing) for 
distributed programs.
Usually exists for FORTRAN, C/C++, Java.  
Current implementations in Java are actually Java wrappers around 
native C code.

Disadvantages with portability and is not suitable to concept of
AgentTeamwork.

P0 P1

P2 P3

User 
Program.  
SPMD

MPI



Message Passing Interface –
Basic Functions

Init()

Send()/Recv()

Bcast()

Gather()



MPJ – mpiJavaS & mpiJavaA
MPJ

Datatypes

Communicator

JavaComm

GridComm

MPJMessage

Op

etc



MPJ

Contains main MPI operations.
Call to traditional Init(string[]) initializes 
Java socket-based connections.
Call to Init(string[], IpTable, GridTcp) 
initializes connections with GridTCP
Also provides Rank(), Size(), 
Finalize(), etc.



Communicator

Provides all communications functions.
Point to point

Blocking – Send(), IRecv()
NonBlocking – Isend(), Recv()

Collective – Gather(), Scatter(), 
Reduce(), and variants.



JavaComm & GridComm

JavaComm:
Java Sockets, SocketServers

GridComm:
GridTcp Sockets, GridTcp object, IpTable
And others needed by GridTCP.

Both:
InputStreamForRank[]
OutputStreamForRank[]
Allows for socket communications using bytes.
Can use same communications algorithms for both 
GridComm and JavaComm.
Clean interface between the two layers.



Implementation Notes -
Performance

Creation of Java byte arrays/buffers very 
expensive.  Greatly reduces performance.
One solution: use permanent buffers for 
serialization

byte buffer[64k]
Serialize into buffer until full, write buffer, 
serialize remaining data.

Not effective with collective communication 
algorithms.

Either requires extra byte storage to handle/save serialized data.
Or requires serialization/deserialization at every read/write.



Raw Bandwidth – no 
serialization (just bytes).

Java Socket

GridTCP

mpiJava-A

mpiJava



Serialization – Doubles and 
other primitives

Doubles - only 20% of performance.
Other primitives see 25-80% performance.
Necessity to “serialize” or turn items into bytes very costly
In C/C++

Cast into byte pointer – 1 instruction.
In Java

int x;                                                    //for just 1 integer
byte[] arr[4];                                         //extra memory cost
arr[3] = (byte) ( x ); 
arr[2] = (byte) ( x >>> 8);                     //shift, cast, copy
arr[1] = (byte) (x >>> 16);                    //repeat
arr[0] = (byte) (x >>> 24);

Lots of instructions, extra memory for byte buffer.
Cost x2 due to deserialization on other side.



PingPong (send and recv) –
Doubles

PingPong of Doubles

0

5

10

15

20

25

30

35

40

4 12 37 11
6

35
7

10
98

33
77

10
38

3
31

92
1

98
13

7
30

17
08

92
75

57
28

51
63

2

Number of Doubles

M
By

te
s/

s

mpiJavaS (mpj)
mpiJava



PingPong - Objects
PingPong Objects
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Bcast – 8 processes Doubles
Bcast (np = 8) Doubles
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Bcast – 8 processes     
Objects

Bcast (np = 8) Objects
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Performance Analysis

Raw bandwidth
mpiJavaS comes to about 95-100% of maximum 
Java performance.
mpiJavaA (with checkpointing and error 
recovery) incurs 20-60% overhead, but still 
overtakes mpiJava with bigger data segments.

Doubles & Objects
When dealing with primitives or objects that 
need serialization, a 25-50% overhead is 
incurred.

Memory issues related to mpiJavaA – runs 
out of memory.



Conclusion

The next step is to develop a tool to 
automatically parses a user program 
into GridTcp functions for best 
performance.
Ultimately, automate user job 
distribution, management, and error 
recovery.



A few helpful classes…

CSS432 Networking
CSS430 Operating Systems
CSS360 Software Engineering
CSS422 Hardware
CSS343 Data Structures & Algorithms



MPJ – mpiJavaS & mpiJavaA

Questions?


