
Message Passing Interface

In Java for AgentTeamwork
(MPJ)
By Zhiji Huang
Advisor:
Professor Munehiro Fukuda
2005

AgentTeamwork

User requests AgentTeamwork for some
computing nodes.
AgentTeamworking manages the resources for
performance and fault tolerance automatically.

AgentTeamwork

AgentTeamwork Layers

User Program Wrapper

Hardware

Operating Systems

Java Virtual Machine

AgentTeamwork

GridTcpJava Socket

mpiJavaAteammpiJavaSocket

mpiJava API

User applications in Java

AgentTeamwork

GridTCP

Extends TCP by adding message
saving and check-pointing features.
Automatically saves messages.
Provides check-pointing, or snapshots
of program execution.
Ultimately allows programs to recover
from errors.

Node crashes, etc.

GridTcp
public class MyApplication {
public GridIpEntry ipEntry[]; // used by the GridTcp socket library
public int funcId; // used by the user program wrapper
public GridTcp tcp; // the GridTcp error-recoverable socket
public int nprocess; // #processors
public int myRank; // processor id (or mpi rank)
public int func_0(String args[]) { // constructor
MPJ.Init(args, ipEntry, tcp); // invoke mpiJava-A
.....; // more statements to be inserted
return 1; // calls func_1()

}
public int func_1() { // called from func_0
if (MPJ.COMM_WORLD.Rank() == 0)
MPJ.COMM_WORLD.Send(...);

else
MPJ.COMM_WORLD.Recv(...);

.....; // more statements to be inserted
return 2; // calls func_2()

}
public int func_2() { // called from func_2, the last function
.....; // more statements to be inserted
MPJ.finalize(); // stops mpiJava-A
return -2; // application terminated

}
}

Message Passing Interface

API that facilitates communications (or message passing) for
distributed programs.
Usually exists for FORTRAN, C/C++, Java.
Current implementations in Java are actually Java wrappers around
native C code.

Disadvantages with portability and is not suitable to concept of
AgentTeamwork.

P0 P1

P2 P3

User
Program.
SPMD

MPI

Message Passing Interface –
Basic Functions

Init()

Send()/Recv()

Bcast()

Gather()

MPJ – mpiJavaS & mpiJavaA
MPJ

Datatypes

Communicator

JavaComm

GridComm

MPJMessage

Op

etc

MPJ

Contains main MPI operations.
Call to traditional Init(string[]) initializes
Java socket-based connections.
Call to Init(string[], IpTable, GridTcp)
initializes connections with GridTCP
Also provides Rank(), Size(),
Finalize(), etc.

Communicator

Provides all communications functions.
Point to point

Blocking – Send(), IRecv()
NonBlocking – Isend(), Recv()

Collective – Gather(), Scatter(),
Reduce(), and variants.

JavaComm & GridComm

JavaComm:
Java Sockets, SocketServers

GridComm:
GridTcp Sockets, GridTcp object, IpTable
And others needed by GridTCP.

Both:
InputStreamForRank[]
OutputStreamForRank[]
Allows for socket communications using bytes.
Can use same communications algorithms for both
GridComm and JavaComm.
Clean interface between the two layers.

Implementation Notes -
Performance

Creation of Java byte arrays/buffers very
expensive. Greatly reduces performance.
One solution: use permanent buffers for
serialization

byte buffer[64k]
Serialize into buffer until full, write buffer,
serialize remaining data.

Not effective with collective communication
algorithms.

Either requires extra byte storage to handle/save serialized data.
Or requires serialization/deserialization at every read/write.

Raw Bandwidth – no
serialization (just bytes).

Java Socket

GridTCP

mpiJava-A

mpiJava

Serialization – Doubles and
other primitives

Doubles - only 20% of performance.
Other primitives see 25-80% performance.
Necessity to “serialize” or turn items into bytes very costly
In C/C++

Cast into byte pointer – 1 instruction.
In Java

int x; //for just 1 integer
byte[] arr[4]; //extra memory cost
arr[3] = (byte) (x);
arr[2] = (byte) (x >>> 8); //shift, cast, copy
arr[1] = (byte) (x >>> 16); //repeat
arr[0] = (byte) (x >>> 24);

Lots of instructions, extra memory for byte buffer.
Cost x2 due to deserialization on other side.

PingPong (send and recv) –
Doubles

PingPong of Doubles

0

5

10

15

20

25

30

35

40

4 12 37 11
6

35
7

10
98

33
77

10
38

3
31

92
1

98
13

7
30

17
08

92
75

57
28

51
63

2

Number of Doubles

M
By

te
s/

s

mpiJavaS (mpj)
mpiJava

PingPong - Objects
PingPong Objects

0

20000

40000

60000

80000

100000

120000

140000

160000

4 12 37 11
6

35
7

10
98

33
77

10
38

3
31

92
1

98
13

7
30

17
08

Number of Objects

O
bj

ec
ts

/s

mpiJavaS (mpj)
mpiJava

Bcast – 8 processes Doubles
Bcast (np = 8) Doubles

0

5

10

15

20

25

30

35

4 12 37 11
6

35
7

10
98

33
77

10
38

3
31

92
1

98
13

7
30

17
08

92
75

57
28

51
63

2

Number of Doubles

M
B/

s mpiJavaS (mpj)
mpiJava

Bcast – 8 processes
Objects

Bcast (np = 8) Objects

0

20000

40000

60000

80000

100000

120000

4 12 37 11
6

35
7

10
98

33
77

10
38

3
31

92
1

98
13

7
30

17
08

Number of Objects

O
bj

ec
ts

/s

mpiJavaS (mpj)
mpiJava

Performance Analysis

Raw bandwidth
mpiJavaS comes to about 95-100% of maximum
Java performance.
mpiJavaA (with checkpointing and error
recovery) incurs 20-60% overhead, but still
overtakes mpiJava with bigger data segments.

Doubles & Objects
When dealing with primitives or objects that
need serialization, a 25-50% overhead is
incurred.

Memory issues related to mpiJavaA – runs
out of memory.

Conclusion

The next step is to develop a tool to
automatically parses a user program
into GridTcp functions for best
performance.
Ultimately, automate user job
distribution, management, and error
recovery.

A few helpful classes…

CSS432 Networking
CSS430 Operating Systems
CSS360 Software Engineering
CSS422 Hardware
CSS343 Data Structures & Algorithms

MPJ – mpiJavaS & mpiJavaA

Questions?

