Message Passing Interface

In Java for AgentTeamwork

(MPJ)

By Zhiji Huang

Advisor:

Professor Munehiro Fukuda
2005

AgentTeamwork

User requests AgentTeamwork for some

computing nodes.
AgentTeamworking manages the resources for
performance and fault tolerance automatically.

—

AgentTeamwork Layers

AgentTeamwork

T T
Uset A's Uset A5 User B's
Process Process Process
TCF
/ Cawunohication
B L 7

Snapshot Snapshot Snapshot
Tlet hods Methods Methads

GridTep GridTep GridTep

User program wrapper User program wrapper User program wrapper

! |
Sentinel Agent, | Sentinel Agent

Lntetnet group
fip/hitp
£ S Sever -

=95
N shapshaot

Bookkeepr Agent Bookkeepr Agent

B

[GridTCP

Extends TCP by adding message
saving and check-pointing features.

Automatically saves messages.

Provides check-pointing, or snapshots
of program execution.

Ultimately allows programs to recover
from errors.

o Node crashes, etc.

GridTcp

public class MyApplication {
public GridIpEntry ipEntryl[];
public int funcId;
public GridTcp tcp;
public int nprocess;
public int myRank;

MPJ.Init(args, 1ipEntry, tcp):;

return 1;

{
if (MPJ. COMM_WORLD. Rank () ==
MPJ.COMM WORLD.Send(...);
else
MPJ.COMM WORLD.Recv(...);

MPJ.finalize();
return -2;

Message Passing Interface

= APl that facilitates communications (or message passing) for
distributed programs.

= Usually exists for FORTRAN, C/C++, Java.

= Current implementations in Java are actually Java wrappers around
native C code.

o Disadvantages with portability and is not suitable to concept of
AgentTeamwork.

MPI

Message Passing Interface —
[Basic Functions

g O Q0D

Send()/Recv() @

Gather() 5%5

[MPJ — mpidJavaS & mpidJavaA]

[MPJ]

@)
(@]
3
3
[
>
5
o
8

L1

s

Contains main MPI operations.

Call to traditional Init(string[]) initializes
Java socket-based connections.

Call to Init(string[], IpTable, GridTcp)
initializes connections with GridTCP

Also provides Rank(), Size(),
Finalize(), etc.

[Communicator

Provides all communications functions.

Point to point
o Blocking — Send(), IRecv()
o NonBlocking — Isend(), Recv()

Collective — Gather(), Scatter(),
Reduce(), and variants.

JavaComm & GridComm

JavaComm:

o Java Sockets, SocketServers

GridComm:

o GridTcp Sockets, GridTcp object, IpTable

o And others needed by GridTCP.

Both:

o InputStreamForRank(]

o OutputStreamForRank(]

o Allows for socket communications using bytes.

o Can use same communications algorithms for both
GridComm and JavaComm.

o Clean interface between the two layers.

Implementation Notes -
Performance

Creation of Java byte arrays/buffers very
expensive. Greatly reduces performance.

One solution: use permanent buffers for
serialization

o byte buffer[64Kk]

o Serialize into buffer until full, write buffer,
serialize remaining data.

Not effective with collective communication
algorithms.

o Either requires extra byte storage to handle/save serialized data.
o Or requires serialization/deserialization at every read/write.

Raw Bandwidth — no
serialization (just bytes).

1400 T T

T T T
n]p_ida!a_..;qix
—.----Java socket ---x---
I gridtcp ---%---
1200 N —————— Seseececsccscacscsccscmcsssescan e "X—' mpl‘Java-A “”“-EI“_“”

___________ x""’/
1000 .. z’.-.’?.(.................. —
,X{/
a L
800 f s IO -

600

bandwidth (Mbps)

400

200 P4 R B o e

200 400 600 800 1000
size (Kbytes)

Serialization — Doubles and
other primitives

Doubles - only 20% of performance.
Other primitives see 25-80% performance.
Necessity to “serialize” or turn items into bytes very costly

In C/C++

o Cast into byte pointer — 1 instruction.

In Java

o intx; /[for just 1 integer
byte[] arr[4]; //lextra memory cost

arr[3] = (byte) (x);
arr[2] = (byte) (x >>> 8); //shift, cast, copy
arr[1] = (byte) (x >>> 16); //repeat
arr[0] = (byte) (x >>> 24);
Lots of instructions, extra memory for byte buffer.
Cost x2 due to deserialization on other side.

PingPong (send and recv) —

Doubles

MBytes/s

40

35

30

25

20

15

10

PingPong of Doubles

—e— mpidavaS (mpj)
—=— mpidava

Number of Doubles

PingPong - Objects

Objects/s

160000

140000

120000

100000

80000

60000

40000

20000

PingPong Objects

Number of Objects

—e— mpidavaS (mpj)
—m— mpidava

Bcast — 8 processes Doubles

MB/s

Bcast (np = 8) Doubles

Number of Doubles

—e— mpiJavaS (mpj)
—a— mpiJava

Bcast — 8 processes

Objects

Objects/s

120000

100000 -

80000

60000

40000

20000

0 -

Bcast (np = 8) Objects

—e— mpidavaS (mpj)
—s— mpiJava

Number of Objects

Performance Analysis

Raw bandwidth

o mpidavaS comes to about 95-100% of maximum
Java performance.

o mpidavaA (with checkpointing and error
recovery) incurs 20-60% overhead, but still
overtakes mpidava with bigger data segments.

Doubles & Objects

o When dealing with primitives or objects that
need serialization, a 25-50% overhead is
Incurred.

Memory issues related to mpiJavaA — runs

out of memory.

[Conclusion

The next step is to develop a tool to
automatically parses a user program
into GridTcp functions for best
performance.

Ultimately, automate user job
distribution, management, and error
recovery.

[A few helpful classes...

CSS432 Networking

CSS430 Operating Systems

CSS360 Software Engineering
CSS422 Hardware

CSS343 Data Structures & Algorithms

[MPJ — mpidavaS & mpiJavaA

