M++ User’s Manual
(version 1.00)

Munehiro Fukuda

Computing and Software Systems
University of Washington, Bothell
18115 Campus Way, N.E.

Bothell, WA 98011
email: mfukuda@u.washington.edu

Naoya Suzuki

Information Sciences and Electronics
University of Tsukuba,
1-1-1 Ten’nohdai

Tsukuba, Ibaraki 305, JAPAN
email: nas@is.tsukuba.ac.jp

September 1, 2002

Contents

1 Preface

2 Porting and Accessing the System

2.1 Availabilityo e
2.2 Imstalling M4+ o o e e
2.2.1 Downloading
2.2.2 Compiling gcc-2.95 L.
2.2.3 Setting your shell environmento 0oL
2.24 Compiling M4+ . . . o o e e
225 Using GM library oo
2.3 Porting M+ L Lo e
2.4 Additional Notes e e e

3 Getting Started

3.1

3.2

3.3

3.4

M++ Profile e

M++ Thread Compilation e e

System Invocation/Termination Lo Lo

Using Myrinet Zero-Copy Communicationo v vt v oo

4 Writing M4+ Threads
4.1 Execution Model
4.2 Network Componentso
4.21 The daemon Class o v it i e
4.2.2 The daemonobj Class. v v v v i i e e e e e e
423 Nodes
4.24 Links e e
4.2.5 Classes Used for Network Components
4.3 Threads L e e
4.3.1 Thread Definition e

10

11

11

12

12

13

15

18

19

4.3.2 Thread Creation and Constructor 33

4.3.3 Thread Termination and Destructor 35
4.3.4 Thread Statuso 35
4.3.5 Network Construction Lo 36
4.3.6 Thread Deployment o 37
4.3.7 Synchronization 39
4.3.8° Node Clocking o i e e 41
4.3.9 Communication v o e e e e e e 42
4.3.10 Global Virtual Time (Soon Made Available) 43

5 Examples 44
5.1 GasStation oo e e e e 44
5.1.1 GasStation/Fuel Classes 45
5.1.2 Car/SportsCar/Truck Threads 47
5.1.3 GSCashier. 48

5.2 Ant Farmo e 49
5.2.1 DaemonVar/Node/Link Definitions 50
5.22 Mesh Thread e 55
5.2.3 InitEnvironment Thread oo oo 58
5.24 Ant Thread e 60
525 Gvt Thread e e e 71
5.2.6 CheckResult Thread o 73
5.2.7 Compilation and Execution e e 74

6 Trouble Shooting 75
6.1 Abnormal Terminationo 75
6.2 Fopen erroro 75
6.3 Bind system call error e e e e e e e 75
6.4 Segmentation fault/Bus erroro L 76
6.5 Dynamic module loading erroro Lo 76

7 Final Comments

76

1 Preface

M++ is a new cluster computing paradigm for multi-agent applications viewed as
the interactions among autonomous objects, each behaving with its own goals and
reacting to the local information in a synthetic world. M++ self-migrating threads
are C++ compiled objects, capable of constructing logical computational networks
and autonomously migrating themselves over a cluster system. They represent a
natural mechanism of implementing multi-agent applications: each individual agent
can be represented as a distinct member of collection of self-migrating threads, moving
through a logical network representing a synthetic world and interacting with one
another. Several actual applications M++ assumes are:

e FEcological simulation: simulate a transient population of preys and predators
such as fish and sharks [Dew84], and find the genetic code of the most efficient
ant forager through a genetic algorithm having many ants searching for food in
a farm [CJ92].

o Artificial life: simulate the evolution and learning process of neural network
for solving a given problem [NNKdGO98|, and observe the growth of artificial
plants [PL96].

o Complexr business modeling: decide the best cargo-routing strategy by finding
which local interactions lead to global behaviors in cargo operations [Wak01].

For more details on M++ suitability to those multi-agent applications, please refer
to the following three research papers: [SFB99], [FSCKO01], and [LMF*02]. Also,
you can obtain further acquaintance with multi-agent applications through the read-
ings: [Fer99] and [Wei99].

This manual provides the procedures necessary for users to start programming M-++
self-migrating threads, (simply called M++ threads in the following explanation.) To
run M++ threads, you need to install the system, start an M++ daemon at each
PC or workstation, code your M++ threads in the M++ language, compile them,
and inject the executables to one of active daemons. The manual introduces system
installation, daemon invocation, the M++ language specification, thread compilation,
and trouble shooting. It also includes code examples to prompt users’ understanding.

We welcome any comments and suggestions regarding M++-, please contact us at:

Munehiro Fukuda mfukuda@u.washington.edu for English assistance
Naoya Suzuki nas@is.tsukuba.ac.jp for Japanese assistance

2 Porting and Accessing the System

2.1 Availability

The currently available platforms to run M++ include:

Hardware Operating Systems

pPC Intel Solaris7 and 8, Redhat Linux 7.3
Sparc SunOS 5.5.1-SunOS 5.8
AP3000 SunOS 5.6

Table 1: Available Platforms

We have installed M++ at the following sites. Note that *** in Table 2 means
a gateway’s or each cluster node’s IP name. This manual does not disclose this
information for security reasons. To find the appropriate name, ask your local system
owner or manager. If you are a user at any of those sites, you do not have to install
the system. Please skip to Section 2.2.3 to set up your shell environment.

Sites Platform OS IPs and System Managers

UW Bothell PCs Redhat Linux medusa.bothell.washington.edu
dgrimmer@uwb.edu

Univ. of Tsukuba PCs Solaris8 howdy00.padc.mmpc.is.tsukuba.ac.jp
nas@is.tsukuba.ac.jp

UC Irvine Sparc SunOS 5.5.1-5.8 ***ics.uci.edu
support@ics.uci.edu

Ehime University AP3000 SunOS 5.6 *#* cs.ehime-u.ac.jp

kob@cs.ehime-u.ac.jp

Table 2: Available Sites

To install M4+ on the platforms listed in Table 1, please follow the instructions given
in Section 2.2. If you are interested in porting to the other platforms, please refer to
Section 2.3.

2.2 Installing M++

First of all, please make sure that your cluster is NFS-mounted. The same disk image
must be visible to all computing nodes of the cluster. In addition, each computing
node must have an independent IP address, (whether it is a private or a public IP).
Unless these requirements are satisfied, the installation is impossible.

2.2.1 Downloading

To obtain a gzipped tar file of M++-, visit any of the following M++ web pages:

Sites Web Addresses

UW Bothell http://faculty.washington.edu/mfukuda/m++

Univ. of Tsukuba http://www.padc.mmpc.is.tsukuba.ac.jp/member/naoya/m-++
UC Irvine http://www.ics.uci.edu/ mfukuda/m++

Table 3: M++ Web Pages

Download, unzip, and extract the file.
% gzip -d mpp.tar.gz | tar -xvf -

Once you have extracted the M++ archive or if you are a user at a site where M+-+
has been installed, you will find the M++ directory that is organized as follows:

Directories Content
m++/bin/ M-++ executables (in the near future)
m++/src/ M++ daemon source and executables

m++/src/translator/ M++ compiler source and executables
m++/src/GMWI1.xx/ GM zero-copy library (GMW1.11 for Solaris and 1.20 for Linux)

m++/sample/ Sample code
m++/appl/ Applications
m++/doc/ All manuals and papers

Table 4: Directory information

All executable codes will be generated in m++/src and m++/src/translator after
installing M+4+.

2.2.2 Compiling gcc-2.95

The current implementation of M++ system is based on gcc-2.95.1 through to 2.95.1.
If your site uses a newer version of gcc such as gee-3.X, download gee-2.95.3 and
compile it.

1. Version Check
Type gecc -v to see which version of gcc you are using. If it is newer than
gce-2.95.3, follow the instructions below, otherwise skip to Section 2.2.3.

2. Downloading

Visit http://gec.gnu.org/gec-2.95/, download gece-2.95.3 to the m++ directory,

and extract the files.

3. Compilation

Assuming that your working directory include m++ directory, compile the source

code as instructed below:

cd m++/gcc-2.95.3

configure --prefix=/home/m++/gcc-2.95.3

make bootstrap
make install
cd ../..

2.2.3 Setting your shell environment

You need to set up your shell environment. Add the following two statements in your
.cshre and reinitialize it by invoking “source /.cshrc”’.

Sites

A Statement to Add

medusa.bothell.washington.edu

howdy00.padc.mmpc.is.tsukuba.ac.jp

** jcs.uci.edu

** cs.ehime-u.ac.jp

Other Linux systems

set path=(/home/m++/gcc-2.95.3 /bin $path
/home/m++/src /home/m++/src/translator)
setenv MPPDIR /home/m++/src

setenv MPPARCH LINUX

set path=(/home/m++/gcc-2.95.3/bin $path
/home/mplus2/src /home/mplus2/src/translator)
setenv MPPDIR /home/mplus2/src

setenv MPPARCH SOLARIS_7

set path=(/home/m++/gcc-2.95.3/bin $path
/extra/mfukuda0/m++/src
/extra/mfukuda0/m++/src/translator)

setenv MPPDIR /extra/mfukuda0/m++/src
setenv MPPARCH SOLARIS_2.5

set path=(/home/mes/gcc-2.95.3/bin $path
/home/mes/src /home/mes/src/translator)
setenv MPPDIR /home/mes/src

setenv MPPARCH SOLARIS_2_5

set path=(.../m++/gcc-2.95.3/bin $path
.../m—++/src .../m++/src/translator)

setenv MPPDIR .../m++/src

setenv MPPARCH LINUX

Table 5: Path set-up

For your information, a shell variable $MPPARCH specifies the underlying OS type
as shown below:

Values Machine Architecture
SOLARIS_7 PCs under Solaris7 or Solaris8
SOLARIS_2.5 Sparc and AP3000

LINUX PCs under Linux

Table 6: SMPPARCH

If you are a user at any of the sites: UWB, Tsukuba, UCI and Ehime, skip to
Section 2.4, otherwise go on to the next section to complete your M++ installation.

2.2.4 Compiling M++

Before compiling M++, you need to modify Makefile located in the m++/src direc-
tory. This file include the following commented-out statements:

#SOLARIS_2_5

#LIBS = -1nsl -lsocket -lposix4 -1dl -lpthread -1fl
#SOLARIS_7

#LIBS = -1lnsl -1lsocket -lposix4 -1dl -1lrt -lpthread -1fl
#LINUX

#LIBS = -1lnsl -1dl -1rt -lpthread -1f1

Each statement corresponds to a different operating system type. Choose the appro-
priate one and remove the # character from the line head, so that this line will get
effective. If your system is PC Linux, you should choose:

#LINUX
LIBS = -lnsl -1dl -1lrt -lpthread -1fl

Now, assuming that your working directory includes the m++ directory in it, compile
the source code as instructed below:

% cd mt++/src

% make

% cd translator
% make all

%hoecd ../ /..

2.2.5 Using GM library

If your cluster has installed a Myrinet card to each computing node, you can compile
M++ with the underlying GM library for better performance. If you wish to use the
GM library, follow the instruction shown below, otherwise skip to Section 2.4.

1. Obtaining the GM library
Visit the Myricom homepage, http://www.myri.com and download the appro-
priate library. Note that the library downloading asks you to type a password
received from Myrinet upon your purchase of Myrinet.

2. Installing the library
Type the following commands to extract the GM library files in the GM home
directory on your system:

gunzip -c gm-1.5.1_Linux.tar.gz | tar xvf -
cd {GM_HOME}

Note that gzipped file name depends on the OS version The above file is valid
for Linux. Thereafter, follow the README-linuz file for the installation.

3. Modifying m++/src/Makefile

GM_LIBS = -L{your GM library’s directory path}/libgm/
GM_INCLUDES = -I{your GM library’s directory path}/include/
GMW_LIB = -L{your M++ directory path}/src/GMW1.20/lib/

GMW_INCLUDE -I{your M++ directory path}/src/GMW1.20/lib_include/
For instance, medusa.bothell.washington.edu has set up this Makefile as follows:

GM_LIBS = -L/usr/src/gm-1.5.1.1_Linux/libgm/
GM_INCLUDES = -I/usr/src/gm-1.5.1.1_Linux/include/
GMW_LIB = -L/home/m++/src/GMW1.20/1ib/

GMW_INCLUDE = -I/home/m++/src/GMW1.20/1ib_include/

4. Moditying m++/src/GM1.20/Makefile
GM_LIBS = -L{your GM library’s directory path}/libgm
GM_INCLUDES = -I{your GM library’s directory path}/include

For instance, medusa.bothell.washington.edu has set up this Makefile as follows:

GM_LIBS
GM_INCLUDES

-L/usr/src/gm-1.5.1.1_Linux/libgm
-I/usr/src/gm-1.5.1.1_Linux/include

5. Compiling the M++ source code

Assuming that your working directory includes the m++ directory in it, type
the follow sequence of commands for compilation. After the compilation, the
m++/src directory must include thrd_gmw and inject_gmw.

10

% cd m++/src/GMW1.20
% make

% cd ..

% make gmw

%ocd ../..

2.3 Porting M++

Before porting M+, follow the instructions for system installation described in Sec-
tion 2.2 to download and extract the tar file. Here are several tips to port M++ to
your machine.

Hardware-dependent code

— setjmp() and longjmp() to capture and resume register values
— the M++ original thread library named sthread

Unix-dependent code

— dynamic-linking library, Pthread, and socket communication.

Among them, what you have to pay your attention for includes setjmp()/longimp()
functions, sthread and pthread.

The setymp()/longjmp() pairs can be found in the files: SelfMigThr.h, thrFunc.h, and
Sthread.cpp. Register contents are saved in a jmpbuf data structure by setjmp and
resumed by longjmp. You need to know which register content will be saved in which
Jmpbuf element. Also, you must check how a stack grows. With these knowledge,
modify those three cpp files.

The latter can be located in many files, however of importance is port.cpp. This code
handles multiple sockets concurrently using pthread. Check the scheduling policy of
your pthread library. If the library does not always force each thread to relinquish
CPU whenever it is blocked on an I/O operations, the system will hang up. In that
case, modify port.cpp so that no pthread will keep holding CPU upon an blocked I/0O.

2.4 Additional Notes

1. If you want to run sample programs and/or applications, you are also required
to visit each directory and to recompile the source code. Follow Section 3.2.

2. If you are a user at any of specific sites: UW Bothell, Univ. Tsukuba, UC Irvine
and Ehime Univ., the following platform information may be useful.

11

(a) Specification of UW Bothell’s Medusa Cluster

Spec. items | Descriptions

Node PC (dual-i686 1.4GHz with 256KB cache/512MB main memory)
fnodes 6 (medusa, mnodel - mnode5)

Interconnection 4Gbps Myrinet [BCEF195]

File NFS mounted to medusa’s 34GB file system

External connection | medusa only

(b) Specification of Tsukuba Univ.’s Howdy Cluster

Spec. items | Descriptions

Node PC (Athlon 1Ghz with DDR-SDRAM 256M-byte memory)
fnodes 8 (howdy00 - howdy07)

Interconnection 1.28Gbps Myrinet [BCFT95]

File NFS mounted to howdy00’s 6.4GB file system

External connection | howdy00 only

(C) Specification of UW Irvine’s Iris Cluster

Spec. items | Descriptions

Node Sun Sparc Station SS5 with 96M-byte memory
fnodes 9 (iris00 - iris09)

Interconnection 100Mbps Ethernet

File NFS mounted to hippocrates’ 1.6GB file system
External connection | Any nodes available from other ICS workstations

(d) Specification of Ehime Univ.’s AP3000 Cluster

Spec. items | Descriptions

Node UltraSPARC 167MHz with X-byte memory
fnodes 25 (apnet0000 - apnet0024)

Interconnection 1.6Gbps AP-Net

File NFS mounted

External connection | Nodes 0, 1, 2, 3, 4, 8, 9, 10, 11, 16, 17, 18, and 19

3 Getting Started

3.1 M-++ Profile

Upon initialization, an M+-+ daemon reads a configuration file. This file must be
located as profile in each user’s current working directory, (where the daemon is
invoked.) It declares the following items:

12

Ttems Descriptions

port A socket port number used for thread migration.
No default port. It must be given by a user.
hostnum The number of PCs constituting the system.
It must be 1 or larger.
mode A thread library name: pthread or sthread.

ip na

Pthreads are default. Sthreads are our original threads.
me and daemon ID | Each PC’s IP name and its corresponding daemon ID.
The daemon ID must be a unique non-negative integer.

The following profile defines a configuration in that an M++ daemon runs on howdy00,

01, 02, and
ulates your

03, communicates with the other daemons through port# 92767, and sim-
agents with Pthreads.

port 92767
hostnum 4

mode pthread
describe daemonid

howdy00 O
howdyO1 1
howdy02 2
howdy03 3

describe_end

3.2 M++ Thread Compilation

Prior to an
cutable cod
M++ code
accepts the

injection, each M++ self-migrating thread must be compiled into exe-
e with the M++ compiler. The M++ compiler actually translates your
into C++ programs and thereafter passes them to the g++ compiler. It
following eight translation options:

options | remarks

-translate | translate M++ code to the corresponding C++ code and save it in files

-I specify an include directory

-L specify a library directory

-1 specify a library file

-D make a given macro effective

-U make a given macro ineffective

-E preprocess M++ code and print out the result

-v print out the version/translation information while compiling M++ code into the executable

For example, assume that your thread is coded in the mythread.mpp source file in

the current

working directory. If it refers to the math library, you can compile

13

mythread.mpp to the mythread executable code by typing:

% m++ mthread.mpp -1m

Currently, the M++ compiler has two restrictions:

1. A .mpp source code takes a different keyword to incorporate its header files. It

is the import{ } keyword.

e import ”Filename” { class/struct/union prototype declarations }

incorporates class/struct/union data structures from a user-defined File-
name. If you incorporate only functions and macros, leave blank between
this pair of blankets { }. However, note that { } must not be omitted.

e import <Filename> { class/struct/union prototype declarations }
incorporates class/struct/union data structures from a system-provided File-
name. The notation, import < Filename> { } incorporates only the functions

and macros of Filename.

Example:
import <cmath> {}
import <cstdlib> {}

import "Timer.h" { class Timer; }

2. The following keywords are reserved:

along asm auto
char class clocking
daemon daemonobj default
dynamic_cast edestroy efork
else enum explicit
fork forkalong friend
gvt_start gvt_time hop

int link long
node operator private
return short signed
struct switch template
throw to try
union unsigned using
wakeupall wchar_t while

bool break
const const_cast
delete destroy
eforkalong ehop
extern false
goto gvt_delta
hopalong if

mpp mutable
protected public
sizeof sleep
terminate this

true typedef
virtual void
with

case
continue
do
ehopalong
float
gvt_end
import
namespace
register
static
thread
typeid
volatile

catch
create
double
ecreate

for
gvt_ready
inline

new
reinterpret_cast
static_cast
thread_id
typename
wakeup

For example, consider compilation of m++/sample/Car/Car.mpp. This file includes

three types of M++ threads:

14

Thread names | Descriptions

GSCashier work as a gas station cashier who pumps gas into a tank
SportsCar function as a sports car that gets regular fuel from a GSCashier
Truck function as a truck that receives diesel fuel from a GSCashier

Compiling m++/sample/Car/Car.mpp is very simple. Copy the file to your current
working directory and just type “m-++ Car.mpp”. The compiler will produce three
independent executables: GSCashier, SportsCar, and Truck, which are then ready to
be injected to one of active M+-+ daemons.

3.3 System Invocation/Termination

Invocation

You must manually invoke an M++ daemon from all computing nodes that are to run
your application. For each machine, follow the invocation procedure shown below:

1. Open an zterm or tera-term window.

2. Login the gateway or the master node of your cluster with ssh,
(e.g., medusa.bothell.washington.edu at UW Bothell).

3. Login each machine with rsh.

4. Type thrd (or thrd & for a background execution).

The M++ daemon works as a simple Unix user process. It runs without being idle
whether or not it has received active M++ threads to execute. If you debug your
M++ threads or must share computing nodes with other users, you may want to
start a daemon with a lower priority through a Unix nice option:

% nice 20 thrd&

When all the participating computing nodes have started a daemon, these daemons
synchronize with one another and thereafter display the following message. (The
example shows the message when four daemons are invoke.)

% thrd

port : 92767

Connection established to howdy0O with daemon O
Connection: Wait for howdyOl acceptance ...

15

Connection established to howdy0l with daemon 1
Connection: Wait for howdy02 acceptance ...
Connection established to howdy02 with daemon 2
Connection: Wait for howdy03 acceptance ...
Connection established to howdy03 with daemon 3
Total daemons : 4

Mode : pthread

Stack : 65536 bytes

Ready for being injected.

At this moment, you are ready to inject M++ threads.
Injection

The inject command injects new M-++ threads to the system. The input format of
this command is:

% inject hostname filename #threads argl arg2 arg3

The hostname parameter is the IP name of a target daemon where you want to inject
M++ threads. The filename parameter specifies the thread executable code. The
fithreads parameter gives the number of threads to instantiate from filename and to
inject into that daemon. Arguments such as arg!, arg2, and arg3 are passed to each of
those threads in form of a string array. This argument-passing mechanism is detailed
in Section 4.

The following example injects M++ threads into howdy00 to run the Car sample
program.

mplus2@howdy00[1]% thrd&

[1] 18170

port : 10145

Connection established to howdy0OO with daemon O
Total daemons : 1

Mode : sthread

Stack : 32768 byte

Ready for being injected.

mplus2@howdy00[2]% inject howdyOO ./GSCashier 1
Injected 1 ./GSCashier thread(s) to howdy00

GSCashier: Waiting for cars.

mplus2@howdy00[3]% inject howdy00 ./Truck 1

16

Injected 1 ./Truck thread(s) to howdyOO
Truck: I’m at the GasStation.
GSCashier: Injected fuel to Truck
Diesel: 900 Regular: 1000

GSCashier: Waiting for cars.

Truck: I’m filled with fuel.

mplus2@howdy00[4]% inject howdy00 ./SportsCar 2
Injected 2 ./SportsCar thread(s) to howdy00
SportsCar: I’m at the GasStation.

GSCashier: Injected fuel to SportsCar

Diesel: 900 Regular: 950

GSCashier: Waiting for cars.

SportsCar: I’m filled with fuel.

SportsCar: I’m at the GasStation.
GSCashier: Injected fuel to SportsCar
Diesel: 900 Regular: 900

GSCashier: Waiting for cars.
SportsCar: I’m filled with fuel.

mplus2@howdy00[5]% fg
“naoya/m++/thrd

“Cthrd: Interrupted.

thrd: Closed all connections.
thrd: Terminated.

mplus2@howdy00[6]%

This example assumes that the current directory has the three executable files of the
Car sample program: GSCashier, SportsCar, and Truck. A user first invokes a single
M++ daemon on howdy00. Second, he/she injects a GSCashier thread that behaves
as a gas station cashier, initially prepares 1000 litters of diesel and regular gasoline
respectively, and pumps gasoline into a car tank. Third, the user injects a Truck
thread that receives 100 litters of diesel fuel from the GSCashier thread. Fourth,
he/she injects two SportsCar threads, each receiving 50 litters of regular gasoline.

The inject command displays the following messages when detecting errors in thread
injection:

e SharedLib: Cannot load the dynamic module: means that a given file name does
not include executable thread code.

17

o Segmentation fault: means that the number of arguments actually given is in-
compatible to that of arguments coded in the thread program.

They are not fatal errors to M++ daemons. All you need is simply retype a correct
file name and arguments.

Termination

One daemon termination is enough to kill all the other daemon processes. To do
that, you must select an xterm/tera-term window where one of active daemons is
running, bring the daemon in a foreground execution by the Unix “fg” command if
it is running in the background, and terminate it by typing “control + c¢”. This
interrupted daemon immediately forwards the signal to all the other daemons to
terminate themselves. Upon a normal termination, the daemon displays the following
message:

“Cthrd: Interrupted.
thrd: Closed all connections.
thrd: Terminated.

An unexpected trap/interrupt or the Unix kill command may cause an abnormal
termination and keep the previous socket connection in use. This may also cause
several daemons to remain alive. When it happens accidentally, you are required to:

1. visit all the xterm windows where those daemons are still running
2. kill those daemons by typing “control 4 c”, and thereafter

3. wait for a few minutes until Unix recognizes that the previous socket port is
already released, or edit your profile to change the port number.

3.4 Using Myrinet Zero-Copy Communication

The M++ daemon communicates with others using either the TCP/IP or the Myrinet
GM library. The latter implements zero-copy communication in that so-called pin-
downed pages are allocated independently of ordinary OS-managed pages, and are
accessed directly by an underlying Myrinet network interface card. The M++ daemon
has an option to schedule its threads in such pin-downed pages that the network
interface card can transfer those threads without OS interventions. We have confirmed
in [FSCKO1] that this scheme improved migration performance 1.85 times better than
using TCP/IP in a multi-agent application.

18

To implement inter-daemon communications with the GM library, use the commands
listed below:

Procedures | Corresponding

Daemon compilation | make gmw
Daemon invocation thrd_gmw
Thread injection inject_gmw hostname filename #threads argl arg2 arg3

4 Writing M++ Threads

This section describes how to program M++ threads. You will first capture the
overview of M++ executable model, thereafter understand how to define logical net-
work components, and finally learn how to program M++ thread code.

Before going on to the following sub-sections, please be reminded of the usage of a
pair of square brackets [] or [J:

e a pair of square brackets in italic []
Symbols inserted between a pair of italic brackets [/ may be omitted.

e a pair of square brackets in bold []
this pair of brackets is a part of M++ statement or method.

4.1 Execution Model

M++ involves three levels of networks as shown in Figure 1. The lowest level is
the physical network (Myrinet in both Tsukuba’s howdy and UWB’s medusa PC
clusters, AP-NET in Ehime’s AP3000, and 100Mbps Ethernet in UCI’s iris Sparc
cluster), which constitutes the underlying computational nodes. Superimposed on
the physical layer is the daemon network, where each daemon is a Unix process
executing and exchanging M++ threads with others. As described in Section 3.1,
its processor mapping and system unique ID, termed daemon ID, are predefined
in a user profile. The logical network is an application-specific computation network
dynamically constructed by M++ threads on top of the daemon network. Each logical
node has a node ID local to the corresponding daemon, while a logical link maintains
a set of source and destination IDs, each local to the current and the destination
logical node respectively.

M++ threads distinguish four C++ classes of network objects: daemon, daemonobj,
node, and link. The daemon object provides M++ threads with the current daemon
status. The daemonobj object stores user-defined data shared by all M++ threads

19

R

T

Logical Network I hop(2:; 1}’]:};,'(] dé

create Node withd2::3

r'}:'""*--.h ‘
Threa:&,l e T f!_\
I"fio_dﬂ f‘wfj); I"N\O_/d?)
Daemon Network |

Physical Netwnrl(l

. - .
=E5E s s)
i 1
I LAN/SAN]

Figure 1: M++ network architecture

running on the same daemon process. The node object represents a logical network
node, whose method and data members are accessed by M++ threads residing on
this node. The link corresponds to a logical network link, makes its method and
data members visible to threads residing on the both ends, (i.e., nodes) of this link.
The daemon, node, and link objects also provide M++ threads with system-defined
methods to inform of their network status: the current daemon ID, the total number
of daemons, the host name, the node ID, the node class name, the number of threads
on the current node, etc.. Details are given in Section 4.2. Sharing with these network
objects is considered as a course of inter-thread communication, which however does
not mean that M++ threads are provided with a complete view of distributed shared
memory. Prior to accessing a given object, they must migrate themselves to it.

Figure 2 shows the M++ thread framework. A user can define various threads using
the thread keyword. Asin an ordinary C++ class, each thread allows its data members
and member functions to be read and written in three access modes such as public,
protected, and private. Their default attribute is private. The thread carries all data
members with it whenever moving to a different node. However, it does not carry its
member functions, which means that the same executable file must be made available

20

by NFS or manually copied in advance at at each destination. The thread does not
carry any local variables, either. This means that, while local variables including
arguments can be still defined inside each member function, the validity of their
contents is guaranteed only till a next thread migration.

The thread has constructors which can accept arguments. When a constructor is
invoked with two arguments such as (int)argc and (char **)argv as shown in the
following code, it can handle arguments passed from the inject command. In that case,
the meaningful arguments start from argv[4]. (In precise, argv[0], argv[1], argv[2], and
argu[3] include a string “inject”, a target host name, this thread executable file, and
threads to be injected respectively.) The destructor has not yet been supported by
the current version of M++. It will be made available in the following version.

The void main() function is the core of the thread, describing its autonomous behav-
ior involved in network construction, navigation, inter-thread communication, and
computation. It is automatically called by the system immediately after a construc-
tor invocation. In Figure 2, a thread hops to a system-predefined node INIT on
the daemon #0, and calls its work function. A return from the main() means the
termination of the corresponding thread. Multiple inheritance and polymorphisms
are available in the M++ thread. However, one exception is that main() cannot
be inherited from base threads, (in other words, a sub-thread must define its own

main().)

thread SimpleThread {

public:
SimpleThread(int argc, const char**x argv) : num(atoi(argv[4]))
{3}
void main() { hop(INIT @ O);
work();
}
private:
void work() { cout << num << endl;
}
int num;
s

Figure 2: Thread Framework

Upon a startup, the system creates a logical node named INIT on every daemon. Any
M++ thread may be injected (by the inject command from the shell or by another
M++ thread) into any of the INIT nodes. It may then start network construction
and migration using the following five groups of methods: [e/create, [e/destroy, [e/hop,
[e[fork, and [efinject. Note that the methods starting from ‘e’ return an error code,
otherwise they return nothing for performance reasons.

21

e [ecreate node(); permits an M++ thread to create a new logical node. See
Section 4.2.3 for more details.

o [e/create link(); permits an M++ thread to create a new logical link. See
Section 4.2.4 for more details.

e [e/destroy node(); permits an M++ thread to destroy an existing logical node.
See Section 4.2.3 for more details.

o [e/destroy link(); permits an M++ thread to destroy an existing logical link.See
Section 4.2.4 for more details.

e [e/hop(); navigates an M++ thread over an existing logical network. Its execu-
tion resumes from the statement following this hop keyword. See Section 4.3.6
for more details.

o [effork(); allows an M++ thread to spawn its copy on a specified destination
and have it start from the statement following the fork method. The original
thread continues its execution without waiting for the duplicated thread to be
terminated. See Section 4.3.6 for more details.

e [e/create thread(); starts a different M++ thread from the beginning of its code
on a specified destination. The original thread continues its execution without
waiting for the injected thread to be terminated. See Section 4.3.2 for more
details.

4.2 Network Components

This section gives the procedures to define and access the four M++ classes of network
objects: daemon, daemonobj, node, and link. Note that, if those classes are defined in
a header file, you must incorporate them into your mpp source code by enumerating all
those class names in a import keyword. See Section 3.2 for the complete explanation.

4.2.1 The daemon Class

M++ threads can obtain the current daemon status at any point of time by accessing
the system-provided daemon class object. This class includes the following public
functions that can be accessed through the daemon keyword followed by a dot “.”
and the corresponding function name.

e string name(); returns the IP name of the current daemon.

e int id(); returns the current daemon ID.

22

e int total(); returns the total number of daemons in the system.

4.2.2 The daemonobj Class

Unlike the system-provided daemon class, this is a user-provided class of which each
M++ daemon instantiates only one object upon receiving the first M++ thread
that has defined this daemonobj class. Thereafter, all M++ threads with the same
daemonobj class definition can access this daemonobj instance as far as they reside on
the same daemon. A user can define as many distinct daemonobj classes as needed,
using the ordinary C++ class definition. However, each different M++ thread must
declare which daemonobj class to use a priori. Such a declaration is achieved using
the daemonobj keyword followed by a daemonobj class constructor call in front of the
M++ thread definition. This is where the constructor receives its arguments which
must be however literal values only.

Note that the classes defined for daemonobss can be derived using single/multiple
inheritance and from abstract classes as in C++. Anyway types of data members,
method arguments, and pointers are permitted unless they references M++ threads
which may migrate somewhere.

class A { // The daemonobj A is declared as an ordinary C++ object.
public:

A(int a, string b) : { }
};
daemonobj A(0, ‘‘abc’’); // A is the daemonobj which the thread T uses.
thread T {

};

The daemonobj keyword is also used as the reference name of the daemonobj object.
No matter what class a thread has declared as its daemonoby, it must use the reference
name daemonobj in order to access the object. There are no other reference names
than daemonobj. The following code example shows two different daemonobj class
definitions such as DaemonObjl and DaemonQObj2, each respectively used by the
Threadl and Thread2 M++ threads:

class DaemonObjl {

public:
DaemonObj1(int num) : num(num) { }
int num;

};

23

class DaemonObj2 {

public:
DaemonObj1l(const char* str) { strcpy(DaemonObj2::str, str); }
char str[20];

s

daemonobj DaemonObji(0);
thread Threadl {
public:
void main() { cout << ‘‘I’m using DaemonObjl: ’’ << ++daemonobj.num << endl; }

};

daemonobj DaemonObj2(¢ ‘Hello’’);
thread Thread2 {
public:
void main() { cout << ‘‘I’m using DaemonObj2: ’’ << daemonobj.str << endl; }

};

When receiving the first Threadl thread, a daemon instantiates a DaemonObjl object
by invoking its constructor with 0 and resumes the Threadl thread that thereafter
increments the num variable to 1. The daemon however will no longer instantiate
a new DaemonQObjl object but simply passes this reference to the second or the
following Threadl threads that visit this daemon. Similarly, the daemon instantiates
a DaemonObj2 object with a string constant, “hello” when receiving the first Thread?2
thread. Thus, all the Thread?2 thread visiting this daemon retrieves “hello” as the
content of daemonobj.str.

Note that each daemonobj objects, once allocated to a daemon, will never been deal-
located until the system is terminated.

4.2.3 Nodes

The M++ node represents an application-specific logical network node. It is a place
where M++ threads migrate themselves and carry out their task. A user can define
various C++ classes for and instantiate them as M++ nodes. However, their actual
instantiation takes place in response to runtime requests ordered by M++ threads.
(This in turn means that no nodes are instantiated at compile time.) Once a node is
instantiated from a user-defined C++ class, M++ threads may migrate to this node.
All threads residing on the same node can share its data and method members. They
are guaranteed to access the current node without intervened by any other threads
unless they call either a migration or a synchronization method (see Section 4.3.7).

The following code shows an example of a class defined for nodes. Similar to classes
used for daemonobj, it can be derived using single/multiple inheritance and from

24

abstract classes as in C++. Any types of variables and arguments are allowed except
pointers referencing M++ threads.

class Place {
public:
Place(int num) : num(num) { }
void setNum(int num) { Place::num = num; }

int getNum() { return num; }

void printName() { cout << ““I’'m ‘¢ << name() << endl; }
private:

int num;
}

Note that this Place class includes the name() method whose body is not actually
specified inside this class definition. It is one of the system-predefined methods that
are available to any classes used for M++ nodes:

e int id(); returns the current node ID.

e string name(); returns the class name from which the current node was instan-
tiated.

e int thr_num(); returns the total number of threads residing on the current node.

M++ threads are in charge of choosing which class it uses for a new node instantiation,
instantiating an object from the class, and mapping it onto a specific daemon as well
as giving a node ID to this object. To perform such a node creation, M++ threads
must call the following method in its main():

e [e/create node< NodeClassName> (args_list) with (NodeID/@DaemonlID]);

where NodeClassName is the name of the class used for a node instantiation; aargs_list
is a list of arguments passed to this class constructor; NodelD is a daemon-unique
node identifier that must be a non-negative integer; and DaemonlID is the identifier
of the daemon to which this node is mapped. If DaemonlD is omitted, a new node
is created on the current daemon. This method returns mpp::Errno::noError on
success, otherwise mpp::Errno::createNodeFuiled. If e is not prefixed to create, the
return value is always mpp:Errno::noError.

In order to access a node, M++ threads must move to the node by calling one of its
migration methods. One of such methods is:

e [eJhop([NodeID[@DaemonID]);

25

where NodeID and DaemonlID are the destination node’s and the destination dae-
mon'’s identifier respectively. Again, the omission of DaemonlID specifies the current
daemon as a default. This method returns mpp::Errno::noError on success, otherwise
mpp::Errno::hopFailed. 1t always returns mpp::Errno:noError if it has no e prefix.
To understand all thread migration methods in details, see Section 4.3.6.

M++ threads can access their current node through the reference name, node. There

are no reference names other than node

e node.member: where member is one of system-provided node methods such as
id(), name(), and thr_num().

e node<NodeClass>.member: where NodeClass is the class name from which this
node was instantiated, and member is a member of this class.

M++ threads are also responsible to delete existing nodes. A node deletion is per-
formed by:

e [e/destroy node(NodeID[@DaemonID]);

This method deletes a node with NodelD mapped on the daemon with DaemonliD.

(The omission of DaemonID means the current daemon.) It returns mpp::Errno::noError
on success or always mpp::Errno::noError without the ‘e’ prefix, otherwise mpp::Errno::delete-

NodeFailed. 1f ‘e’ is not prefixed, the return value is always mpp::Errno::noError.
Note that if a node to be deleted has threads and links, it cannot be deleted. This
also means that an M++ thread cannot delete the current node.

The following code example shows a sequence of node creation, access, and deletion:

class Place {
public:
int num;

};

thread SimSpace {
public:

void main();
private:

int i;

3

void SimSpace::main() {
create node<Place> with(0);
hop(0);

26

node<Place>.num = daemon.id();
hop(INIT);
destroy node(0);

}

The SimSpace thread first creates a new node from the Place, gives the nodelD ‘0’ to
this node, and maps it onto the current daemon. Thereafter, the thread migrates to
this node and substitutes this node’s num variable with the current daemon id which
is retrieved by daemon.id(). Finally it hops back to the system-predefined INIT node
and deletes the node whose id is 0.

4.2.4 Links

The M++ link represents a logical path along which M++ threads move from one
node to another. While M4+ threads can jump directly to a node addressed with its
absolute node/daemon identifiers, links are another addressing option that permits
threads to move to a node neighboring to the current node, (e.g., move to a left
neighbor or a upward neighbor). Similar to the node, a user can define various
C++ classes for and instantiate them as M++ links. Again, like nodess, the actual
instantiation of links must be requested from and achieved by M++ threads at run
time. Once a link is instantiated from a user-defined C++ class, M+-+ threads may
migrate along this link. A link is accessible from all threads residing on either one of
the two end points of the same link, (i.e. one of the two nodes incident to the same
link). Note that the system guarantees a non-interruptible access to a link. In other
words, while a thread is executing a link method, no other threads can access any
methods of the same link.

Each link has two identifies: source link ID and destination link ID. The former is
unique to the source node, the latter unique to the destination node. Of notable is
that the source and the destination IDs are recognized as the destination and the
source IDs at the destination node. The link ID must be a non-negative integer.

The following code shows an example of a class defined for links. The C++ class
inheritance is possible. Any types of variables and arguments are allowed except
pointers referencing M++ threads.

class Path {
public:
Path(int num) : num(num) { }
void setNum(int num) { Place::num = num; }

int getNum() { return num; }
void printName() { cout << ““I’'m »° << name() << endl; }
void printId() { cout << “‘src=?’ << src_id()

27

<< ¢¢ dest= ’’ << dest_id() << endl; }
private:
int num;

}

Note that this Path class includes name(), src_id(), and dest_id() whose body is not
actually specified inside the class definition but implicitly provided by the system.
Two groups of methods have been made available to M++ links: link-shared and
link-local groups. The former provides general information shared among all links
emanating from the same node, while the latter focuses on the information local to
each link.

The following list summarizes link-shared methods:

e int count(); returns the total number of links emanating from the current node.
e int min(); returns the minimal link ID.
e int maz(); returns the maximal link ID.

e int next(int linkId); returns the minimal link ID among those which are larger
than linkId.

e int prev(int linkId); returns the maximal link ID among those which are smaller
than linkld.

e bool exists(int linkId); returns true if there exists the link with linkId.
The following list summarizes link-local methods:

e int name(); returns the class name from which the current link was instantiated
from.

e int src_id(); returns the source link ID.

e int dest_id(); returns the destination link ID.

e int src_daemon_id(); returns the source daemon ID.

e int dest_daemon_id(); returns the destination daemon ID.
e int src_node_id(); returns the source node ID.

e int dest_node_id(); returns the destination node ID.
M++ threads are in charge of choosing which class it uses for a new link instantiation,
instantiating an object from the class, and mapping it onto a specific daemon as well

as giving a pair of source and destination link IDs to this object. To perform such a
link creation, M++ threads must call the following method in its main():

28

o [e/create link< LinkClassName> (args_list) with (SrcID) to (NodeID[@DaemonlID]
) with (DestID);

where LinkCalssName is the name of the class used for a link instantiation; args_list
is a list of arguments passed to this class constructor; SrcID is a link ID unique

to

the source node; NodelD is the destination node identifier; DaemonlID is the

destination daemon’s identifier; and DestID is a link ID unique to the destina-
tion node. The omission of DaemonlD means that the destination node is on the
current daemon. This method returns mpp::Errno::noError on success, otherwise
mpp::Errno::createLinkFailed. If ‘€’ is not prefixed to create, the return value is al-
ways mpp::Errno::noError.

Note that the source and the destination node of a link may be identical. In other
words, the system permits threads to create a circle link departing from and arriving

at
be

the same node, even in which case the source and destination IDs of this link must
distinguished.

Once a link has been created, M++ threads can move to another node along the link

by

calling one of its migration methods. One of such methods is:

e [e/hopalong(srcLinkID);

where srcLinklID is the identifier of the link which emanates from the current node
and along which the calling thread will move to its destination. This method returns
mpp::Errno::noError on success, otherwise mpp::Errno::hopFailed. 1t always returns
mpp::Errno:moFError if it has no ‘e’ prefix. To understand all thread migration meth-
ods in details, see Section 4.3.6.

All links incident to the current node can be accessed through the reference name,
link. There are no reference names other than link

o link.member: where member is one of link-shared methods which the system has
predefined: count(), min(), maz(), next(), prev(), and ezists().

o link[LinkID].member: where member is one of link-local methods which the sys-
tem has predefined: name(), src_id(), dest_id(), src_daemon_id(), dest_daemon_id(
), src_node_id(), and dest_node_id ().

e link[LinkID|< LinkClass>.member: where LinkClass is the class name from which
this link was instantiated, and member is a member of this class.

M++ threads are also responsible to delete existing links. A link deletion is performed
by:

29

o [e]/destroy link(LinkID);

This method deletes a link whose source link ID is LinkID. It returns mpp::Errno::noError
on success or always mpp::Errno::noFErrorwithout the e prefix, otherwise mpp::Errno::deleteLinkFailed.
If ‘e’ is not prefixed, the return value is always mpp::Errno::noError.

The following code example shows a sequence of link creation, access, and deletion:

class Place { // a class used for node instantiation
};

class Path { // a class used for link instantiation
public:

Path() : count(0) { }

int count;

}

thread SimSpace { // a thread instantiate a node and a link
public:

void main();
private:

int i;

}

void SimSpace::main() { // a SimSpace thread’s main behavior
create node<Place> with(0);
create link<Path> with(0) to (0) with (1);
link[0]<Path>.count++;
hopalong(0);

cout << ‘‘link.count = ’’ << 1link[0]<Path>.count++ << endl;
hopalong(1);
cout << ‘‘link.count = ’’ << 1link[0]<Path>.count++ << endl;

destroy link(0);

The SimSpace thread first instantiates a new node from the Place, gives the nodelD
‘0’ to this node, and maps it onto the current daemon. Thereafter, it establishes
a new [link from the current node, (i.e., an INIT node where injected) to the node
0. This link is accessible as link 0 from the INIT node and as link 1 from node 0.
Thereafter, the thread increments this link’s count variable and hops it along to node
0. Again, it increments this link’s count variable and hops it along back to the INIT
node. Finally, it deletes this link.

30

4.2.5 Classes Used for Network Components

It is possible to use the same class for definition of various network components such
as daemonobj, node, and link, as far as it is an ordinary C++ class. However, if a class
uses network-component-specific methods such as name and src_id, it must be used
for representing only the network components that provide those specific methods
at the system level. For instance, DaemonQObjl and Daemon(Qbj2 in Section 4.2.2
are an ordinary C++ class which does not include any system-provided methods,
and thus they can be also used as both nodes and links. On the other hand, Place in
Section 4.2.3 includes a system-provided method, name() which is available for nodes
and links, and therefore it must be used for nodes and links but not for daemonobss.

4.3 Threads

M++ threads are active computation entities, capable of constructing and migrating
over a logical network. They are defined using the thread keyword rather than class,
however their definition takes a form similar to that of C++ classes except a few
restrictions. Different types of M4+ threads can be programmed inside the same
m++ program.

Upon an instantiation, they are initialized with their constructor and automatically
activated to execute their main method. Those steps are similar to Java threads:
a constructor initialization and a run method invocation, however note that M++
threads run their main method automatically, while Java threads’ run method must
be triggered by the start method.

The main method is the heart of M++ threads, and can perform:

e initialization of deamonobss,
e creation of nodes, links, and other threads,

e access to all M++ objects such as daemons, daemonobss, nodes, links, and other
threads

e destruction of nodes, links and other threads,

e migration to another node,

e forking itself to the current or another node,

e direct communication with another thread, and

e inter-threads synchronization

Each of those manipulations listed here is explained in the following subsections.

31

4.3.1 Thread Definition

The definition of M++ thread starts from the thread keyword rather than class.
It follows all C++ class rules for single/multiple inheritance, polymorphisms, and
abstract definition, however there is one exception: the main() method defined
inside each thread will not be inherited by any sub-threads. All sub-threads must
define their own main() method.

If a thread definition has one or more pure virtual functions, it is regarded as an
abstract thread and does not have to include its main() method. Nevertheless to
say, no instantiation is possible from an abstract thread. It is used to derive sub-
threads which no longer include pure virtual functions.

Data members declared in thread are carried with each individual thread upon a
migration. However, there are three restrictions in the use of variables:

e Local variables are not carried with each thread. They can be still declared
and used inside each method, however their contents are not guaranteed once a
thread has migrated to another node.

e Arguments passed to any methods defined in thread are not carried with a
thread, either. Their contents are not guaranteed once a thread has migrated to
another node.

e Pointer contents are not guaranteed once a thread has migrated to a remote
node, although they can be still defined as thread data members. This implies
that memory allocated within thread using new must be freed with delete before
a next migration. (Note that dynamic memory allocation works in any other
classes, since they are immobile.)

The following code defines the Base thread from which the Sub thread is derived as
a sub-thread.

thread Base { // a super thread
public:

Base(int num) : num(num) { }
protected:

int getNum() { return(num); }
void setNum(int num) { Base::num = num; }
virtual void printNum() = O0;
private:
int num;

};

thread Sub : public Base { // a sub thread

32

public:
Sub(int argc, const char**x argv) : Base(atoi(argv[4])) { }
void main() { printNum(); }

protected:
void printNum() { cout << “‘Num = ‘¢ << getNum() << endl; }

};

The Base thread includes a pure virtual function, printNum/(), because of which it
does not have to include its own main() method. The Sub thread inherits Base
and implements the printNum/() method. Since it have no more pure functions, it
must define the main() method which simply calls printNum(). Its constructor
converts the argu[4] string into an integer that is passed to the Base constructor.
This integer value is stored in the num variable and printed out when the main()
calls printNum/().

4.3.2 Thread Creation and Constructor

M++ threads are instantiated either (1) by running the inject command from the
Unix shell or (2) executing the create statement from any other M++ thread.

1. inject:
The nject command creates one or more thread instances at a time. It takes the
following arguments:

% inject hostname ThreadClassName #instances argl arg2

where hostname is the IP name of a cluster computing node onto which you
will instantiate M++ threads; ThreadClassName is the name of thread class;
#threads is the number of instances created from ThreadClassName; and argl
arg2 ... are the actual arguments passed to a constructor of each instance. All
instantiated threads start at the INIT node on the designated computing node.

2. create:

The create statement creates only one thread instance at a time. It takes one of
the following three forms:

e [efcreate thread< ThreadClassName> (args_list) to(NodeID[@DaemonlID]
)i

where ThreadClassName is the name of thread class; args_list is a list of

char[] arguments passed to a constructor, (i.e., a list of character arrays);

and NodeID[@DaemonlID] specifies a node where a thread is instantiated.

If DaemonlID is omitted, the instance is placed at a designated node on the

current daemon.

33

e [efcreate thread< ThreadClassName> (args_list) along(LinkID);
where ThreadClassName is the name of thread class; args_list is a list of
char[] arguments passed to a constructor, (i.e., a list of character arrays);
and LinkID specifies a link whose destination node is where a new instance
is created.

e [e/create thread< ThreadClassName> (args_list)
where ThreadClassName is the name of thread class, and args_list is a list
of char[] arguments passed to a constructor, (i.e., a list of character arrays).
This statement instantiates a thread on the current node.

If the create statement has a prefix ‘e’, it returns mpp::Errno::noFError on success,
otherwise mpp::Errno::injectFailed. Without the ‘e’ prefix, it always returns
mpp::Errno::moError.

Constructors of M++ thread may or may not accept arguments. If a thread is
designed to always derive sub-threads, its constructors may accept any types of argu-
ments. If a thread is however designed to accept arguments given from either inject
or create upon its instantiation, it must include a constructor which receives int argc
and char** argv arguments. The argc argument contains four plus the number of

arguments passed from either inject or create: argl arg?2 The argv arrays include:
| argv | when invoked from inject | when invoked from create |
argv[0] | a string “inject” null
argv([l] | the target host name where injected null
argv([2] | this thread class name null
argv([3] | # of instances (represented in a string) | null
argv[4] | argl argl
argv[5] | arg2 arg2

The following code defines two threads such as Parent and Child. Parent simply
creates 10 Child instances on the current node, and passes two arguments to them.
The first argument is “I am Thread No.” for all Child threads, whereas the second
argument is “07, “17, “2”7, ..., “9” to each of them. FKEach Child stores the first
argument in the msg string variable, converts the second argument in the id integer
variable, and prints out msg and id in its main() method.

thread Child {
public:
Child(int argc, comnst char** argv) : id(atoi(argv[5])) {
strncpy(msg, argv([4], 16);
}

void main() { cout << msg << id << endl; }

34

private:
char msg[16];
int id;

}

thread Parent {
public:
void main();
private:
int i;
char numstr[10];
};
void Inject::main() {
for (i =0; i< 10; i++) {
sprintf (idstr, ‘‘%d’’, i);
create thread<PrintMsg>(‘‘I am Thread No.’’, idstr);

}
}

4.3.3 Thread Termination and Destructor

The M++ thread is terminated either implicitly by reaching the end of its main()
method or explicitly by executing the following statement.

e terminate;
terminates the invoking thread.

The current version of M++ has not supported the thread destructor. Although you
may define it, nothing would happen.

4.3.4 Thread Status

Each M++ thread includes several system-provided methods that indicate the thread
status. They are categorized into two groups: thread-shared and thread-local groups.
The former provides general information shared among all threads residing on the
same node, while the latter focuses on the information local to each thread.

The following list summarizes thread-shared methods:

e int count(); returns the total number of threads residing on the current node.

e int min(); returns the minimal thread ID.

35

e int maz(); returns the maximal thread ID.

e int nect(thread_id threadld); returns the minimal thread ID among those which
are larger than threadld.

e int prev(thread_id threadld); returns the maximal thread ID among those which
are smaller than threadld.

e bool exists(thread_id threadld); returns true if there exists the thread with
threadld.

The following list summarizes thread-local methods:

e int name(); returns the class name from which this thread was instantiated.

e int src_id(); returns the identifier of this thread.

All threads residing on the same node can access one another through the reference
name, thread. There are no reference names other than thread.

o thread.member: where member is one of thread-shared methods which the system
has predefined: count(), min(), maz(), next(), prev(), and exists().

o thread[ThreadID].member: where member is one of thread-local methods which
the system has predefined: name() and id().

e thread| ThreadID|< ThreadClass>.member: where ThreadClass is the class name
from which this thread was instantiated, and member is a member of this class.

4.3.5 Network Construction

The construction of logical networks is viewed as a series of creating and deleting nodes
and links. Threads are only entities that can instantiate those network components.

e [e/create node< NodeClassName> (args_list) with (NodeID/@DaemonlID]);
Details are given in Section 4.2.3.

o [e/destroy node(NodelID[@DaemonlID]);
Details are given in Section 4.2.3.

o [e/create link< LinkClassName> (args_list) with (SrcID) to (NodeID[@DaemonlID]
) with (DestID);
Details are given in Section 4.2.4.

36

o [e]/destroy link(LinkID);
Details are given in Section 4.2.4.

The following code permits an M++ thread to create a MyNode node on each daemon
and establish a MyLink link to each of those nodes from the current working node,
(i.e., the INIT node where it has been injected).

class MyNode { }; // a class used to instantiate a node
class MyLink { }; // a class used to instantiate a link
thread StarNet { // a thread creating nodes and links
private:

int i;

int nodeld, linkId;
public:

StarNet(int argc, charx* argv) :
nodeId(atoi(argv[4])), linkId(atoi(argv[5])) { }
void main() {
for (i = 0; i < daemon.total(); i++) {
create node<MyNode>() with (nodeId @ i);
create 1link<MyLink>() with (i) to (nodeId @ i) with (linkId);
}
}
};

In this example, the StarNet thread receives two arguments, each stored into its
nodeld and linkId variables. It creates a new node on each of all daemons whose
identifier ranges from 0 to daemon.total(). Each node receives the content of nodeld
as its identifier. Thus, all the node obtains the same identifier while each resides on
a different daemon. As soon as the thread creates a new node, it establishes a new
link to this node from the current node. The source link ID of each link is set to its

destination daemon’s identifier, while the destination link ID is set to the content of
linkId.

4.3.6 Thread Deployment

An M++ thread can migrate itself or deploy its copy over an existing logical network
by calling one of the following methods. Similar to the network construction, if those
methods are prefixed with ’e’ and an error has occurred, they returns an error code.
Otherwise, they return mpp::Errno::moError, (i.e., no errors.) For all those methods,
if the Daemonld argument is omitted, their migration or deployment is bound for the
local daemon. If the Nodeld argument is omitted together, their destination is the
current working node. Note that it is not permissible to omit only Nodeld.

37

e [e/hop([NodeID[@DaemonlID]]);
migrates the calling thread to the node specified with Nodeld and Daemonld. If
this method is not prefixed with ‘€’ and an error has occurred at an migration, the
calling thread is automatically terminated as displaying a termination message.
If it is prefixed with ‘¢’ and an error has occurred at an migration, the calling
thread remains at the same node as receiving an error code.

e [e/hopalong(SrcLinkID);
migrates the calling thread along the link specified with SrcLinkld. If this method
is not prefixed with ‘€’ and an error has occurred at an migration, the calling
thread is automatically terminated as displaying a termination message. If it is
prefixed with ‘€’ and an error has occurred, the calling thread remains at the
same node as receiving an error code.

e [e/fork([NodeID[@DaemonID]]);
deploys a child of the calling thread to the node specified with nodeld and
daemonld. The child thread starts its execution from the statement next to
[e[fork(). The parent thread keeps running without waiting for its child.

o [e/forkalong(SrcLinkID);
deploys a child of the calling thread along the link specified with linkId. The
child thread starts its execution from the statement next to /e/forkalong(). The
parent thread keeps running without waiting for its child.

The following code example permits an M++ thread to visit each leaf node of a
star network already constructed by another M++ thread whose code was shown in
Section 4.3.5.

thread StarHopper {
private:
int i;
int srcNode, srcDmn;
public:
StarHopper(int argc, charx* argv) { }
void main() {

srcNode = node.id(); // record the origin node id
srcDmn = daemon.id(); // record the origin daemon id
for (i = 0; i < daemon.total(); i++) { // for each daemon
hopalong(i); // hop along the link to it
cout << "hello! at " << daemon.id() << endl; // display the dest. daemon id
hop(srcNode@srcDmn) ; // go back to the origin node
}
}

38

This example first memorizes the node and daemon identifiers of where a StarHopper
thread has been injected. It thereafter repeats dispatching the thread along each
different link emanating from the origin, labeled from 0 to daemon.total() - 1, thus
leading to each leaf daemon. Every time the thread visits on a different leaf node, it
displays “hello!” and jumps back to the origin node.

4.3.7 Synchronization

The following statements are used for inter-threads synchronization.

e sleep [node | daemon/
suspends the execution of the calling thread which will sleep until it is woken up
by either a wakeup or a wakeupall statement.

e wakeup ThreadID | node | daemon
wakes up the thread specified by ThreadID if it is given, wakes up one of the
thread sleeping on the current node if the node parameter is given, or wakes up
one of those sleeping on the current daemon if the daemon parameter is given.
The woken-up thread will resume its execution after the point where it was
suspended. A sleeping thread is chosen to wake up in a first-come-first-service
order so that no starvation occurs.

e wakeupall node | daemon
wakes up all threads sleeping on the current node or all those sleeping on the
current daemon according to a parameter given to the wakeupall statement.
All those threads will resume their execution after the point where they were
suspended.

Non-interruptible execution is guaranteed by implementing every node as a mon-
itor. Each node allows only one of the arriving threads to resume its execution
and access the node variables. Thus, there is no concurrency inside a node, while
threads residing at a different node may run concurrently. The daemon also guar-
antees non-interruptible access to each link. While a thread is executing a certain
link’s method, no other threads can access the same link. The thread will suspend
its non-interruptible execution and relinquish CPU to a next ready thread by calling
one of the following methods

e Network construction/destruction affecting a remote daemon

— [efcreate node if it must be created on a remote daemon

— [e/destroy node

39

— [efcreate link if it must be established to a remote daemon
e Link-accessing statements

— link[LinkID].member
— link[LinkID] < LinkClass>.member

e All thread deployment statements

e Inter-threads synchronization

— sleep

— wakeup/wakeupall if you have chosen pthread in your profile.

Note that an M++ thread never yields CPU unless it calls one of the above state-
ments. Programmers are responsible to prevent a thread from hogging CPU, (i.e., to
prevent the other threads from starving for it.) If an M++ thread needs to wait for
another thread, it should either execute sleep to suspends its execution or repeatedly
invoke hop() to relinquish CPU to another thread. (The former is recommended for
better performance.)

In the following code example, the WakeUp thread creates five PrintMsg threads and
performs a busy wait until they increment the num node variable, display a “Good
night” message, and fall asleep. Thereafter, the WakeUp thread prints out “Wake
up”, and wakes up all those five threads that then reply “Good morning”.

const int threadNum = 5;

class Place { // a class used to instantiate a node
public:

Place() : num(0) { }

int num;

};

thread PrintMsg { // a child thread created by a Wakeup thread
public:
void main() {
node<Place>.num++;

cout << ‘‘Good night.’’ << endl;
sleep node;

40

cout << ‘‘Good morning.’’ << endl;
}
}

thread WakeUp { // a parent thread to spawn 5 PringMsg threads
private:

int i;
public:

void main();

}

void WakeUp::main() {
create node<Place> with(0);
hop(0);

for (i = 0; i < threadNum ; i++)
create thread<PrintMsg>;

while (node<Place>.num != threadNum)
hop();

cout << ‘‘Wake up!!’’ << endl;

wakeupall node;

The above program runs in the following sequence of thread context switches:

1. The WakeUp thread performs all thread instantiations without any intervention.
Thereafter, it relinquishes CPU to one of the five PrintMsg threads by calling

hop(")-

2. Once acquiring CPU, each PrintMsg thread increments num, prints out a “Good
night” message, and thereafter executes sleep that yields CPU to another thread.
Eventually, all the PrintMsg threads have fallen asleep, and CPU comes back to
the WakeUp thread.

3. The WakeUp thread executes wakeupall node and terminates itself. Control goes
to one of PringMsg threads.

4. The PrintMsg thread, upon displaying “Good night”, terminates its execution
and passes control to another thread that is about to print out the same message.

4.3.8 Node Clocking

This feature permits an M++ thread to invoke the same method of all nodes existing
over the system. The method to be defined in node classes must have the following

41

interface:

void clocking(int time);

To invoke all the clocking methods, an M++ thread must execute the following clock-
ing statement in its main() method.

e clocking time;
passes an integer argument, time to the clocking method of all nodes.

With node clocking, a thread can avoid visiting all nodes over the system in order to
invoke their clocking method, which may be useful for simulation applications to tick
their virtual time.

Since a thread can access links while executing a method of the current node, (i.e.,
it can call link methods from a node method), the clocking method can be used to
exchange data via links between any two neighboring nodes at a time.

Note that node clocking does not ideally mean a simultaneous invocation of all node’s
clocking() method. In particular, clocking() methods on the same daemon will be
invoked in sequential. Of course, such calling sequence is not deterministic, either.

4.3.9 Communication

While threads share node variables on the same node and thus use them as indirect
communication media, they can also establish direct communication by calling each
other’s public method. Note that a called thread must be sleeping on the same node
where the calling node resides.

e thread| ThreadID].member
calls a predefined member function, (i.e., name() or id()) of the thread sleeping
on the current node and specified in ThreadID.

o thread| Threadld) < ThreadClass>.member
calls a user-defined member function of the thread sleeping on the current node
and specified in ThreadID.

The following program includes two threads such as Container and Reader. The
former receives one argument upon its initialization and maintains it as an integer
value. The latter, through the inter-thread communication, reads this integer value of
each Container thread residing on the current node. More specifically, Reader scans

42

all threads whose identifications can be found from thread.min() to thread.maz(),
checks if each of them has “Container” as its class name, and, if so, calls its getData()
method to retrieve the number value.

thread Container { // a thread keeping an integer value which will be read by Reader
public:

Container(int argc, const char** argv) : number(atoi(argv[4])) { }

int getData() { return number; }

void main() { sleep; }
private:

int number;

};

thread Reader { // a thread reading each Container’s integer value
public:
void main();
private:
thread_id 1i;
}

void Reader::main() {
if (thread.count() > 0) {
for (i = thread.min() ; i <= thread.max() ; i = thread.next(i))
if (thread[i] .name() == ‘‘Container’’)
cout << ‘‘Container[’’ << i << ‘‘]’s data = ??
<< thread[i]<Container>.getData() << endl;

4.3.10 Global Virtual Time (Soon Made Available)

This feature has been supported at the daemon level but not yet at the language
level. It will be soon made available.

Using the M++ global virtual time (abbreviated as GVT), threads can schedule their
next action at a certain logical time that starts from time 0. This feature is intended
to ease discrete-event simulations with M++4-. The following five methods are used
to start, schedule thread actions along, and stop GVT.

e void gut_ready()
A thread which wants to participate in a GVT computation must call gvt_ready in
prior to calling any of the following methods: [e/hop, [e[fork, [e[create, [e]destroy
and all GVT methods except guvt_start.

When calling gvt_ready at time 0, the thread waits until another thread calls
gut_start that triggers time ticking. If gvt_start has been already called and a

43

GVT computation is in progress, the thread does not suspend its execution and
goes forward to the next guvt_delta function call.

e void gut_start()
triggers GV'T ticking from 0 and wakes up all threads which have called gvt_ready.
A thread calling gvt_start implicitly participates in a GVT computation and thus
does not have to call gvt_ready.

e void gut_delta(int dTime)
Once participating in a GVT computation through guvt_ready or guvt_start, a
thread may call gvt_delta to suspend its execution until GV'T reaches the current
time plus dTime.

e int gut_time()
returns the current virtual time which is 0 or a positive integer.

e void gut_end()
gets out of the current GVT computation. Each participating thread implicitly
leaves the GVT computation upon its termination. However, if a thread needs
to behave regardless of GV'T, it must explicitly call gvt_end.

Note that GVT does not tick up as far as any participating threads are still active.
Once all of them have called gvt_delta to suspend themselves, the system increments
GVT to the nearest future time at which at least one thread schedules its next action.

5 Examples

This section deals with two entire sets of M++ code such as Section 5.1: Gas Station
and Section 5.2: Ant Farm. The former is a uniprocessor example program in that
SportsCar and Truck agents stop by a gas station to be pumped by a GSCashier agent.
The latter is a multiprocessor application to find the gene of the most efficient ant
forager by walking ants over a meshed farm constructed over multiple workstations.

5.1 Gas Station

This simple program models a gas station cashier fueling two different typed vehicles
such as sports-cars and trucks. As shown in Figure 3, the former receives regular oil
and the latter diesel.

Those three simulation entities are programmed as a Cashier, a SportsCar, and a
Truck thread respectively. In particular, the latter two threads are derived from the

44

Figure 3: Cashier and Cars

Car base thread. In addition to those threads, the program defines the GasStation
and the Fluel class, each instantiated as where Cashier works and what it serves.

5.1.1 GasStation/Fuel Classes

The gasStationld constant integer defines the id of the node where a Cashier thread
works. It simply specifies 0.

The GasStation class includes nothing. It is used for a Cashier thread to instantiate
its working node (whose id is gasStationld, i.e., 0).

The Fuel class includes two private integer variables: dieselOid and regularQil, each
having 1000 (gallons). The class provides four public methods:

45

Methods | Descriptions

int useDieselOil(amount) subtract amount or all from diesel and return this amount
int useRegularQil(amount) | subtract amount or all from regular and return this amount
void print() display the amount of diesel/regular oil left
bool empty() return true if both diesel and regular are empty

const int gasStationId(O); // node id

class GasStation // node class

{

};

class Fuel // maintained by GSCashier

{

public:

Fuel() : dieselD0il(1000), regular0il(1000) {}
int useDiesel0il(int amount) // subtract amount if possible, otherwise
{ // subtract all from diesel diesel oil
if (diesel0il < amount)
amount = diesel0il;

dieselO0il -= amount;
return(amount);

}

int useRegular0il(int amount) // subtract amount if possible, otherwise
{ // subtract all from regular oil
if(regular0il < amount)
amount = regular0il;

regular0il -= amount;

return(amount);
}
void print() // print out the amount of diesel/regular

{ cout << "Diesel: " << diesel0il << " Regular: " << regularQ0il << endl; }
bool empty() // true if no oil remains.

{ return(diesel0il == 0 && regular0il == 0); }

private:
int diesel0il;
int regular0il;

};

46

5.1.2 Car/SportsCar/Truck Threads

The Car thread is the base of both SportsCar and Truck threads. It includes two
integers: fuel indicating the fuel remaining in its tank and tankmaz specifying the
tank capacity. Both are initialized upon a constructor invocation. This base thread
has two public methods:

Methods | Descriptions

void injectFuel(Fuel& fuel) | pure virtual function implemented by SportsCar and Truck
void receiveFuel() wake up and wait for a GSCashier thread that pumps oil and signals it back

Note that, since Car is an abstract thread, it does not have the main() method.

thread Car
{
public:

Car(int tankMax) : tankMax(tankMax), fuel(0) {}

virtual void injectFuel(Fuel& fuel) = 0; // implemented by each sub thread
protected:

void receiveFuel() // find and wait for GSCashier to complete pumping gas

{
if (thread.count())
for(i = thread.min() ; i <= thread.max() ; i = thread.next(i))

if (thread[i] .name() == "GSCashier")
{
wakeup i; // wake up GSCashier
sleep; // sleep till GSCashier pump fuel and wake me up
break;
}
}
int fuel; // the current amount of fuel stored in the tank
int tankMax; // the tank capacity
thread_id i; // the id of GSCashier thread

};

The Truck thread implements the injectFuel method that actually receives a Fuel
object from GSCashier and calls its useDieselOil() method. Through useDieselOil,
the Truck thread fills its diesel tank.

The main() method, (i.e., Truck’s behavioral scenario), migrates Truck to where
GSCashier is working; wakes up and waits for GSCashier by calling receiveFuel()
method; and resumes its execution after GSCashier calls injectFuel() to pump fuel
and notify it.

47

thread Truck : public Car

{
public:
Truck(int argc, const char*x argv) : Car(100) {}
void injectFuel(Fuel& fuel) // called by GSCashier

{ Car::fuel = fuel.useDiesel0il(tankMax - Car::fuel); }
void main()

{
hop(gasStationId);
cout << "Truck: I’m at the GasStation." << endl;
receiveFuel(); // wait till GSCashier pumps fuel
if (fuel == tankMax)

cout << "Truck: I’'m filled with fuel." << endl;

};

The SportsCar thread implements the injectFuel method that actually receives a Fuel
object from GSCashierand calls its useRegularOil() method. Through useRegularOil,
the SportsCar thread fills its regular-oil tank.

Its main() method is the same as that of Truck except some message-printing state-
ments.

thread SportsCar : public Car
{
public:
SportsCar(int argc, const char*x argv) : Car(50) {}
void injectFuel(Fuel& fuel)
{ Car::fuel = fuel.useRegular0il(tankMax - Car::fuel); }
void main()
{
hop(gasStationId);
cout << "SportsCar: I’m at the GasStation." << endl;
receiveFuel();
if(fuel == tankMax)
cout << "SportsCar: I’m filled with fuel." << endl;

};

5.1.3 GSCashier

The GSCashier thread creates a new node with its gasStationld (= zero), hops to it,
and repeats the rest of its behavior enclosed in its while loop. It sleeps until woken by
either Truck or SportsCar. Thereafter, it identifies which vehicle thread has woken it
up and calls this vehicle’s injectFuel method, as passing its Fuel object, which pumps

48

the appropriate type of oil to the vehicle. Finally, GSCashier wakes up the vehicle
thread and displays its fuel information.

thread GSCashier

{
public:
void main()
{
create node<GasStation> with(gasStationId); // create a working place
hop(gasStationId); // work there
while(1)
{
cout << "GSCashier: Waiting for cars." << endl;
sleep; // wait till a new vehicle comes around
if (thread.count())
for(i = thread.min() ; i <= thread.max() ; i = thread.next(i))
{
thread[i]<Car>.injectFuel(fuel);
cout << "GSCashier: Injected fuel to "
<< thread[i] .name() << endl;
wakeup i;
fuel.print();
if (fuel.empty())
cout << "Fuel is empty." << endl;
}
}
}
private:
thread_id i;
Fuel fuel;
};

All the source code was programmed in /home/m++/appl/m++/Car/Car.mpp. To
compile and execute it, follow the instruction given in Section 3.2.

5.2 Ant Farm

As shown in Figure 4, this multiprocessor application finds the most efficient ant
forager by distributing food on a meshed network and walking many ant threads,
each carrying different behavioral gene. To perform such a simulation, the program
includes the following five types of M++ threads:

1. Mesh constructs a given size of mesh network.

49

Figure 4: Ant farm

2. InitEnvironment distributes food on four cells, each located at diagonally one
inside a different corner of the mesh network.

3. Ant searches for and bring back food to the nest.
4. Gut performs inter-threads synchronization every tick of simulation time.

5. CheckResult shows food, pheromone and ant distribution over the network after
simulation.

The following subsections list each of those thread programs.

5.2.1 DaemonVar/Node/Link Definitions

Those classes are used to construct a farm simulation space where ant agents walk
around.

DaemonVar

This is a daemonobj class mainly used for two functionalities such as virtual time
maintenance and node-to-daemon mapping. Note that we developed this ant farm
application before completing the M++ global virtual time maintenance feature that
therefore had to be implemented at an application level. The following summarizes
the variables defined in Daemon Var.

50

type name | used for descriptions
int daemonTotal node mapping # of daemons over the system
int meshsize node mapping a meshsize? farm created
int divider node mapping dividing farm in 1: strip or 0: lattice
int ant_num time maintenance # of ants on this daemon
int live_ant time maintenance # of active ants on this daemon
int sleep_ant time maintenance # of sleeping ants on this daemon
int gvt time maintenance the current global virtual time
bool is_reported time maintenance false if none of daemons has informed the master of ant info.
bool gvt_kicker flag | time maintenance false if this daemon has not informed the master of ant info.
Timer timer performance see section 77
import <cmath> {}
import <cstdlib> {}
import "Timer.h" { class Timer; } // used for performance evaluation

const bool DEBUG(false);

class DaemonVar

{
public:

DaemonVar() {
ant_num = 0

1
s

H
ive_ant = 0;
leep_ant = 0;

gvt = 0;
is_reported = false;
gvt_kicker_flag = false;
divider = 0;

}

int daemonTotal; //
int meshsize; //
int divider; /!
int ant_num; //
int live_ant; //
int sleep_ant; //
int gvt; //
bool is_reported; //

bool gvt_kicker_flag; //
Timer timer;

//

daemons over the system

a meshsize x meshsize farm created

dividing farm in 1: stripe or 0: lattice

ants residing on this daemon

active ants on this daemon

sleeping ants on this daemon

the current virtual time

false if none of daemons informed master of ants
false if a daemon informed master of ants info.
used for performance evaluation

int getNodeID(int x ,int y) { // decide a node id from [x,y] coordinates
return y * meshsize + x;

}

int getDaemonID(int nodeld) { // decide a daemon id from a given node id
int dId;

dId = 0;
if (divider == 1)

// stripe mapping

51

dId = ((nodeId * daemonTotal) /(meshsize*meshsize));
else { // lattice mapping
switch(daemonTotal) {
case 1:
dId = 0;
break;
case 2:
if (nodeld < meshsize * meshsize / 2)
dId = 0;
else
dld = 1;
break;
case 4:
if (nodeld < meshsize * meshsize / 2) {
if (nodeld % meshsize < meshsize / 2)

dId = 0;
else
dId = 1;
} else {
if (nodeld % meshsize < meshsize / 2)
dId = 2;
else
dId = 3;
}
break;
case 8:

if (nodeld < meshsize * meshsize / 4) {
if (nodeld % meshsize < meshsize / 2)

dIld = 0;
else
did = 1;

}
else if (nodeld < meshsize * meshsize / 2) {
if (nodeld % meshsize < meshsize / 2)

dIld = 2;
else
dIld = 3;

}
else if (nodeld < meshsize * meshsize / 4 * 3) {
if (nodeld % meshsize < meshsize / 2)

dId = 4;
else
dId = 5;
} else {
if (nodeId % meshsize < meshsize / 2)
dId = 6;
else
dId = 7;

52

break;

default:
dId = 0;
break;
}
}
return dId;
}
};
Trail

This is a node class that maintains geometric information and food. Each node is
first created by a Mesh thread, is thereafter initialized by a InitEnvironment, is used
for ant threads to communicate with one another, and is finally checked of its data
by a CheckResult thread.

class Trail {

public:
[H Rk kokokok ok ok ok ok kK Kk
//Class Variable
Fokkk KKKk ok ok ok kK kK k [

int x,y; // coordinates

int nest; // 1 if it is the nest, otherwise 0

int food; // the amount of food left on this node
int ant_num; // # of ants on this node

int pheromon_to_food; // the level of food-directive pheromone left on this node
int pheromon_to_nest; // the level of nest-directive pheromone left on this node

/*****************

//Method
*****************/

Trail(int x,int y):x(x),y(y){ // comnstructor
nest=0;
food=0;
ant_num=0;
pheromon_to_food=0;
pheromon_to_nest=0;

}

void drop_pheromon_to_food(int ph){ // increment food-directive pheromone
pheromon_to_food = pheromon_to_food + ph;

}

void drop_pheromon_to_nest(int ph){ // increment nest-directive pheromone
pheromon_to_nest = pheromon_to_nest + ph;

}

53

int get_pheromon_to_food(){ // detect food-directive pheromone
return pheromon_to_food ;

}

int get_pheromon_to_nest(){ // detect nest-directive pheromone
return pheromon_to_nest ;

}

void ant_in(){ // one ant came in this node
ant_num++;

}

void ant_out(){ // one ant left this node
ant_num--;

}

int is_food(){ // return the amount of food
return (food > 0);

}

int get_food(int £){ // return a requested or all
if (food < £) // remaining food

f = food;

food = food - £f;
return f;

}

void set_food(int £){ // initialize the amount of food
food=f;

}

void drop_food(int £){ // receive food dropped by an ant
food=food + f£f;

}

int is_nest(){ // 1 if this is the nest
return nest;

}

};
Way

This is used to instantiate links. The current implementation does not use any meth-
ods defined in Way.

class Way {

public:
/ kK sk ook ok ok k ok ok Kk ok ok K
//Class Variable

54

Fokokokokokokokkkkokk ok ok ok ok /
int i;

int pheromon_to_food;
int pheromon_to_nest;

/*****************

//Method
ok ok ok 3k ok ok ok ok Kk ok ok /

Way(int i):i(i) {}

/* Ant threads call none of those functions in the current implementation */
void drop_pheromon_to_food(int ph){
pheromon_to_food = pheromon_to_food + ph;

3

void drop_pheromon_to_nest(int ph){
pheromon_to_nest = pheromon_to_nest + ph;

}

int get_pheromon_to_food(){
return pheromon_to_food ;

}

int get_pheromon_to_nest(){
return pheromon_to_nest ;

}
};

5.2.2 Mesh Thread

The Mesh thread obtains a mesh size and a node mapping scheme from the first and
the second argument respectively. For instance, given 200 as the mesh size and 1 as
the node mapping scheme, it creates a 200 x 200 mesh network, divides it in stripe,
and maps each divided space to a different processor. If a user wants to divide the
network in lattice, the second argument must be set to 0.

The Mesh thread carries following six thread variables with it:

Variables | Descriptions

meshsize a mesh size

divider a node mapping scheme (0 = lattice, 1 = stripe)
i, j coordinates of each Trail node

daemonNO | the daemon ID computed from a given node ID
ToNodeID | the node ID computed from given 3,j coordinates

In addition, the mesh thread has the following two methods:

55

o createMesh first creates nodel[i,j] where 0 <= i < meshsize and 0 <= j <
meshsize, and then call its link_create method to establishes links emanating
from each node.

e link_create creates a link from a given node to each of 8 neighboring nodes.
The Mesh thread is the first one injected into the system, which in turn means that
Mesh is in charge of initializing all daemonobj objects. The following lists a complete
code of the Mesh thread.
daemonobj DaemonVar () ; // initialize daemonobj at each daemon

thread Mesh

{
public:
Mesh(int argc, const char** argv)
meshsize(atoi(argv[4])), divider(atoi(argv[5])) {}
void main(); // argv[4]: meshsize, argv[5]: divider
private:
int meshsize; // a mesh size
int i,j; // coordinates of each Trail node
int daemonNO; // the daemon ID computed from a given node ID
int ToNodeID; // the node ID computed from given i,j coordinates
int divider; // a node mapping scheme (O=lattice, 1=stripe)
void link_create();
void createMesh();
};
void Mesh::1link_create() // creates a link to each of 8 neighbors.
{

// if not on y axis, create a link to west(0)
if (node<Trail>.x != 0){
ToNodeID = node.id() - meshsize;
create link<Way>(0) with(0)
to(ToNodeID @ daemonobj.getDaemonID(ToNodeID)) with(4);

}
// if not on y axis nor on the upper boundary, create a link to northwest(1)
if(node<Trail>.x != 0 && node<Trail>.y != meshsize - 1){

ToNodeID = node.id() - meshsize + 1;

create link<Way>(0) with(1)

to(ToNodeID @ daemonobj.getDaemonID(ToNodeID)) with(5);

}
// if on the upper boundary, create a link to north(2)
if(node<Trail>.y != meshsize - 1){

ToNodeID = node.id() + 1;
create link<Way>(0) with(2)
to(ToNodeID @ daemonobj.getDaemonID(ToNodeID)) with(6);

56

}
// if not on the upper nor the left boundary, create a link to northeast(3)
if (node<Trail>.y != meshsize - 1 && node<Trail>.x != meshsize - 1){
ToNodeID = node.id() + meshsize + 1;
create link<Way>(0) with(3)
to(ToNodeID @ daemonobj.getDaemonID(ToNodeID)) with(7);

}
}
void Mesh::createMesh() // create a [i,j] node and establish links from it.
{
for(i=0;i<meshsize;i++){
for(j=0; j<meshsize;j++){
ToNodeID = meshsize * i+j; // compute node id from i,j coordinates
create node<Trail>(i, j) // create a node
with(ToNodeID @ daemonobj.getDaemonID(ToNodeID));
}
}
for(i=0;i<meshsize;i++){
for(j=0;j<meshsize;j++){
ToNodeID = i*meshsize+j;
hop(ToNodeID @ daemonobj.getDaemonID(ToNodeID)); // hop to each node
link_create(); // create links from it
}
}
}
void Mesh::main()
{
for(i =0 ; i < daemon.total() ; i++) {
hop(INITQi); // visit each daemon
daemonobj.daemonTotal = daemon.total(); // initialize daemonobj
daemonobj.meshsize = meshsize;
daemonobj.divider = divider;
}
createMesh(); // create a mesh network
for (i =0 ; i < daemon.total() ; i++) {// revisit each daemon
hop(INIT@i); // print out its task completion
cout << "daemonobj.meshsize = " << daemonobj.meshsize << endl;
cout << "daemonobj.divider = " << daemonobj.divider << endl;
}
}

57

5.2.3 InitEnvironment Thread

The InitEnvironment thread receives one argument as the number of ants to inject,
records it in each daemon’s daemonobj.ant_-num, and distributes food on four cells,
each located at diagonally one inside a different corner of the mesh network. Given N
as the mesh size, the cells to include food are: cell[l, 1], cell[l, N — 2], cell[N — 2,1],
and cell[N —2, N —2].

The InitEnvironment thread carries following three thread variables with it:

Variables | Descriptions

k a for-loop control variable

ToNodelID | the node ID computed from given i,j coordinates
ant_num a variable to store the total number of ants

The InitEnvironment thread initializes the simulation space using its three methods
below:

e setNest sets the central cell of the network to the nest.

e setFood places 10,000 food on four cells, each located at diagonally one inside
each corner of the mesh network

o set_daemon_variable have each daemon record the number of ants to be injected.
The following lists a complete code of the InitEnvironment thread:

thread InitEnvironment

{
public:
InitEnvironment (int argc, const char** argv)
ant_num(atoi(argv([4])) {} // argv[4]: #ants to be injected
void main();
void setNest();
void setFood();
void set_daemon_variable();
private:
int k; // a for-iteration variable
int ToNodelID; // a node id computed from i, j
int ant_num; // #ants to be injected
};
void InitEnvironment::setNest() // set the central cell to the next
{

int halfsize = daemonobj.meshsize / 2;

58

ToNodeID = halfsize * daemonobj.meshsize + halfsize ;
hop(ToNodeID @ daemomnobj.getDaemonID(ToNodeID));
node<Trail>.nest = 1;

printf("NEST LOCATION: (%d,%d)\n", node<Trail>.x, node<Trail>.y);
printf("IS NEST:%d\n", node<Trail>.is_nest());

3
void InitEnvironment::setFood() // place 1000 food each at four nodes
{
//**%* North East
ToNodeID = daemonobj.meshsize + (daemonobj.meshsize-1) ;
hop(ToNodeID @ daemomnobj.getDaemonID(ToNodeID));
node<Trail>.fo00d=10000;
//*x%% South East
ToNodeID = (daemonobj.meshsize-1)*daemonobj.meshsize
+ (daemonobj.meshsize-1);
hop(ToNodeID @ daemomnobj.getDaemonID(ToNodeID));
node<Trail>.fo0o0d=10000;
//**%* North West
ToNodeID = daemonobj.meshsize + 1;
hop(ToNodeID @ daemomnobj.getDaemonID(ToNodeID));
node<Trail>.fo0o0d=10000;
//**x%% South West
ToNodeID = (daemonobj.meshsize-1)*daemonobj.meshsize + 1;
hop(ToNodeID @ daemomnobj.getDaemonID(ToNodeID));
node<Trail>.fo0o0d=10000;
}
void InitEnvironment::set_daemon_variable()
{
for (k = 0; k < daemonobj.daemonTotal; ++k){
hop(INIT @ k); // visit each daemon
daemonobj.ant_num = ant_num; // # ants to be injected
daemonobj.live_ant = ant_num; // they are initially all active
daemonobj.sleep_ant = 0; // they are not sleeping of course
daemonobj.gvt = 0; // simulation starts from time O
daemonobj.is_reported = false; // 1st synchronization has not been reported
if (DEBUG)
{
printf ("-——-——--——- set_daemon_variable---—------ \n");

printf ("daemonobj.meshsize:%d\n",daemonobj.meshsize) ;
printf ("daemonobj.ant_num:%d\n",daemonobj.ant_num);
printf ("daemonobj.live_ant :%d\n", daemonobj.live_ant);

59

printf ("daemonobj.sleep_ant:%d\n",daemonobj.sleep_ant);
printf ("daemonobj.gvt :%d\n", daemonobj.gvt);

X
}
}
void InitEnvironment::main()
{
cout << "daemonobj.meshsize = " << daemonobj.meshsize << endl;
cout << "daemonobj.divider = " << daemonobj.divider << endl;
setNest () ;
setFood () ;

set_daemon_variable();

cout <<"init environment END " <<endl;

5.2.4 Ant Thread

The Ant thread repeats the following actions every simulation cycle: (1) pick up food
if it finds any, (2) drop off food in the nest or on route to the nest accidentally, (3)
follow the strongest pheromone, (4) decide the next direction if it feels no pheromone,
and (5) secrete some pheromone and walk to the next node. To give more reality to
each action, the gene of each ant characterizes its average number of food to pick up,
average pheromone amount to emit, pheromone sensitivity, and durability to walk
straight. Those characteristic parameters are maintained in the following variables:

60

Variables | Descriptions

ToNodeID the node ID computed from given 4,5 coordinates

food the amount of food which this ant is currently holding

total food the total amount of food which this ant has carried to the nest
step the current simulation time

direction the next moving direction

ph_react the current threshold of pheromone amount for ant to react.
i,j for-loop control variables

border a flag to indicate if the ant is on a processor border

randVar the latest random number obtained from rand_r()

gene gene information obtained using random()

norm-_u the average of this ant’s pheromone reaction level

ph_react0 the initial pheromone reaction threshold

pois_1 the average amount of food this ant picks up

keep_p the probability to keep holding the food which the ant picked up
straight_p the probability to go straight

trust_p the probability to trust the latest pheromone information

seed this ant’s seed used for rand_r()

temp_node_id the node id to make the ant return to this node later
temp_daemon_id the daemon id to make the ant return to this daemon later
activate_pheromon | the flag to make the ant follow pheromone

temp_max the variable to store pheromone considered maximal temporarily
temp_direction the variable to store the next moving direction temporarily

The following methods describe each action for an Ant to take:

init calls set_gene to initialize thread variables based on a given gene and migrates
a thread to the nest node.

set_gene randomly decides the genetic code of each ant and initializes thread
variables such as norm_u, ph_react0, pois_l, keep_p, straight_p, trust_p, and seed.

synchronize migrates this ant to the INIT node on daemon #0 if it is the first
one to do so, injects a new gut thread if it has not yet been injected, comes back
to the original node, and sleeps for the guvt thread to wake up this ant.

init_at_trail increments the number of ants residing on this node and adds 10 to
its own ph_react value, (which makes this ant less sensitive to pheromone.

work_at_trail gets food if the current node is not the nest, drops food if it is the
nest, and accidentally drops off food on route to the nest.

feel_pheromon replaces this ant’s variables tempMax and tempDir with the max-
imal pheromone and its direction which this ant has temporarily detected.

decide_direction investigates the maximal pheromone and its direction by walking
through all the cells neighbors of the current cell and decides the next moving di-
rection based on this investigation, if this ant trusts this pheromone information.
If not, the ant randomly chooses the next direction to walk.

61

e go_next_trail drops its pheromone, decrements the number of ants residing on the
current node, and actually migrates the ant to the next cell.

e fact computes the factorial of a given argument.

e normal computes the normal distribution, given a average parameter and a ran-

dom value.

e poisson computes the poisson distribution, given a lumda parameter and a ran-

dom value.

The following shows a complete code of the Ant thread:

thread Gvt;

const int LIFE_STEP(4001);

// Ant spawns a Gvt thread
// simulation ends in time 4001

extern "C" int rand_r(unsigned int #*seed); // rand_r is used.

thread Ant
{
public:
Ant(int argc, const char*x argv)
activate_pheromon((atoi(argv[4]) == 1) ? true : false) {}
void main(); // if 1st arg is 1, pheromone is used.
private:
int ToNodeID; // the node ID computed from given i,j coordinates
int food; // the amount of food which this ant is holding
int total_food; // the total amount of food which this ant carried to the nest
int step; // the current simulation time
int direction; // the next moving direction
int ph_react; // the current threshold of pheromone amount for ant to react
int i, j; // for-loop control variables
bool border; // a flag to indicate if the ant is on a processor border
//GENE

short gene;
double norm_u;

int ph_reactO;
double pois_1;
double keep_p;
double straight_p;
double trust_p;
unsigned int seed;

//To Report hostO
int temp_node_id;
int temp_daemon_id;

//IN decide direction
bool activate_pheromon;

// gene information obtained using random()

// the ave. of this ant’s pheromone reaction level

// the initial pheromone reaction threshold

// the ave. amount of food which this ant picks up

// the probability to keep holding food

// the probability to go straight

// the probability to trust the latest pheromone info.
// this ant’s seed used for rand_r()

// to make the ant return to this node later
// to make the ant return to this daemon later

// the flag to make the ant follow pheromone

62

int temp_max; // to store pheromone considered maximal temporarily
int temp_direction; // to store the next moving direction temporarily

//Poisson Normal
double randVar; // the latest random number obtained from rand_r()

void init();

void set_gene();

void synchronize();

void init_at_trail();

void work_at_trail();

void feel_pheromon(int& tempMax, int& tempDir, int& dir);
void decide_direction();

void go_next_trail();

//Utility

int fact(int i);

int normal(double micro, double randVar);
int poisson(double lumda, double randVar);

};
// Utility Function
int Ant::fact(int i) // computes the factorial of i
{
int f;

for (£f=1;1i>0; i-—-)
f *x= i;
return(f);

3

int Ant::normal(double micro, double randVar) // compute the normal distribution
{ // based on micro and randVar
const float e = 2.718281828459;
const float pi = 3.141592;
double n = 0.0;
int i;

for (i = 0;i<=10 ; i++) {
n += 1.0/sqrt(2.0*pi) * pow(e, -(pow(i - micro, 2.0)/2.0));
if (n >= randVar)
break;

}
//cout << "normal=" << i << endl;
return i;

3

int Ant::poisson(double lumda, double randVar) // compute the poisson distribution
{ // based on lumda and randVar

63

const double e = 2.718281828459;
double p = 0.0;
int i;

for (i = 0;i<=10 ; i++) {
p += (pow(e, -lumda) * (pow(lumda, i) / fact(i)));
if (p >= randVar)
break;
}
//cout << "poisson=" << i << endl;
return i;

}
void Ant::set_gene(){ // decide the ant gene
int temp_gene;

gene = random() & OxOOOOffff;
temp_gene = gene & (0x1);

switch (temp_gene) { // decide the ave. of pheromone reaction level
case O:

norm_u=3.0;

break;
case 1:

norm_u=4.0;

break;

}

temp_gene=gene >> 1;
temp_gene=temp_gene & (0x3);

switch (temp_gene) { // decide the initial pheromone reaction threshold

case 0O:
ph_react0=3;
break;

case 1:
ph_react0=4;
break;

case 2:
ph_react0=5;
break;

case 3:
ph_react0=6;
break;

¥

temp_gene=gene >> 3;
temp_gene=temp_gene & (0x1);

64

switch (temp_gene) { // decide the ave. amount of food which ant picks up
case 0O:

pois_1=1.0;

break;
case 1:

pois_1=2.0;

break;

}

temp_gene=gene >> 4;
temp_gene=temp_gene & (0x3);

switch (temp_gene) { // decide the probability to keep holding food
case 0:
keep_p=0.8;
break;
case 1:
keep_p=0.85;
break;
case 2:
keep_p=0.9;
break;
case 3:
keep_p=0.95;
break;
X
temp_gene=gene >> 6;
temp_gene=temp_gene & (0x3);

switch (temp_gene) { // decide the probability to go straight
case 0:
straight_p=0.8;
break;
case 1:
straight_p=0.85;
break;
case 2:
straight_p=0.9;
break;
case 3:
straight_p=0.95;
break;
X
temp_gene=gene >> 8;
temp_gene=temp_gene & (0x3);

switch (temp_gene) { // decide the probability to trust the latest pheromone
case 0:

65

trust_p=0.8;
break;

case 1:
trust_p=0.85;
break;

case 2:
trust_p=0.9;
break;

case 3:
trust_p=0.95;
break;

}

seed = (unsigned int)gene; // used for rand_r()

if (DEBUG)
{
printf("norm_u:%f\n",norm_u);
printf ("ph_react0:%d\n",ph_react0);
printf ("pois_1:%f\n",pois_1);
printf ("keep:%f\n" ,keep_p);
printf ("straight:%f\n",straight_p);

}

}
void Ant::init() // initialize the thread variables
{

food=0; // no food held

step=0; // time is O

direction=-1; // no direction decided

total_food=0; // no food carried

ph_react=0; // the initial pheromone reaction level is O
//Set Gene

set_gene(); // set my genetic information

//move to mnest
ToNodeID = (daemonobj.meshsize/2)*daemonobj.meshsize
+ (daemonobj.meshsize/2) ;
hop(ToNodeID @ daemonobj.getDaemonID(ToNodeID)); // hop to the nest
}

void Ant::synchronize() // visit daemon O to inject gvt
{
if (daemonobj.sleep_ant ==
((daemonobj.ant_num > daemon.total()) 7
(daemonobj.ant_num / daemon.total() - 1) : 0)
&& daemonobj.gvt_kicker_flag == false) {

// I AM GVT Kicker

66

daemonobj.gvt_kicker_flag=true;

//Address to return to
temp_node_id= node.id();
temp_daemon_id=daemon.id() ;

hop(INIT @ 0);

if (daemonobj.is_reported == false) { // No one has injected gvt yet.
daemonobj.is_reported = true;
create thread<Gvt>;

}

hop(temp_node_id @ temp_daemon_id); // go back where I was

}
daemonobj.sleep_ant++; // sleep there until gvt wakes me up
sleep daemon;

}

void Ant::init_at_trail() // the first thing at a new node

{

node<Trail>.ant_in();
ph_react += (daemonobj.ant_num/10);

}
void Ant::work_at_trail() // the main work at a new node
{

// get food

if(node<Trail>.is_food()
&% (node<Trail>.is_nest() '=1)){

randVar = fmod(rand_r(&seed), 10000.0) / 10000.0;
food = node<Trail>.get_food(poisson(pois_1, randVar));

}

// drop food at nest
if (node<Trail>.is_nest() == 1){
if(food > 0) {
node<Trail>.drop_food(food) ;
total_food += food;
food = 0;
}
}

// drop food on route to nest
randVar = fmod(rand_r(&seed), 10000.0) / 10000.0;
if((randVar > keep_p) && food >= 1){
node<Trail>.drop_food(1);
food = food - 1;

67

}

3

void Ant::feel_pheromon(int& tempMax, int& tempDir, int& dir)

{ // detect maximal pheromone and its
int link_ph; // direction

if (food == 0)
link_ph = node<Trail>.get_pheromon_to_nest();
else
link_ph

node<Trail>.get_pheromon_to_food();

if (link_ph > tempMax) {
tempMax = link_ph;
tempDir = dir;

}
}
void Ant::decide_direction() // decide which of eight links to hop along
{
if(step == 0) // at time 0O
direction=rand_r(&seed) % 8; // decide the direction randomly

temp_max=0;
temp_direction=0;

if (activate_pheromon) { // must follow pheromone
/* checking if neighbors exist remotely or do not exist */
border = false;
for (i =0; i <=7;i+=2) {
if ('(link.exists(i))) { // check if link i does not exist
if (i == 0 && node<Trail>.y == 0) {
//cout << "node[0,0]!!!" << endl;
continue;
}
//cout << "link=" << i << " not exist" << endl;
border = true;
break;
}
}
if (i>7) { // check if link i goes to a remote node
for (i =0; 1i<=7; i+=2) {
if (link[i].dest_daemon_id() != daemon.id()) {
break;
}
}
}
i=(Ci+7)%8;

68

/* searching pheromon */
if (!'border) { // 1 am not on the border
j=i; // detect each neighbor’s pheromone
hopalong(i);
feel_pheromon(temp_max, temp_directiom, j);
++j 5= 8 ;
hopalong(i = (i +3) % 8);
feel_pheromon(temp_max, temp_direction, j);
++j %= 8;
hopalong(i);
feel_pheromon(temp_max, temp_directiom, j);
++j %= 8;
hopalong(i = (i +2) % 8);
feel_pheromon(temp_max, temp_direction, j);
++j %= 8;
hopalong(i);
feel_pheromon(temp_max, temp_direction, j);

} else { // 1 am on the border
i=(Ci+3)7%8; // investigate only valid neighbors’
if (link.exists(i)) { // pheromone

border = false;

j=1;
hopalong(i);
feel_pheromon(temp_max, temp_direction, j);
++j h= 8;
hopalong(i = (i +2) % 8);
feel_pheromon(temp_max, temp_direction, j);
} else {
border = true;
i=Ci+2)7%8;
j=i;
hopalong(i);
feel_pheromon(temp_max, temp_direction, j);
}
}
++j %= 8;
hopalong(i = (i +2) % 8);
feel_pheromon(temp_max, temp_direction, j);

if ('border) {
++j %= 8;
hopalong(i);
feel_pheromon(temp_max, temp_direction, j);
}
++j %= 8;
hopalong(i = (i +2) % 8);
feel_pheromon(temp_max, temp_direction, j);

++j %= 8;

69

hopalong((i +2) % 8);
}

randVar = fmod(rand_r(&seed), 10000.0) / 10000.0; // get a random number
if (randVar > trust_p || temp_max < ph_react) {
/* I don’t trust or can’t feel pheromone */
do {
/* 1 doubt my direction */
direction = rand_r(&seed) % 8;
randVar = fmod(rand_r(&seed), 10000.0) / 10000.0;
} while (randVar > straight_p);
} else {
/* I°11 follow the pheromone */
direction = temp_direction;

}

/* I'm on edge */

if (node<Trail>.x==0)
direction=4;

else if (node<Trail>.x==daemonobj.meshsize-1)
direction=0;

else if (node<Trail>.y==0)
direction=2;

else if (node<Trail>.y==daemonobj.meshsize-1)
direction=6;

}
void Ant::go_next_trail()
{

// outward

if (food == 0){
randVar=fmod(rand_r(&seed),10000.0)/10000.0; // get a new random number
node<Trail>.drop_pheromon_to_food(normal(norm_u, randVar));
node<Trail>.ant_out(); // unregister itself at the current node
hopalong(direction) ; // move to a next new node

}

// homeward

if(food > 0){
randVar=fmod (rand_r (&seed),10000.0)/10000.0; // get a new random number
node<Trail>.drop_pheromon_to_nest (normal (norm_u,randVar)) ;

node<Trail>.ant_out(); // unregister itself at the current node
hopalong(direction) ; // move to a next new node
}
}
void Ant::main() // the main ant behavior
{
init(); // initialize its thread variables

70

//STEP

for (step = 0; step < LIFE_STEP; step++) {

synchronize() ; // synchronized with gvt
init_at_trail(); // register itself at a new node
work_at_trail(); // pick up and drop off food
decide_direction(); // search for food
go_next_trail(); // go to a next new node

}

//To stop Timer

synchronize() ;
node<Trail>.ant_in();

if (DEBUG
cout <<
<<

<<

<<

<<

<<

<<

<<

<<

<<

) {

"ant[" << selfMigThr.getId() << "] got "
total_food << " amount of food"
" (norm_u=" << norm_u

" ph_react0=" << ph_reactO
pois_1=" << pois_1

keep_p=" << keep_p

" straight_p=" << straight_p

" trust_p=" << trust_p

" seed=" << seed << ")"

endl;

5.2.5 Gvt Thread

The Gut thread is injected by one of Ant threads every tick of simulation time and
performs inter-threads synchronization. It repeats visiting every INIT node, (i.e.,
every daemon) until all Ant threads fall asleep, and wakes them up when confirming
that they have slept. This thread carries the following three thread variables with it
to achieve such synchronization:

Variables | Descriptions

ant_sum | the total number of ants over the system
sum the variable used to sum up the number of ants
i a for-loop control variable

The guvt thread consists of the following two sub-method:

e check_around repeats visiting every INIT node and summing up the number
of sleeping ants (=sum) until the number reaches the total number of ants

71

(=ant_sum).

e wake_around visits every INIT node to wake up all ants sleeping on that daemon.

The following list is a complete code of the check_result thread.

thread Gvt

{

public:

Gvt(int argc, const char*x argv) : sum(0) {}
void main();

private:
int ant_sum; // # of ants over the system
int sum; // sum up # ants on each daemon
int i; // a for-loop control variable
void check_around(); // check if all ants are sleeping
void wake_around(); // wake up all ants sleeping on each daemon
};
void Gvt::check_around() // check if all ants are sleeping
{
ant_sum = daemonobj.ant_num; // get the total number of ants
while(1) {
sum = 0;
for (i = 0; i < daemonobj.daemonTotal; ++i) {
hop(INIT @ i); // visit each daemon
sum += daemonobj.sleep_ant; // sum up the number of ants sleeping there
}
if (sum == ant_sum) // if all ants are sleeping, return to main()
break;
}
}
void Gvt::wake_around() // wake up all ants sleeping on each daemon
{

for (i = 0; i < daemonobj.daemonTotal; ++i) {
hop(INIT @ i); // visit each daemon
if (daemonobj.gvt == 0) // if virtual time is O start the timer
daemonobj.timer.start();

daemonobj.gvt++; // increment the virtual time
daemonobj.live_ant = daemonobj.sleep_ant; // all sleeping ants will be woken up.
if (daemonobj.gvt % 500 == 0) { // show #ants at this daemon even 500 cycles
cout << "gvt=" << daemonobj.gvt
<< ", ants=" << daemonobj.live_ant << endl;
X
daemonobj.sleep_ant = 0; // no more sleeping ants
daemonobj.is_reported = false;// synchronization variables are reset

72

daemonobj.gvt_kicker_flag = false;

wakeupall daemon; // finally wake up all ants!
}
}
void Gvt::main()
{
if (daemonobj.gvt == LIFE_STEP) { // LIFE_STEP = 4001 in this implementation
daemonobj.timer.stop(); // stop the timer
cout <<"performance" <<endl; // print out the performance data
cout << daemonobj.timer.getElapsed() << endl;
cout << daemonobj.timer.getInterval() << endl;
}
check_around () ; // otherwise, check if all ants are sleeping
wake_around() ; // then, wake them up
if (daemonobj.gvt % 500 == 0) // print out the virtual time every 500 cycles
cout << daemonobj.gvt <<endl;
}

5.2.6 CheckResult Thread

The CheckResult thread visits each node and displays its node status. This thread
carries the following three thread variables with it:

Variables |Descriptions

i,j the farm coordinates of each Trail node
ToNodelID | the node ID computed from given i,j coordinates

The CheckResult thread computes the node ID from each pair of 7,5 coordinates, hops
to it, and displays its node variables: z, y, food, pheromon_to_food, pheromon_to_nest,
and ant_num.

A complete code of the check_result thread is shown below:

thread CheckResult

{
public:
void main();
private:
int 1i,j;
int ToNodelD;
void checkMesh();
};

73

void CheckResult::checkMesh()
{
for (i = 0; i < daemonobj.meshsize; i++) {
for (j = 0; j < daemonobj.meshsize; j++) {
ToNodeID = daemonobj.meshsize * i + j;
hop(ToNodeID @ daemonobj.getDaemonID(ToNodeID)) ;
printf ("mesh[%d,%d]: food=)d pheromon(ToNest=}d ToFood=%d) ants=}d\n",
node<Trail>.x,
node<Trail>.y,
node<Trail>.food,
node<Trail>.pheromon_to_food,
node<Trail>.pheromon_to_nest,
node<Trail>.ant_num

)

}

void CheckResult::main()

{

cout << "-——mmm—mmmmmm o " << endl;
checkMesh();
}

5.2.7 Compilation and Execution

The ant farm shown above was programmed in /home/m++ /appl/m++ /ant.mpp.
To compile this program, type:

% m++ ant.mpp

To run this program, run inject commands as follows:
% inject hostname ./Mesh 1 meshsize divider
% inject hostname ./InitEnvironment 1 #ants
% inject hostname ./Ant #ants 1

% inject hostname ./CheckResult 1

where hostname, meshsize, divider, and #ants have the following meaning:

parameters | remarks

hostname the IP name of a computing node where each thread is injected
meshsize the size of ant farm (meshsize * meshsize)

divider 1: divide ant farm in strip, or 0: divide ant farm in lattice
F#ants the total number of ants to be injected

74

Every time you start a new thread injection, we recommend you should wait for
messages indicating that the previous injection and the subsequent thread action has
completed.

6 Trouble Shooting

There are five possible errors you may encounter: abnormal termination, fopen error,
bind system call error, segmentation fault/bus error, and dynamic module loading
error. The following explains each error and its trouble shooting.

6.1 Abnormal Termination

An unexpected trap/interrupt or a Unix kill command may cause an abnormal termi-
nation and keep the previous socket connection in use. When it happens accidentally,
you must wait for a few minutes until the underlying operating system recognizes
that the previous socket port is already freed, or should edit your profile to change
the port number.

6.2 Fopen error

This error occurs when an M++ daemon cannot locate profile. This file must be
located in your current working directory where the daemon is invoked.

6.3 Bind system call error

This system call error occurs when a specified port number has been already allocated
to socket communication. Possible scenarios and their respective solutions are:

1. You have already started an M++ daemon on this machine. Terminate the
currently running daemon and restart a new daemon.

2. Someone is using the same port number to start his/her daemon. Redefine
another port number in your profile.

3. Your previous M++ execution has resulted in an abnormal termination. Follow
the instruction specified in Section6.1, “Abnormal Termination”.

75

6.4 Segmentation fault/Bus error

If the inject command causes this error, the number of arguments actually given is
incompatible to that of arguments coded in your thread program. You should issue
this command with the correct number of arguments. If a segmentation fault occurs
during computation, your M++ threads but not daemons may have caused this fault.
You should carefully look through the header and source files of your thread programs.

6.5 Dynamic module loading error

If the system displays a message, "SharedLib: Cannot load the dynamic module”,
an M+-+ daemon has resulted in failure of dynamic linking. There are two possible
reasons to induce this error:

1. You might have given a wrong file to the inject command. In this case, simply
re-inject your threads with an executable file name.

2. The daemon was unable to find out a class specified in [e/create node and/or
[e[create link statements. Assure that you have defined a class corresponding to
ClassName in the following statements:

o [e/create node< ClassName>(args_list) with (NodeID[@DaemonID]);

e [e/create link< ClassName> (args_list) with (SrcID) to (NodeID[@DaemonlID]
) with (DestID);

7 Final Comments

Focusing on multi-agent applications, the M++ system provides application designer
with several important features: agent-based programming, runtime construction of
simulation space, and virtual-time management. They can thus concentrate on mod-
eling their multi-agent applications.

The M++ system is being tested by several users in University of Washington - Both-
ell, University of Tsukuba, University of California - Irvine, and Ehime University.
M++ applications currently available include: ant farm, sugar mountain, remote ex-
ploration, and codi 1bit. Through more applications development and testing, we
are planning to provide a debug environment, to enhance the system robustness, and
implement dynamic load balancing.

Finally, we would like to mention that M++ is the outcome of our research on
multithreading environments supported by Grant-in-Aid for Scientific Research No.

76

11780187, Japanese Society for the Promotion of Science. Special thanks to Dr. Luis
Miguel Campos of UC Irvine. For the initial M++ functional and performance test,
we have used his meta-computing simulation that motivated us to design the sthread
and zero-copy thread migration libraries. We would also like to express our appreci-

ation to Dr.

Shinichi Yamagiwa and Mr. Mitsuhiro Ohno for their implementation

of the zero-copy thread migration library. At the end, we would like to thank Mr.
Yuichiro Tanaka, currently working for Fujitsu Co., for his assistance in programming
M++ applications.

References

[BCF+95]

[CJ92]

[Dew84]

[Fer99)]

[FSCKO1]

[LMF+02]

[NNKAGOS]

[PL96]

N.J. Boden, D. Cohen, R.E. Federman, A.E. Kulawik, C.L. Seitz, J.N.
Seizovic, and W.K. Su. Myrinet: A gigabit per second local area network.
IEEE-Micro, Vol.15(No.1):29-36, Feb. 1995.

R. Collins and D. Jeffereson. Antfarm. In Artificial Life II, pages 579
601. Addison-Welsey, 1992.

A. K. Dewdney. Computer recreations sharks and fish wage an ecological
war on the toroidal planet wa-tor. Scientific American, pages 14 — 22,
December 1984.

Jacques Ferber. Multi-Agent Systems An Introduction to Distributed
Artificial Intelligence. Addison-Wesley, 1999.

M. Fukuda, N. Suzuki, L.M. Campos, and S. Kobayashi. Programma-
bility and performance of m++ self-migrating threads. Submitted to the
3rd IEEE Int’l Conference on Cluster Computing - Cluster2001, October
2001.

F. Loow, F. Mihlberg, M. Fukuda, .M. Campos, and S. Irvine. Remote
exploration using cooperative autonomous agents. In 2002 Int’l Sympo-

sium on Performance Evaluation of Computer and Telecommunication
Systems - SPECTS2002, pages 246253, July 2002.

Norberto, Eiji Nawa, Michael Korkin, and Hugo de Garis. Atr’s cam-
brain project: The evolution of large-scale recurrent neural network mod-
ules. In Proc. of the Int. Conf. on Parallel and Distributed Processing
Techniques and Applications PDPTA’98, pages 1087-1094, Las Vegas,
NV, July 1998.

Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic
Beauty of Plants. Springer-Verlag New York, Inc., New York, 1996.

7

[SFB99)

[Wak01]

[Wei99)

N. Suzuki, M. Fukuda, and L.F. Bic. Self-migrating threads for multi-
agent applications. In Proc. of the 1st IEEE Int’l Workshiop on Cluster
Computing - IWCC99, pages 221-298, December 1999.

Julie Wakefield. Complexity’s business model, part physics, part po-
etry - the fledgling un-disciplin finds commercial opportunity. Scientific
American, Vol.284(No.1):30-34, January 2001.

Gerhard Weiss. Multiagent Systems, A Modern Approach to Distributed
Artificial Intelligence. The MIT Press, 1999.

78

