
MASS C++ Developer’s Guide 
Updated	December	11,	2015	

1 SETUP 

1.1 LOCATION AND PROJECT SETUP 
MASS	C++	can	be	found	on	the	Dslab	computer	and	the	Linux	Lab	computers.		Currently,	the	RedHat	
Linux	machine	Hercules	is	being	used	for	development.	

The	master	copy	of	MASS	C++	can	be	found	in	the	folder	~/MASS/c++,	as	shown	in	figure	1.	

	

Figure	1	Location	of	MASS	C++	

The	codebase	is	broken	up	into	several	folders.		The	work_	folders	are	currently	unused	and	present	
only	for	historical	reasons.		Development	occurs	with	git	branches	based	on	the	source	directory.			The	
redhat	and	ubuntu	folders	contain	Makefiles	specific	to	those	systems.		The	source	folder	contains	the	
release	version	of	the	MASS	C++	library.		Within	the	appls	directory	there	are	sevral	sample	MASS	
applications	that	can	be	used	to	test	the	MASS	C++	library,	those	applications	are:	SugarScape,	Wave2D,	
Heat2D,	and	Conway’s	Game	of	Life.	

1.2 GETTING A COPY OF THE CODE FOR DEVELOPMENT 
To	get	a	local	copy	of	MASS	C++,	git	clone	the	repository	on	your	machine	from:	

https://bitbucket.org/mass_library_developers/mass_cpp_core	(the	repository	is	private	for	now)	

or	on	the	Linux	lab	machines	copy	the	contents	of: 

/net/metis/home/dslab/MASS/c++/ 

2 MAKING CHANGES 

2.1 MAKING THE CHANGE 
If	you	are	unfamiliar	with	Git,	checkout	the	Git	training	files	for	more	indepth	discussion	on	how	to	use	
in	in	development.		The	training	files	can	be	found	in	the	~/Training/GitTraining	folder.	

MASS	C++	is	using	the	Git	Flow	model	for	updates.		To	add	a	feature,	branch	off	of	the	develop	branch.		
You	can	then	push	your	branch	to	origin	to	test	it	in	Jenkins.	



Here	is	the	basic	workflow	in	the	command	line,	which	should	be	very	close	to	any	GUI	Git	application’s	
process.	

git checkout –b <MY_BRANCH_NAME> 

git add <CHANGED_FILES> 

git commit 

git push origin <MY_BRANCH_NAME> 

2.2 BUILDING THE CHANGE 
There	are	two	ways	to	build	your	project.	

2.2.1 Method 1: Jenkins 
The	easiest	is	to	go	to	Jenkins	MASS-Cpp	Branch	Build.		Select	Build	with	Parameters.		Then	enter	the	
name	of	your	branch.	

	

Figure	2	Building	with	Parameters	

If	the	build	is	green,	then	it	compiled	successfully.		If	not,	compilation	has	failed.	

2.2.2 Method 2: Linux Lab 
To	build	a	particular	branch,	you	will	need	to	clone	the	repository	into	a	folder	so	you	can	checkout	the	
correct	branch	you	need	to	build.	

For	the	Linux	Lab	machines,	you	can	do	the	following:	

ssh dslab@uw1-320-lab.uwb.edu 



mkdir <MY_NAME> 

cd <MY_NAME> 

cp –a /net/metis/home/dslab/MASS/c++/. /net/metis/home/dslab/<MY_NAME> 

or	clone	your	branch	into	your	new	directory.	

You	will	now	be	able	to	checkout	your	branch.		To	build	it,	enter	the	ubuntu	directory	and	type	

make 

This	will	build	the	MASS	library.	

Warning:	This	only	builds	your	changes.		Runtime	errors	will	not	be	detected.		Do	not	assume	that	you	
have	not	broken	anything	until	you	run	your	branch	on	one	of	the	Linux	machines!	

Note:	When	building	MASS	C++,	use	the	redhat	makefile	if	building	on	Hercules,	and	use	the	Ubuntu	
makefile	if	building	on	the	Linux	lab	machines.		The	Ubuntu	machines	are	preferred	for	testing	
development.	

2.3 EDITING THE MAKEFILE 
To	compile	your	MASS	C++	library	inside	of	your	/source	you	need	to	edit	the	makefile	inside	of	the	
Ubuntu	directory	or	Redhat	directory.		The	change	you	will	need	to	make	is	on	the	SOURCE	variable,	the	
source	needs	to	point	to	the	directory	that	contains	your	MASS	library.	

If	you	keep	the	structure	of	the	/net/metis/home/dslab/MASS/c++/	then	your	SOURCE	should	
point	to:	

SOURCE=../source 

If	you	want	to	compile	and	use	the	release	version	of	MASS	C++	library	point	your	source	to	

SOURCE=/net/metis/home/dslab/MASS/c++/source 

Note:	When	using	the	release	MASS	library	you	will	need	to	point	your	applications	to	this	library	in	your	
compile.sh	file.	

2.4 TESTING THE CHANGE 
In	addition	to	cloning	the	repository	inside	your	MASS	application	directory,	you	should	have	each	of	the	
following	files:	symbolic	link	to	mprocess,	symbolic	link	to	killMProcess.sh,	machinefile.txt,	compile.sh,	
and	run.sh	files;	along	with	your	MASS	C++	application	files.	



2.4.1 Symbolic Links 
First	navigate	to	your	MASS	application	directory	and	then	use	the	following	terminal	command	to	
create	a	symbolic	links.	

ln –s ~dslab/MASS/c++/Ubuntu/mprocess mprocess 

ln –s ~dslab/MASS/c++/Ubuntu/killMProcess.sh killMProcess.sh 

Note:	If	your	MASS	application	is	hanging	when	you	run	it,	please	check	that	you	have	a	good	symbolic	
link	to	mprocess.	

2.4.2 Mchinefile.txt 
The	machinefile.txt	will	tell	your	MASS	application	which	other	Linux	lab	machines	will	be	child	nodes	
and	should	be	a	plain	text	file	that	has	the	following	format:	

uw1-320-01 

uw1-320-02 

uw1-320-03 

uw1-320-04 

If	your	machinefile.txt	looks	like	the	example	given,	then	this	means	your	parent	node	cannot	be	any	of	
those	machines;	meaning	you	cannot	start	your	MASS	application	from	those	machines.	Also	this	means	
you	will	use	a	total	of	5	machines	while	running	your	MASS	application	(this	is	passed	in	as	argument	4	
in	your	run.sh).	

2.4.3 Compile.sh 
The	compile.sh	script	is	used	to	compile	all	of	your	MASS	application	files.			

Compile	your	main	program	as	well	as	all	your	Agents/Places-derived	classes.	 To	compile	your	program	
that	includes	main(	),	say	main.cpp,	type:	 	

g++ -Wall main.cpp –I$MASS_DIR/source –L$MASS_DIR/Ubuntu –Imass –
I$MASS_DIR/Ubuntu/ssh2/include –L$MASS_DIR/Ubuntu/ssh2/lib –Issh2 –o 

main 

To	compile	your	Agents/Places-derived	class,	say	Land.cpp,	type:		

g++ -Wall Land.cpp –I$MASS_DIR/source –shared –fPIC –o Land 

Note	that	you	must	compile	all	your	Agents/Places-derived	classes	whose	executable	is	dynamic-linked	
to	mprocess	whenever	your	main	program	invokes	new	Places(	)	or	new	Agents(	).		

Inside	your	compile.sh	file	you	will	also	need	to	set	up	the	following	two	shell	variables:	



export MASS_DIR=/net/metis/home/dslab/MASS/c++ 

export 
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/net/metis/home/dslab/MASS/c++/Ubuntu

/ssh2/lib:/net/metis/home/dslab/MASS/c++/ubuntu 

To	use	your	MASS	c++	library	point	MASS_DIR	to	the	directory	that	contains	your	MASS	library	directory.	

2.4.4 Run.sh 
Your	run	script	will	run	your	executable	file	and	must	pass	in	the	four	arguments	that	MASS::init()	needs,	
along	with	any	specific	arguments	for	your	MASS	application.		

Here	are	the	arguments	for	MASS::init():	

arguments[0] //username 

arguments[1] //password 

arguments[2] //machinefile name 

arguments[3] //port number 

	

2.4.5 MASS Sample Application 
To run MASS with the sample program, you will need to have setup a clone of the 
repository as shown in Method 2.   
	

In	the	ubuntu/samples	folder,	type	

sh compile.sh 

sh run.sh 

This	will	run	MASS	with	a	test	program	so	you	can	catch	obvious	runtime	errors.	

3 RELEASING A NEW VERSION 
	

3.1 TAGGING IN GIT FOR RELEASE 
	

3.2 COPY TO THE RELEASE DIRECTORY  


