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Introduction 
Distributed-memory parallel computation remains essential to high-performance computing 

(HPC), supporting large-scale scientific simulation, engineering design, data analytics, and AI workloads. 
As applications grow, developers must choose programming models that balance scalability with 
programmability. While MPI and OpenMP remain dominant, their explicit communication and 
synchronization requirements impose significant development overhead, motivating the use of higher-
level distributed C++ runtimes. 

This project examines three such runtimes of MASS C++, HPX, and PM2 which represent distinct 
execution paradigms. MASS C++ provides a place–agent abstraction and bulk-synchronous execution 
model for distributed arrays and structured communication. HPX implements an asynchronous many-
task runtime aligned with modern C++ standards, using futures, lightweight threads, and active 
messages over a global address space. PM2 targets irregular and dynamic workloads through distributed 
multithreading, remote thread creation, and user-level thread migration. Together, these systems span 
synchronous, asynchronous, and irregular execution models within C++. 

Other candidates were considered. TOP-C was excluded due to outdated documentation and 
limited modern applicability, and Cilk was retained only as a conceptual reference for work-stealing 
models. MASS C++, HPX, and PM2 thus provide a focused yet diverse basis for comparative study. 

Standard benchmark suites such as NAS, PolyBench, Rodinia, and BOTS are useful for evaluating 
low-level kernels or heterogeneous systems, but they do not directly address questions of 
programmability or abstraction overhead in higher-level C++ runtimes. Work involving MASS C++, HPX, 
and PM2 typically highlights different aspects of each system, so a comparison based on a shared set of 
algorithms and data decompositions can offer additional perspective. This research therefore, aims to 
provide such a structured comparison within the scope of the selected benchmarks. 

To address this gap, this research develops a benchmark suite spanning dense matrix 
multiplication, stencil/CFD kernels, graph motif search, graph message-passing simulations, and 
random-walk/agent-based models, implemented uniformly in MASS C++, HPX, and PM2 (with 
MPI/OpenMP baselines where appropriate). Identical algorithmic structures will enable controlled 
comparison of performance, scalability, programmability, and abstraction costs. 
The Autumn 2025 phase focused on (1) validating benchmark relevance; (2) analyzing runtime execution 
models; (3) defining library-agnostic algorithmic blueprints; and (4) establishing a unified evaluation 
methodology for Winter–Spring 2026. These deliverables form the technical foundation for 
implementation and experimental analysis in subsequent quarters. 
 

2 Related Work 
 
2.1 Justification for Benchmark Selection 

The benchmark suite reflects computational motifs that dominate HPC workloads and industrial 
simulation pipelines. Together, the selected patterns span regular and irregular computation, structured 
and unstructured communication, and heterogeneous memory-access behavior, properties essential for 
evaluating MASS C++, HPX, and PM2 under comparable algorithmic conditions. 



2.1.1 CFD and Stencil Computation 
Computational Fluid Dynamics (CFD) is a cornerstone of scientific and engineering computing, 

relying heavily on stencil computations to simulate physical phenomena (e.g. fluid flow and heat 
transfer). CFD is widely used in industry for product design and optimization in aerospace, automotive, 
energy, and manufacturing. For example, automakers use high-fidelity CFD simulations of aerodynamics 
and engine combustion to improve vehicle performance, which are computationally intensive due to the 
model complexity and fine mesh resolution [4]. HPC is essential to meet these demands, with 
supercomputers enabling CFD analyses that reduce costly physical prototyping (e.g. cutting wind tunnel 
tests by supplementing them with simulation) [5]. Industry reports show strong market growth for CFD 
software and services: the global CFD market is projected to triple from roughly $2.6 billion in 2025 to 
$7.8 billion by 2033 (11.6% CAGR) [6]. This growth is driven by broad adoption across aerospace, 
automotive, energy, and manufacturing, where CFD-based simulation is now critical for innovation and 
efficiency [4]. CFD’s importance is also reflected in national HPC initiatives, for instance, the U.S. 
identified advanced CFD as a key use case requiring exascale computing to model full turbulence and 
complex flight conditions beyond what current systems can handle  [5]. Overall, stencil-based CFD 
workloads exemplify the high-value scientific applications of HPC, with significant academic interest (for 
improving algorithms and fidelity) and industry demand (for faster, more accurate simulations that save 
time and cost in engineering design). 
2.1.2 Graph Subgraph/Motif Search 

Searching for subgraphs (patterns or motifs) within large graphs is a fundamental operation with 
growing importance in both social network analysis and biological network analysis. In social networks, 
subgraph matching is used to detect recurring community structures or communication patterns. For 
example, tracking how information cascades through a network or identifying cohesive groups of users 
[7]. The scale of modern networks (potentially billions of nodes) makes efficient subgraph search critical; 
indeed, it has become an active area of research in graph databases and streaming graph processing [8]. 
Industry applications abound: graph query engines can find complex fraud rings or supply-chain loops by 
spotting characteristic subgraph patterns in transactional and relationship data, a task at which graph 
databases excel compared to traditional SQL systems [9]. In the biological domain, subgraph search is 
equally vital. Biological networks (gene regulation networks, protein–protein interaction networks, 
metabolic pathways, etc.) are often analyzed by finding network motifs, which are small subgraphs that 
occur more frequently than chance. These motifs are recognized as “the simple building blocks of 
complex networks,” helping researchers uncover functional circuit patterns in cells [10]. Similarly, in 
cheminformatics and drug discovery, finding subgraph matches underpins searching for molecular 
substructures. A recent study calls correlated subgraph search an “essential building block” for AI-
powered drug discovery, as it allows researchers to identify candidate molecules in large chemical 
databases by matching substructure patterns [11]. In summary, academic interest in subgraph search is 
high (spanning graph theory, database optimization, and network science), and industry demand is 
rising with the proliferation of graph data in social media, finance (fraud detection), healthcare 
(molecule and disease networks), and beyond. Efficient subgraph search capabilities are increasingly 
viewed as crucial for extracting insights from big connected data. 
2.1.3 Graph Message Passing 



Graph-based message-passing algorithms are central to many agent-based simulations of 
markets and economies, where numerous agents (nodes) exchange information or “messages” along 
network links. In financial market simulations, for example, each trading agent’s actions (bids, orders, 
trades) are communicated through a message-passing architecture that mimics real exchange protocols 
[12]. The ABIDES platform (Agent-Based Interactive Discrete Event Simulation), developed in academia 
and adopted by industry, employs a uniform message-passing system to coordinate thousands of 
trading agents in a simulated limit-order book market [12]. This approach has seen widespread use in 
the research community and at financial institutions (with support from firms like J.P. Morgan) because 
it can realistically model complex market dynamics with interacting algorithms. The demand for such 
simulations is driven by the need to test trading strategies, study systemic risks, and design market 
mechanisms in a controlled virtual environment. Commercial simulation engines like Simudyne illustrate 
industry’s interest: Simudyne’s agent-based market simulator enables stock exchanges and asset 
managers to analyze market and liquidity risks by simulating millions of agents in parallel on HPC 
infrastructure [13]. The software leverages distributed computing to scale these simulations, allowing 
researchers and analysts to run large-scale scenarios (e.g. entire equity markets or full-scale economies) 
efficiently. More broadly, graph message-passing algorithms underpin many distributed systems and 
graph analytics beyond finance – from information diffusion models to epidemic simulations – wherever 
entities on a network continuously update state based on neighbors’ messages. The academic value is 
clear in fields like multi-agent systems and network science, and the market demand spans finance, 
economics, epidemiology, and defense (for modeling communication or contagion in networks). By 
serving as benchmarks, graph message-passing simulations ensure that computing platforms can handle 
the irregular communication patterns and heavy I/O of these complex, real-world workloads. 
2.1.4 Dense Matrix Multiplication (DGEMM) 

Matrix multiplication is one of the most ubiquitous and important computations in both 
scientific/engineering computing and modern AI. In numerical simulation and engineering analysis, large 
matrix operations arise in solving systems of equations, performing transforms, and implementing 
methods like finite element analysis. The general dense matrix–matrix multiply (GEMM) kernel has long 
been considered a “cornerstone” of high-performance computing due to its central role in scientific 
simulation workloads [14]. For instance, the LINPACK benchmark (used to rank the TOP500 
supercomputers) measures how fast a system solves linear equations via matrix math, underscoring that 
HPC hardware is largely judged by its matrix throughput. Engineering software (from structural analysis 
to climate modeling) all rely on linear algebra libraries that are highly optimized for matrix-multiply 
performance. On the industry side, this importance is magnified by the rise of machine learning and AI. 
Matrix multiplication is the backbone of neural network computations: during both training and 
inference, layers of neural nets perform large matrix–vector and matrix–matrix multiplies. 
Consequently, accelerators like GPUs, TPUs, and specialized AI chips have been architected around fast 
GEMM operations. Academic literature notes that GEMM is “crucial to the acceleration of deep 
learning” and is the basic building block of the BLAS library used everywhere in scientific computing [14]. 
This dual role, enabling traditional HPC simulations and powering AI algorithms, means the demand for 
efficient matrix multiplication is at an all-time high. The HPC market (forecast to reach ~$87 billion by 
2030 [19]) and the AI hardware market (projected to reach ~$76.7 billion by 2030 [20]) both invest 
heavily in better matrix-multiply performance. Researchers continue to publish improved algorithms 



(e.g. recent breakthroughs in matrix multiplication theory and mixed-precision techniques [14]) and 
companies pour resources into software optimizations (like Intel’s oneAPI Math Kernel Library or 
NVIDIA’s cuBLAS) to maximize FLOPS. In short, matrix multiplication’s value is universally recognized, 
and it is a well-rounded benchmark spanning scientific HPC, engineering applications, and commercial 
AI/ML, reflecting a core computational demand across domains. 
2.1.5 Random Walk and Agent-Based Models 

Random-walk based models refer to a class of agent-based or stochastic simulations often used 
to study complex behaviors in biological, ecological, or social systems. Despite their simple rules, these 
models are extremely important as they can generate realistic emergent phenomena, making them 
popular in both academic research and exploratory industry applications. A classic example is Wa-Tor, a 
predator–prey simulation proposed by A.K. Dewdney in 1984, where “sharks” and “fish” move on a grid 
(randomly or towards food) and reproduce or starve based on simple rules[15]. From those rules, 
complex population cycles emerge that resemble real ecological oscillations, illustrating the power of 
random agent behaviors to produce higher-level patterns. Such models help biologists and ecologists 
intuitively understand dynamics like predator–prey cycles or epidemic spread (when random walks 
represent movement of infected individuals). Another seminal model is Sugarscape, an agent-based 
social simulation introduced by Epstein & Axtell (1996) to study wealth distribution, trade, and cultural 
evolution. Sugarscape agents wander a grid seeking resources (sugar patches) and interacting (trading, 
reproducing, fighting) under simple behavioral rules. It is considered a “classic agent-based model” in 
social science, widely studied as a demonstration of how complex social phenomena (like inequality or 
migration patterns) can arise from simple individual behaviors[16]. In fact, Sugarscape is often cited as 
one of the first large-scale social simulations and is used in teaching and research as a benchmark for 
computational social science[16][17]. 

Beyond these famous examples, agent-based modeling (ABM) in general – which often relies on 
random-walk movement or probabilistic decision rules – has become an important tool in many 
domains. In economics and finance, ABMs with message-passing (as noted above) are used to simulate 
markets; in urban planning, they simulate how individuals move through transportation networks or 
how crowds behave; in epidemiology, random-walk models of people’s contacts help predict disease 
outbreaks. The demand for ABM has grown with the need to analyze systemic risks and emergent 
outcomes that traditional equations can’t capture. Industry and government agencies employ such 
simulations for scenario testing (e.g. pandemic responses or traffic flow optimization). This has led to 
efforts to run ever-larger ABMs: recent HPC implementations can simulate hundreds of millions of 
agents (each following random-based rules) in order to model entire economies or populations, 
executing in reasonable time on supercomputers[18]. The fact that ABM frameworks are scaling up to 
nation-sized simulations shows both their practical value and the computational challenge they pose. 
Random-walk based behavioral models cover a significant domain area – behavioral ecology, social 
dynamics, and complex systems science – making them a well-rounded benchmark category. They test a 
system’s ability to handle many independent agents and stochastic events, and they provide insight into 
phenomena where aggregate behavior is not obvious from individual rules. Both academia and industry 
recognize the relevance of these models: academically, they are key to complexity science research, and 
in practice, they inform policy and strategy in environments as varied as financial markets, urban cities, 
and public health. 



 
2.2 Differentiation From Prior Work 
Existing comparative studies fall into three broad categories that leave gaps addressed by this project: 

● MPI/OpenMP-centric evaluations. Suites such as NAS, PolyBench, Rodinia, and BOTS target 
kernel-level performance and hardware behavior rather than programmability or abstraction 
overhead, and do not evaluate modern distributed C++ runtimes as programming models. 

● Siloed evaluations of individual runtimes. HPX studies emphasize FEM solvers, FFTs, and 
asynchronous scheduling; PM2 work focuses on irregular threading, migration, and load 
balancing; MASS C++ evaluations focus mainly on ABM scalability. None perform algorithmically 
equivalent comparisons across runtimes representing distinct execution paradigms. 

● Limited integration of programmability and performance. Prior work rarely measures 
developer effort (e.g., LoC, boilerplate, synchronization complexity, debugging cost) alongside 
runtime performance using a consistent methodology. 

 
2.3 Challenges Identified in Prior Work 
Several methodological challenges highlighted in prior literature shape the benchmark design: 

● Semantic equivalence. Runtimes differ in synchronization (bulk-synchronous vs. futures vs. 
migration), memory semantics, and communication patterns, making controlled comparison 
non-trivial. 

● Heterogeneous communication patterns. Stencils exhibit structured neighbor exchange, while 
graph motifs, message passing, and ABMs require irregular, input-dependent communication. 
No runtime performs uniformly well across all pattern types, motivating a mixed benchmark set. 

● Measuring programmability. There is no consensus on metrics for developer effort; LoC and 
modularity capture only part of cognitive and debugging complexity, so multi-faceted evaluation 
is needed. 

● Hardware sensitivity and reproducibility. Distributed performance varies with interconnect 
topology, scheduling, and OS behavior, requiring transparent reporting of configurations and 
reproducible experimental procedures. 

● Abstraction vs. control. High-level runtimes introduce overhead (e.g., task scheduling, barriers, 
migration) whose impact is workload-dependent, reinforcing the need for empirical, cross-
model evaluation rather than purely theoretical comparison. 
 

 

3 Implementation 
3.1 Autumn 2025 Plan 
Autumn 2025 established the methodological foundation required for semantically aligned, 
reproducible implementations of the benchmark suite across MASS C++, HPX, and PM2. Work 
proceeded through four coordinated tasks. 

1. Environment Setup and Runtime Familiarization. 
 A unified development environment was configured across local systems and the 
CSSMPI cluster, including installation of libraries and runtimes. Example programs were studied 



to compare execution semantics, memory ownership rules, communication primitives, 
synchronization models, and runtime overheads. 

2. Benchmark Survey and Selection. 
 A literature survey of NAS, PolyBench, Rodinia, BOTS, and domain-specific HPC 
workloads guided the selection of five computational patterns: stencil/CFD, DGEMM, graph 
motif search, graph message passing, and random-walk/agent-based models (with a socio-
economic ABM variant). Selection criteria included domain relevance, computational diversity, 
cross-runtime implementability, and alignment with contemporary HPC and simulation practice. 

3. Algorithmic Blueprints and Library-Agnostic Specifications. 
  Because MASS C++, HPX, and PM2 employ fundamentally different execution 
paradigms, bulk-synchronous, asynchronous many-task, and distributed multithreading with 
migration, the Autumn phase focused on defining runtime-neutral algorithmic specifications 
(see Appendix A and B). These blueprints including the basic core structures of the program are 
designed so that runtime performance differences will reflect runtime behavior rather than 
algorithmic variation. 

4. Evaluation Methodology and Integration Plan. 
 A unified evaluation framework was established for Winter–Spring 2026, including 
strong/weak scaling strategies, instrumentation for timing and communication profiling, load-
balance analysis, programmability metrics (LoC, boilerplate ratio, modularity, synchronization 
complexity), and qualitative developer-effort logs. This plan aims for consistent, comparable 
experiments across runtimes. 
 

3.2 Current Status 
By the end of Autumn 2025, all preparatory objectives were completed, enabling full implementation 
work to begin in Winter 2026. 

1. Comparative Runtime Analysis 
  A study of each runtime clarified communication mechanisms (messages, futures, 
remote threads), synchronization semantics (barriers, continuations, migration triggers), 
memory abstractions, task/thread scheduling, and expected scaling characteristics for regular 
and irregular workloads. This informs how each benchmark blueprint maps to runtime-specific 
constructs. 
 

2. Benchmark Specifications 
 For all benchmark categories, formal specifications now include problem definitions, 
input/output assumptions, and runtime-independent execution semantics. 
 

3. Implementation Blueprints 
 Pseudo-code and mapping notes exist for each benchmark category. Each blueprint 
identifies how algorithmic components correspond to MASS places/agents, HPX lightweight 
threads and futures, and PM2 distributed threads, remote invocations, and migration policies. 
No implementation has yet been written, consistent with the planned Winter timeline. 



 
4. Evaluation Framework Ready. 

 Strong/weak scaling procedures, profiling instrumentation, reproducible cluster 
workflows, and visualization templates are prepared. Programmability metrics and analysis 
rubrics have also been defined. These preparations ensure that Winter implementation and 
Spring evaluation will proceed efficiently and systematically. 
 

4 Evaluation 
This section defines the evaluation methodology that will be applied once benchmark 

implementations are completed in Winter 2026. It specifies global performance metrics, benchmark-
specific criteria, programmability measures, and a preliminary qualitative assessment based on the 
Autumn 2025 architectural analysis. 
4.1 Evaluation Plan 
The comparative study is organized along two dimensions: 

● Quantitative runtime performance, and 
 

● Qualitative programmability and developer effort. 
Qualitative programmability is analyzed in terms of the semantic gap between an algorithm’s 

conceptual structure and its realization using runtime abstractions. This gap can reflect how directly 
algorithmic control flow maps to runtime constructs, how explicitly synchronization and 
communication must be expressed, and how much coordination logic is required beyond the core 
algorithm. Although these aspects are not directly quantifiable, they are examined through 
structured, workload-specific comparisons across runtimes to assess abstraction expressiveness and 
alignment with algorithmic intent. 
  Each benchmark also includes workload-specific metrics reflecting its computational and 
communication characteristics. 

4.1.1 Global Runtime Metrics 
The following metrics will be collected across all benchmarks and runtimes: 

● Execution time: wall-clock time of the benchmarked phase. 
● Strong scaling efficiency: deviation from ideal speedup with fixed problem size. 

Weak scaling efficiency: runtime growth when problem size scales with node count. 
● Communication cost: number of messages, mean message size, communication/computation 

ratio, synchronization frequency. 
● Load balance: per-thread/node work variance, including HPX scheduling overhead and PM2 

migration effectiveness. 
● Memory footprint: peak distributed memory and allocation overhead. 
● Instrumentation: Slurm timing, Linux perf, HPX performance counters, PM2 traces, MASS 

profiling hooks. 
 

 
4.1.2 Benchmark-Specific Metrics 



Each workload stresses a distinct slice of the runtime design space. 
● Stencil / CFD computation 

 Metrics include halo (ghost-cell) exchange cost, communication/computation ratio per 
iteration, barrier synchronization overhead, and sensitivity to block size and dimensionality. This 
benchmark probes the efficiency of neighbor communication and synchronization, stressing 
MASS’s bulk-synchronous barriers, HPX’s task granularity, and PM2’s messaging under regular 
patterns. 
 

● Dense matrix multiplication (DGEMM). 
 Metrics include GFLOP/s throughput, sensitivity to tile/block size, memory bandwidth 
utilization, and overhead of distributed block ownership and synchronization. DGEMM provides 
a structured, communication-light baseline for comparing runtime overheads relative to 
optimized MPI/OpenMP implementations. 
 

● Graph subgraph/motif search. 
 Metrics include the number of remote edge traversals, work imbalance across nodes, 
latency sensitivity in pointer-chasing workloads, and performance sensitivity to graph degree 
distribution. This highlights irregular access and load imbalance, where HPX’s fine-grained tasks, 
PM2’s migration, and MASS’s bulk-synchronous structure will likely behave differently. 
 

● Graph message-passing simulation. 
 Metrics include message throughput (messages/sec), latency distribution for small 
messages, update propagation time across the graph, contention under high message load, and 
per-agent update overhead. This benchmark models communication-driven simulations and 
evaluates PM2’s remote-thread creation, HPX’s active messages and futures, and MASS’s 
collective synchronization. 
 

● Random-walk / agent-based models. 
 Metrics include agent update throughput, spatial load imbalance (hotspots), 
communication arising from local interactions, global synchronization overhead (if present), and 
local neighborhood contention. This workload mirrors socio-economic and ecological ABMs and 
probes MASS’s place/agent mapping, PM2’s dynamic load balancing, and HPX’s tasking 
overhead for large agent populations. 
 

4.1.3 Programmability and Developer Effort 
This dimension evaluates the software engineering burden required to implement each benchmark in 
each runtime. Metrics include: 

● Lines of code (LoC): for computation logic, communication code, and initialization. 
● Boilerplate ratio: fraction of code required solely due to runtime API structure. 
● Synchronization complexity: conceptual and structural burden of futures and continuations 

(HPX), remote thread creation and migration (PM2), and agent/place interactions and barriers 
(MASS). 



● Debugging overhead: frequency and difficulty of runtime-specific errors observed during 
development. 

● Idiomatic fit: how naturally each benchmark maps onto each runtime’s abstractions. 
● Lack of Cohesion of Methods (LCOM): class-level cohesion metrics are considered where 

applicable to assess structural cohesion in object-oriented components; however, their 
applicability and interpretability vary across runtimes due to differences in programming style, 
abstraction granularity, and use of procedural or task-based constructs. 
 
 

4.2 Preliminary Qualitative Evaluation 
Because implementations have not yet been executed, this assessment reflects architectural analysis 
performed during Autumn 2025. 
 
4.2.1 Expected Runtime Characteristics 
At a high level, the expected behavior is: 

● Stencil / CFD: MASS C++ is expected to perform strongly due to structured bulk-synchronous 
phases; HPX performance will depend on grouping tasks to avoid fine-grained overhead; PM2 
should be stable but may gain little from its dynamic features on regular workloads. 
 

● DGEMM: All runtimes should scale well, with differences arising from overheads. HPX will 
require tuning of block size to match scheduling granularity, MASS may incur barrier costs for 
small tiles, and PM2 will incur messaging overhead for block exchanges. 
 

● Graph subgraph search: HPX is expected to benefit from fine-grained asynchronous tasks; 
PM2’s migration may mitigate imbalance in skewed graphs; MASS may face challenges 
expressing irregular communication without excessive synchronization. 
 

● Graph message passing: PM2’s communication model is well suited for high-volume small 
messages; HPX can perform well with appropriate grain size for active messages; MASS may 
introduce synchronization bottlenecks unless communication is carefully structured. 
 

● Random-walk / ABM: MASS C++ is a natural fit due to its agent/place model; PM2 may perform 
well in dynamically imbalanced scenarios; HPX will likely require aggregation of agent tasks to 
control scheduling overhead. 
 

4.2.2 Anticipated Bottlenecks 
Anticipated bottlenecks include: 

● MASS C++: global barrier overhead and difficulty expressing highly irregular communication. 
● HPX: scheduling overhead for overly fine-grained tasks and increased complexity in 

coordination. 



● PM2: migration cost and debugging complexity associated with distributed threading behavior. 
 

4.2.3 Risks and Open Questions 
Open questions to be addressed empirically in Winter and Spring 2026 include: 

● HPX’s multi-node performance under heavy task loads. 
● PM2’s scalability for large, highly irregular graphs. 
● Overhead of mapping non-ABM workloads onto MASS abstractions. 
● Sensitivity of performance to decomposition and partitioning parameters. 
● Variability in communication latency and its impact on cross-runtime comparisons. 

 

5. Conclusion and Winter 2026 Plan 
5.1 Summary of Autumn 2025 Status 

The Autumn 2025 phase established the methodological and architectural groundwork for a 
controlled comparison of MASS C++, HPX, and PM2. The completed work ensures that forthcoming 
implementations will be semantically aligned, reproducible, and directly comparable. 

A detailed runtime model analysis clarified the execution semantics of MASS’s bulk-synchronous 
agent/place design, HPX’s asynchronous many-task runtime with futures and lightweight threads, and 
PM2’s distributed multithreading with remote thread creation and migration. Their communication 
primitives, synchronization behavior, memory abstractions, and expected scaling characteristics were 
documented to guide equivalent algorithmic mappings. 
Five benchmark categories —stencil/CFD kernels, DGEMM, graph motif search, graph message-passing 
simulation, and random-walk/ABM— were selected based on domain relevance, computational 
diversity, and ability to expose complementary runtime strengths. Together, they span regular and 
irregular computation and a range of communication and synchronization patterns. 

A complete runtime-neutral specification was produced for all benchmarks, defining 
decomposition choices, communication and synchronization phases, update semantics, and distributed 
state ownership rules. These blueprints, summarized in an implementation plan (see Appendix A and B), 
are intended to ensure that performance differences reflect runtime behavior rather than algorithmic 
variation. 
Finally, a unified evaluation framework was defined, covering global performance metrics (execution 
time, scaling, communication cost, load balance), benchmark-specific criteria, and programmability 
metrics (lines of code, boilerplate ratio, synchronization complexity, debugging effort, idiomatic fit). A 
preliminary qualitative assessment, based on runtime architectures, identified expected strengths, 
bottlenecks, and open questions. 
 

5.2 Winter 2026 Plan 
Winter 2026 transitions the project from design to implementation and early experimentation. Work 
will proceed through five phases: 

1. Benchmark implementation. 
 Benchmarks will be implemented on MASS C++, HPX, and PM2 in the following order: 
stencil/CFD, DGEMM, random-walk ABM, graph motif search, and graph message passing. 



Implementations will adhere to the Autumn blueprints to preserve semantic equivalence. 
 

2. Validation and correctness testing. 
 Correctness will be verified using small deterministic inputs, cross-runtime output 
comparisons, and model-specific invariants. Cluster deployment scripts will also be validated on 
CSSMPI. 
 

3. Initial performance experiments. 
 Stencil and DGEMM implementations will serve as early test cases to validate scaling 
behavior, identify bottlenecks, verify instrumentation, and tune runtime parameters such as 
HPX grain size and PM2 migration settings. 
 

4. Refinement and optimization. 
 Profiling results may motivate adjustments to decomposition strategies, communication 
phases, or runtime-specific tuning parameters. All modifications will be documented to maintain 
transparency in later comparisons. 
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Appendix A — Benchmark Specifications 
This appendix summarizes the formal benchmark definitions used in the comparative evaluation of 
MASS C++, HPX, and PM2. Each specification is runtime-neutral and focuses on problem definition, 
decomposition, communication structure, and correctness criteria. 

A.1 3D Stencil / CFD Kernel (Heat3D) 

Problem Description 

Numerical integration of the 3D heat equation using a 7-point stencil. Each grid point updates based on 
its six axial neighbors and itself. 

Domain 

A uniform 3D mesh of size N_x  N_y  N_z. 

Update Rule (7-point stencil) 

For temperature field u(x,y,z,t): 

 

Parameters ,  chosen to satisfy stability constraints. 

Decomposition 

● 3D block partitioning across P_x  P_y  P_z. 
● Each block includes a halo layer of width 1 on all faces. 

Required Communication per Iteration 



● 6 face exchanges (±x, ±y, ±z) per block. 
● Optional edge/corner exchange if needed by implementation (not required by a 7-point stencil). 

Correctness Criteria 

● Matching numerical output with an MPI reference implementation for fixed timesteps. 
● Preservation of total energy under periodic or closed boundary conditions. 

 

A.2 Dense Matrix Multiplication (DGEMM) 

Problem 

Compute C = A  B for dense double-precision matrices. 

Decomposition 

● Matrices are partitioned into b  b tiles. 
● Tiles assigned to a logical 2D process grid. 
● SUMMA-style communication: broadcast needed A blocks along rows and B blocks along 

columns. 

Communication Structure 

● Row broadcasts of A-tiles. 
● Column broadcasts of B-tiles. 
● No additional synchronization except per-panel progress. 

Correctness Criteria 

● Bitwise or tolerance-based equivalence to reference BLAS implementation. 

A.3 Graph Subgraph / Motif Search 

Problem 

Count or enumerate occurrences of a small pattern graph H (size 3–5) inside a large input graph G. 

Decomposition 

● Vertex partitioning with ghost vertices for boundary edges. 
● Local work begins from vertices owned by each process. 

Communication Structure 



● Expand partial matches requiring remote vertices. 
● Exchange of frontier vertices or tasks, depending on runtime. 
● Optional aggregation of counts before global reduction. 

Correctness Criteria 

● Total motif count must match a serial backtracking baseline. 

A.4 Graph-Based Message-Passing Simulation 

Problem 

At each timestep, each vertex sends a message to its neighbors and updates its state based on received 
messages. 

Decomposition 

● Each process stores a subset of vertices and incident edges. 
● Edges crossing partitions cause message traffic. 

Communication Structure 

Per timestep: 

● Outbound messages to neighbors (local or remote). 
● Delivery phase ensuring all vertices have received messages for step t. 
● Local state update. 

Correctness Criteria 

● Deterministic consistency across all runtimes for fixed topology and update rules. 

A.5 Random-Walk / Agent-Based Model (ABM) 

Problem 

Simulate large numbers of agents performing random walks (and optional interactions) on a 2D grid. 

Decomposition 

● Spatial domain split into blocks. 
● Agents transferred across partitions as they cross boundaries. 

Communication Structure 



● Migration of agents between owning partitions. 
● Optional message exchange for agent-agent interactions. 

Correctness Criteria 

● Preservation of agent counts, valid movement rules, and matching distributions with baseline 
runs. 

Appendix B — Dataset and Parameter Tables 
This appendix defines representative problem sizes, including small (debug), medium (development), 
and large (cluster-scale) configurations. The dataset sizes and parameter ranges listed here represent 
the planned initial configurations for the Winter 2026 implementations. These values are provisional 
and may be adjusted during development after early correctness and scaling tests. 

B.1 3D Stencil / CFD Benchmark (Heat3D) 

Table B.1 — Parameters 

Parameter Symbol Example Values Notes 

Grid size N_x,N_y,N_z 128³, 256³, 512³, 1024³ 3D domain 

Timesteps T 50, 200, 500 Simulation duration 

Coefficients ,  e.g., 0.5, 1/12 Stable for explicit heat equation 

Decomposition P_x,P_y,P_z 1×1×1 → 4×4×4 Matches node/core grid 

Halo width — 1 7-point stencil 

Size tiers 



Tier Grid Size Timesteps Use Case 

Small 128 × 128 × 128 50 Debug correctness 

Medium 256 × 256 × 256 200 Scaling on few nodes 

Large 512–1024³ 200–500 Cluster-scale evaluation 

B.2 DGEMM Benchmark 

Table B.2 — Parameters 

Parameter Symbol Example Values Notes 

Matrix dimension M,N,K 2048, 4096, 8192 Square matrices 

Block size b 64, 128, 256 Cache / runtime tuning 

Process grid P_x,P_y 1×1 → 4×4 SUMMA-style mapping 

Data type — double DGEMM specification 

Size tiers 

Tier Matrix Size Block Size Notes 

Small 2048 64 Debug / unit testing 



Medium 4096 128 Mid-scale development runs 

Large 8192 128–256 Stress memory + communication 

B.3 Graph Subgraph / Motif Search 

Table B.3 — Parameters 

Parameter Symbol Example Values Notes 

Vertices |V| 10⁵, 10⁶ Large sparse graphs 

Edges |E| 10⁶–10⁷ Power-law or ER 

Motif size k 3, 4, 5 Triangles, 4-cycles, etc. 

Partitions P 4, 8, 16 Vertex-cut partitioning 

Size tiers 

Tier |V| |E| Motif 

Small 10⁵ 10⁶ k = 3 

Medium 5×10⁵ 5×10⁶ k = 3–4 



Large 10⁶ 10⁷–5×10⁷ k = 4–5 

B.4 Graph Message-Passing Benchmark 

Table B.4 — Parameters 

Parameter Symbol Example Values Notes 

Agents / nodes |V| 10⁴, 10⁵, 10⁶ Each vertex hosts an agent 

Average degree d 4, 8, 16 Controls message density 

Timesteps T 100, 500 Simulation length 

Message size — 8–64 bytes Small status/control messages 

Topology — grid, random, scale-free Varies communication behavior 

Size tiers 

Tier Agents Degree Timesteps 

Small 10⁴ 4 100 

Medium 10⁵ 8 200–500 



Large 10⁶ 8–16 500 

B.5 Random Walk / ABM Benchmark 

Table B.5 — Parameters 

Parameter Symbol Example Values Notes 

Grid size L_x,L_y 512², 1024² 2D spatial domain 

Agents A 10⁴, 10⁵, 10⁶ Population size 

Timesteps T 500, 1000 Simulation duration 

Movement model — von Neumann / Moore 4- or 8-neighborhood 

Interactions — optional rules Enables socio-economic ABMs 

Size tiers 

Tier Grid Size Agents Timesteps 

Small 512² 10⁴ 500 

Medium 1024² 10⁵ 1000 

Large 1024² 10⁶ 1000+ 



Appendix C — Additional Sources Consulted 

These sources informed background understanding and contextual framing but were not cited directly in 
the report. 

[A1] Neo4j Blog. Graph Database Use Cases. 

https://neo4j.com/blog/graph-database/graph-database-use-cases/ 

[A2] TechTarget. Top 5 Enterprise Graph Analytics Use Cases. 

https://www.techtarget.com/searchbusinessanalytics/feature/Top-5-enterprise-graph-analytics-use-
cases 

[A3] Grand View Research. Graph Database Market Report. 

https://www.grandviewresearch.com/industry-analysis/graph-database-market-report 

[A4] TechTarget News. Gartner Predicts Exponential Growth of Graph Technology. 

https://www.techtarget.com/searchbusinessanalytics/news/252507769/Gartner-predicts-exponential-
growth-of-graph-technology 

[A5] ACM Computing Surveys. Graph Neural Networks: Foundations, Frontiers, and Applications. 

https://dl.acm.org/doi/10.1145/3725323 

[A6] ACM Transactions / SIGMOD Blog. Recent Trends in Graph Analytics (Full-text article). 
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[A7] Oxford Academic. Network Motifs: Simple Building Blocks of Complex Networks. 
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[A8] UW DSLab. MASS C++ Case Study (Panther, 2020). 
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https://runestone.academy/ns/books/published/complex/AgentBasedModels/Sugarscape.html 

 


