
Alex Hilwa
CSS 497 A Term Report Fall 2023

1. Introduction
This quarter, for the first five credits of my capstone project, I am working on developing
benchmarking programs for FLAME GPU2 to compare execution times and conduct a
programmability analysis to compare with MASS CUDA. I was tasked with writing and analyzing
the following benchmark programs:

● Game of Life
● Tuberculosis
● Neural Net

Between this quarter and the next, I am to port each of these programs from FLAME GPU to
FLAME GPU2 and compare their metrics to those of the same benchmark programs written in
MASS CUDA.

2. Goals
My goals for Fall quarter were as follows:

● Port Game of Life to FLAME GPU2
● Compare execution times for Game of Life between FLAME GPU2 and MASS CUDA
● Port Tuberculosis to FLAME GPU2

Of the benchmarking programs, Tuberculosis was by far the most complex and was expected to
take until partway through Winter quarter, next year.

3. Achievements
This quarter’s achievements were as follows:

● Understanding how to install and run FLAME GPU2
● Learning the basics of programming in FLAME GPU2
● Understanding the code in the example programs and reading documentation
● Running execution time tests and conducting a programmability analysis for Game of

Life
● Understanding the FLAME GPU implementation of Tuberculosis
● Implementing Tuberculosis in FLAME GPU2

Within FLAME GPU2’s code was provided a set of example programs that demonstrated how to
write and run code for it. Among these example programs was an implementation of Game of
Life. Because of this, I was able to run to execution time comparisons and programmability
analysis without porting the existing FLAME GPU program. This allowed for me to start on
porting Tuberculosis early, and I was able to finish most of the work before the end of the
quarter.



Alex Hilwa
CSS 497 A Term Report Fall 2023

4. Results
Game of Life Execution Times
The following runtime data was collected by running Game of Life in both MASS CUDA and
FLAME GPU2 for three game sizes of 165 by 165 places, 1000 by 1000 places, and 2000 by
2000 places for 250 steps.

MASS CUDA

165 * 165 1000 * 1000 2000 * 2000

3,349 ms 4,441 ms 14,688 ms

FLAME GPU2

165 * 165 1000 * 1000 2000 * 2000

31 ms 113 ms 359 ms

The results indicated that for all sizes, FLAME GPU2 was around two orders of magnitude faster
than MASS CUDA.

Game of Life Programmability Analysis
The following programmability metrics were collected by using Lizard, a Cyclomatic Complexity
Analyzer for many languages including C++. In order for Lizard to accept the MASS CUDA and
FLAME GPU2 programs, they had to be renamed to be .cpp files instead of .cu, which did not
appear to affect Lizard’s functionality.

MASS CUDA

LOC Cyclomatic Complexity Boilerplate code Boilerplate %

147 2.6 8 5.4%

FLAME GPU2

LOC Cyclomatic Complexity Boilerplate code Boilerplate %

114 4 78 68%

The results indicated that FLAME GPU2 had an overwhelmingly higher amount of boilerplate
code, which was consistent with my experiences in looking over Game of Life and writing
Tuberculosis, where comparatively little of the code specified agent behavior. This was largely
because in a FLAME GPU2 program, most elements such as agents, agent functions, and
messages between agent functions have to have all of their properties specified beforehand,
leading to many lines of code specifying their functionality before their actual use.



Alex Hilwa
CSS 497 A Term Report Fall 2023

Tuberculosis Programmability Analysis

LOC Cyclomatic Complexity Boilerplate code Boilerplate %

1057 4.97 265 25%

Tuberculosis was a much longer and more intricate program than Game of Life, as indicated by
its total lines of code. Each of the agents had much more complex behaviors, as denoted by the
higher cyclomatic complexity.

Interestingly, the boilerplate code, while roughly four times greater than Game of Life, made up
a smaller portion of the program. This is because, while like in Game of Life, the agent,
message, and control flow specification took up a large amount of space, unlike Game of Life,
the agent behaviors were, again, much more complex, taking up comparatively more lines of
code.

It should be noted that the original implementation of Tuberculosis for FLAME GPU had taken
advantage of many features present in FLAME GPU that were not in FLAME GPU2. Primarily,
this was the functionality to receive multiple types of message originating from multiple different
agent functions in a single agent function. To recreate the behaviors of the original program in
FLAME GPU2, I had to add multiple extra agent functions to send and receive information at
intermediate steps between the ported functions and save that data as properties within the
agent. This increased the complexity of the FLAME GPU2 implementation by a significant
amount.

5. Next Quarter’s Plan
With this quarter’s goals having been progressed through ahead of schedule, next quarter’s
goals have also been moved up. Previously, I was aiming to complete Tuberculosis early into
next quarter along with a visualizer, but now the new goals are as follows:

● Complete Tuberculosis visualizer
● Understand FLAME GPU implementation of Neural Net
● Port Neural Net to FLAME GPU2
● Collect execution time data and conduct programmability analysis on FLAME GPU2

implementation of Neural Net

For the Tuberculosis visualizer, the FLAME GPU2 program outputs a series of log files which
describe the state of the simulate at each step. At its current state, the visualizer is able to read
in and interpret the log files. All that is left to do is to use the information from the logs to
construct a visual representation of the Tuberculosis simulate that can be stepped through.



Alex Hilwa
CSS 497 A Term Report Fall 2023

6. Implementation: Game of Life
Game of Life, also known as Conway’s Game of Life, or just Life is a cellular automaton devised
by the British mathematician John Horton Conway in 1970. Due to its nature of being a grid of
cells interacting with their neighbors, it was not a surprise to find an implementation of it among
the example programs provided with FLAME GPU2.

The code for Game of Life, and more generally a FLAME GPU2 program consisted of the
following parts:

Agent Specification

This code specifies a cell agent with a 2-element unsigned int array representing the agent’s
position and an unsigned int representing if the agent is alive or dead.

Two agent functions are then attached to the agent. An output function, where the cell
communicates its state to its adjacent cells, and an update function, which takes in the
communication from adjacent agents and decides the cell’s own new state.

The agent functions are attached to the agent while specifying what message that agent
function will output and input, in this case the “is_alive_message.”

Message Specification

This code specifies the message sent by the “output” function and received by the “update”
function. It is of the type MessageArray2D, which means that the message is a 2D array of
messages where an agent function specifies that they are writing a message to a particular
index within the 2D array. This allows the agent function receiving the message to look at a
message at a particular location, or a set of messages relative to a particular location.



Alex Hilwa
CSS 497 A Term Report Fall 2023

Here, in the update function, the wrap() method is used to iterate through messages from the
cell’s Moore neighborhood centered on the cell’s own x and y coordinates.

Layer Specification

Here, control flow elements called layers are created, and agent functions are attached to
them. Layers dictate the order in which agent functions are run, with a layer being created
earlier being run earlier. In this case, two layers are created. The output function is attached to
the first layer, and the update function is attached to the second. This means that the output
function will execute first, sending each cell’s aliveness to its neighbors, followed by the update
function executing, which will read in those messages and use them to determine each cell’s
own state.

Environment Specification



Alex Hilwa
CSS 497 A Term Report Fall 2023

Globally-accessible variables can be specified using the model’s environment. Agent functions
can access these values at runtime.

Agent Functions

Agent functions represent the behaviors of individual agents and contain the main part of the
logic of a FLAME GPU2 program. The above code snippet is the output function of a cell in
Game of Life. The function header specifies that it is an agent function, as distinct from the few
other types of functions including host functions and init functions. The header also specifies the
name of the function, the type of incoming message, which in this case is none, or
MessageNone, and the type of outgoing message, which in this case is a MessageArray2D, as
discussed earlier.

Within this agent function, FLAMEGPU->message_out representing the outgoing message has
two fields that are set. The variable “is_alive”, as defined earlier, is set using the cell’s own
“is_alive” property. Then, as this is a MessageArray2D, the message’s index within the 2D array
is set using the cell’s own position value.

This message is then passed on to the next agent function.



Alex Hilwa
CSS 497 A Term Report Fall 2023

In the update function, the MessageArray2D is received and is iterated through using the wrap
function, which accesses the location’s Moore neighborhood based on the cell’s own position,
as shown earlier.

In order for an agent’s variables to be changed they must be set using
FLAMEGPU->setVariable.

At the end of an agent function, flamegpu::ALIVE must be returned, representing that the agent
is still alive at the end of the function execution. If the behavior is enabled when the agent
function is initially assigned to the agent during agent specification, flamegpu::DEAD may be
returned instead, indicating that the agent has died during the execution of the function.



Alex Hilwa
CSS 497 A Term Report Fall 2023

7. Implementation: Tuberculosis
Tuberculosis is a simulation of Tuberculosis bacteria gradually infecting a human lung. The
simulation consists of a 32 by 32 grid of spaces that represent the lung. 4 places in the center of
the area are initially infected with bacteria, which gradually spreads to cover the lung.

Every simulation step, macrophage cells are spawned from predetermined blood vessels which
wander the lung space somewhat randomly but will tend to move towards adjacent infected
spaces if they detect a chemokine signal, which is generated by a place reacting to the
presence of bacteria. Macrophages will consume bacteria on a space, making the space
uninfected but infecting the macrophage in the process. Infected macrophages will gradually
build up intracellular bacteria until they reach a particular threshold, at which point they are
considered chronically infected. A chronically infected bacteria will eventually die when the
intracellular bacteria reaches another, higher threshold. A macrophage that dies in this way will
spread bacteria to nearby places.

After a certain number of simulation steps, by default 10, blood vessels will start to spawn
T-cells, which will move in a similar manner to macrophages, attracted to a chemokine signal.
When a macrophage and T-cell occupies the same space, one of two things will happen. If the
macrophage is in its default state, or infected, the macrophage will become activated, and be
able to consume bacteria from places without itself becoming infected again. If the macrophage
is chronically infected when it encounters a T-cell, the macrophage will be killed.

This image is from the FLAME
GPU (the original) implementation
of Tuberculosis, as the visualizer
for the FLAME GPU2
implementation is not yet
complete. This is what the lung
might look like after 99 simulation
steps.

The following sections will broadly
explain the various agents and
their specific behaviors.



Alex Hilwa
CSS 497 A Term Report Fall 2023

Place Agents
Place agents represent a location on the lung. Place agents are responsible for managing the
spread of bacteria, maintaining their chemokine signal, and if they are marked as a blood
vessel, spawning in new macrophage and T-cell agents. Agent functions belonging to place
agents are as follows:

● decay_chemokine_and_grow_bacteria
● cell_recruitment
● approve_macrophage_movement
● approve_tcell_movement
● react_to_macro

decay_chemokine_and_grow_bacteria
This function is responsible for decrementing a place’s chemokine value at every simulation
step, as well as indicating to adjacent places that they should grow bacteria if the day is a day
for bacteria to grow, by default every tenth day.

cell_recruitment
This function is responsible for creating new macrophage and T-cell agents, which is does
depending on a number of factors including the current day, the presence or absence of a
macrophage or T-cell currently on the place, and whether the day for T-cells to start spawning
has passed.

approve_macrophage_movement
This function is responsible for responding to movement requests sent by macrophages. As
only one macrophage can move to a place and two macrophages cannot occupy the same
place, a place must approve the movement of a single macrophage agent to its own location.

approve_tcell_movement
This function is identical in functionality to approve_macrophage_movement, as T-cells share
the same logic for moving as macrophages.

react_to_macro
This function is responsible for responding to the presence of macrophages and T-cells by
adjusting the place agent’s bacteria values.

Macrophage Agents
Macrophage agents represent macrophage cells which roam the lung tissue and consume
bacteria from places. Agent functions belonging to macrophage agents are as follows:

● macrophage_request_move
● macrophage_move
● macrophage_react



Alex Hilwa
CSS 497 A Term Report Fall 2023

macrophage_request_move
This function is responsible for deciding which place a macrophage will move to. It does this by
considering all the adjacent places and picks the one with the highest chemokine value. If all
locations have a chemokine value of 0, the macrophage will move to a randomly selected place.

macrophage_move
This function is responsible for receiving a message from the place agent’s
approve_macrophage_movement. If a macrophage agent’s movement has been approved, this
function will execute upon it, updating the macrophage’s position values.

macrophage_react
This function is responsible for the macrophage reacting to the presence of bacteria and/or a
T-cell at its new location, as well as updating intracellular bacteria if present. If the
macrophage’s intracellular bacteria count is too high, or the macrophage is chronically infected
and encounters a T-cell, this function will return flamegpu::DEAD, killing the agent.

T-Cell Agents
T-cell agents represent T-cells which move in the same manner as macrophages. T-cells are
light on functionality as most of their interaction with other agents rely on other agents
responding to their presence. Agent functions belonging to T-cell agents are as follows:

● tcell_request_move
● tcell_move

tcell_request_move
This function is identical in functionality to macrophage_request_move as they share the same
movement behavior.

tcell_move
This function is identical in functionality to macrophage_move as they share the same
movement behavior.



Alex Hilwa
CSS 497 A Term Report Fall 2023

Appendix A: Code
The implementations for Game of Life and Tuberculosis can be found at the following locations:

Game of Life https://github.com/FLAMEGPU/FLAMEGPU2/tree/master/examples/cpp/ga
me_of_life

Tuberculosis https://bitbucket.org/alexhilwa/flamegpu2_tuberculosis/src/main/

Appendix B: How to Run
In order to run Game of Life, follow these instructions:

1. Download the FLAME GPU2 library from:
a. https://github.com/FLAMEGPU/FLAMEGPU2/tree/master

2. Unzip FLAMEGPU2-master
3. Mkdir -p build && cd build
4. cmake .. -DCMAKE_CUDA_ARCHITECTURES=61 -DCMAKE_BUILD_TYPE=Release
5. cmake --build . --target game_of_life -j 8
6. ./bin/Release/game_of_life --verbose --steps 10

a. This command will run the program in verbose mode, for 10 steps.
b. Using the --help command will explain argument usage.

In order to run Tuberculosis, follow these instructions:
1. Download the FLAME GPU2 library from:

a. https://github.com/FLAMEGPU/FLAMEGPU2/tree/master
2. Unzip FLAMEGPU2-master
3. In FLAMEGPU2-master/examples/cpp add the tuberculosis directory from the

BitBucket link
4. Return to FLAMEGPU2-master
5. Mkdir -p build && cd build
6. Edit FLAMEGPU2-master/CMakeLists.txt

a. Under the section: # Options to enable building individual examples, if
FLAMEGPU_BUILD_ALL_EXAMPLES is off.

b. Include the line:
cmake_dependent_option(FLAMEGPU_BUILD_EXAMPLE_TUBERCULOSIS
"Enable building examples/cpp/tuberculosis" OFF
"FLAMEGPU_PROJECT_IS_TOP_LEVEL; NOT
FLAMEGPU_BUILD_ALL_EXAMPLES" OFF)

c. Under the section: # Add each example
d. Include the lines:
e. if(FLAMEGPU_BUILD_ALL_EXAMPLES OR

FLAMEGPU_BUILD_EXAMPLE_TUBERCULOSIS)
f. add_subdirectory(examples/cpp/tuberculosis)
g. endif()

https://github.com/FLAMEGPU/FLAMEGPU2/tree/master
https://github.com/FLAMEGPU/FLAMEGPU2/tree/master


Alex Hilwa
CSS 497 A Term Report Fall 2023

h. Alternatively, find an already edited version of the CMakeLists.txt in the root
directory of the Tuberculosis BitBucket

7. cmake .. -DCMAKE_CUDA_ARCHITECTURES=61 -DCMAKE_BUILD_TYPE=Release
8. cmake --build . --target tuberculosis -j 8
9. ./bin/Release/tuberculosis --verbose --steps 100


