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Abstract

Programmability and Performance Analysis of Distributed and Agent-Based

Frameworks

Anirudh Potturi

Chair of the Supervisory Committee:

Dr. Munehiro Fukuda

Computer Science & Software Engineering

In big data, the importance shifts from raw text presentation of data to structure

and space of the data. Computational geometry is an area of interest, particularly for the

structure and distribution of data. Thus, we propose using Agent-Based Modelling (ABM)

libraries for big data to leverage the benefits of parallelization and support the creation

of complex data structures such as graphs and trees. ABMs offer a unique and intuitive

approach to solving problems by simulating the structural elements over an environment

and dispatching agents to break these problems down using swarming, propagation, col-

lisions, and more. For this research, we introduce using Multi-agent Spatial Simulations

(MASS) for big data. We compare the programmability and performance of MASS Java

against Hadoop MapReduce and Apache Spark. We have chosen six different applications

in computational geometry implemented using all three frameworks. We have conducted

a formal analysis of the applications through a comprehensive set of tests. We have de-

veloped tools to perform code analysis to compute metrics such as identifying the number

of Lines of Code (LoC) and computing McCabe’s cyclomatic complexity to analyze the

programmability. From a quantitative perspective, in most cases, we found that MASS
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demanded less coding than MapReduce, while Spark required the least. While the cyclo-

matic complexity of MASS applications was higher in some cases, components of Spark

and MapReduce applications were highly cohesive. From a qualitative viewpoint, MASS

applications required fine-tuning resulting in significant improvements, while MapReduce

and Spark offered very limited performance enhancement options. The performance of

MASS directly correlates with the data, in contrast to MapReduce and Spark, whose

performance is not affected by the distribution of data.
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Chapter 1

Introduction

The Bureau of Labor Statistics projected a 36% increase in jobs for data scientist roles

from 2021 to 2023 [1]. The exponential data volume and complexity growth have en-

couraged data scientists, researchers and practitioners alike to leverage big data tech-

nologies and methods to extract insights. Data scientists drive innovation and address

real-world challenges in ways that were previously not feasible [2]. Traditional program-

ming paradigms are unsuitable for processing large datasets, attributed to insufficient

computing power and memory offered by a single computer (a node). Thus, a paralleliz-

able framework is necessary to harness the computational power of a cluster of machines.

A cluster of machines is a set of computers (nodes) connected to allow for communication

and work as if they are a single and a much more powerful machine.

Big data frameworks such as Hadoop MapReduce (henceforth MapReduce) and Apache

Spark (henceforth Spark) are popular tools used by data scientists today. These libraries

run in distributed environments, allowing collective computational power and memory

space. MapReduce processes data in batches, while Spark is suitable for processing data

in streams. However, Spark can also process data in batches. Handling large-scale data

processing involving big data is supported by both frameworks. This data is often pro-

cessed as is, in its plain text form, since manipulating primitive data types to complicated

structures in these frameworks is not supported.

Contrary to these libraries that stream flat data to their analyzing functions, Agent-Based

Modelling (henceforth ABM) frameworks construct data structures over a cluster system

and dispatch data-analyzing agents. The paradigm followed by ABMs is a mindset rather
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than just a mere technology [3]. The low-level focus is on agents and simulating the

most fundamental elements of a system [4]. In addition, the emergent collective group

behaviour of agents reveals the nonlinear dynamics of the simulation space and data [5].

We work with geometric data, particularly as a prevalent example of distributed geo-

data and data structures on top of a cluster system, thus over distributed memory. Our

ABM solutions process graphs and multi-dimensional spaces, while their MapReduce and

Spark iterations analyze plain text data. We focus on applications in computational ge-

ometry as they are critical tools for solving practical problems involving geometric and

geo data. With a focus on the structure of data, ABMs offer intuitive approaches to these

problems using swarming, propagation, collisions and migrations. Furthermore, these al-

gorithms enable analysts to extract meaningful insights from spatial data and support

decision-making in various fields, such as urban planning, environmental science, and

transportation engineering.

Through this research, we seek to compare the programmability and execution per-

formance of MASS against traditional big data libraries. A formal analysis of the pro-

grammability and performance has been pending with the current work available. We

perform a comprehensive set of benchmark tests for each application at least three times.

Later, we develop tools to analyze existing applications to draw insights, including code

complexity and Lines of Code (henceforth LoC).

The rest of this paper is organized as follows. Chapter 2 discusses using current

big data libraries in computational geometry. Chapter 3 briefly overviews known ABM

libraries and their use in computational geometry. Chapter 4 describes the implementation

of applications and tools required for this research. Experimental evaluations are discussed

in Chapter 5, while Chapter 6 concludes the paper.



Chapter 2

Background

Data scientists seek to solve real-world problems using large sets of data. Their datasets

cannot often fit into a single computing node’s memory. While Graphical Processing

Units (GPUs) handle time complexity, spatial complexity requires cluster computing to

be handled by distributing workloads. In a cluster environment, the collective memory

of machines can be used to distribute and process large sets of data, making it easier

to handle. As a result, the need for frameworks capable of handling such data and the

ability to solve them at faster speeds is necessary. Such frameworks leverage the comput-

ing capabilities of a cluster, a group of machines collaborating to derive valuable insights

from data within a reasonable time frame. Of importance in cluster computing is hiding

CPU boundaries by automating inter-process communication, thus giving a single-system

image to data scientists. They seek to use user-friendly frameworks, meaning they expect

to spend less time on programming, focus more on the data, and draw conclusions from

the results.

Applying ABM frameworks for analyzing distributed data structures represents a

groundbreaking approach. ABM libraries encompass complex adaptive systems that of-

fer autonomous, responsive processes as agents operating within an environment. These

agents not only exert distributed actions within a simulation environment but also ex-

ert some degree of distributed control over the environment [6]. Moreover, agents are

equipped with social abilities to communicate with other agents using messages. By

utilizing ABM frameworks, researchers can construct realistic scenarios and realistically

simulate the behaviours of each problem component. Since ABMs are parallelizable and
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are good at observing agents in an environment, the focus shifts from the textual repre-

sentation of the data to the space and structure of the data.

2.1 Distributed frameworks for data science

This subsection first covers the literature on two big data libraries: MapReduce and

Spark, including their applications in the area of computational geometry. Thereafter, we

introduce the MASS library as a different approach to big-data computing.

2.1.1 Hadoop MapReduce

MapReduce is a framework designed to process large data sets in a distributed environ-

ment. Its MapReduce programming paradigm abstracts the concept of parallel program-

ming into two functions: map and reduce. The map function transforms individual input

records into intermediate key-value pairs, denoted as <k, v>. On the other hand, the

reduce function processes all values associated with the same key and produces the final

output [7].

Early work with MapReduce to solve various computational geometry computational

geometry was proposed by simulating the Bulk Synchronous Parallel (BSP) model. How-

ever, to the best of the authors’ knowledge, there are no known actual implementations

of the proposals suggested. It remains to be seen how to implement other algorithms that

do not follow the BSP model [8].

The skyline and Voronoi diagram construction algorithms have been implemented

using MapReduce by Zhang C et al. [9]. The Voronoi diagram construction was ac-

complished using the traditional divide-and-conquer algorithm to MapReduce’s map and

reduce functions. However, the merging operation caused a bottleneck to the scalability

of this implementation. Furthermore, over the years, there has been a growing interest in

utilizing the library to address computational geometry problems, particularly those in-
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volving 2-dimensional data [10]. However, support for such features can only be emulated

through extensions to the original library, such as the SpatialHadoop extension. This

extension for MapReduce adds support for R-Trees and QuadTrees since the standalone

library is not well suited for spatial operations and lacks support for these data structures.

Support for complex distributed data structures such as a generalized version of RTrees

named SD-RTrees, K-Dimensional Tree (henceforth KDTree) based K-RP [11], and Quad-

Tree based hQT have been proposed for performing spatial queries. However, these ap-

proaches could not scale better as they were not structurally suitable for MapReduce since

specific tree traversals require message passing, which is unavailable in MapReduce.

Lastly, the CG_Hadoop suite is a collection of computational geometry applications

developed using the SpatialHadoop extension. The algorithms implemented in these ap-

plications utilize a divide-and-conquer approach to leverage the parallel performance. The

data used in the developed applications were strictly in the form of CSV (comma-separated

values) files generated from shapefiles of geographical data.

2.1.2 Apache Spark

As the significance of spatial computing has continued to grow, the development of pow-

erful libraries to support a wide class of applications in big data streaming frameworks

such as Spark has been significant. Leveraging Spark’s flexible in-memory data caching

capabilities allows user applications to manage and optimize their data processing work-

flows effectively [12], resulting in highly efficient and scalable spatial computing solutions.

The interactive mode allows users to run Spark commands one at a time and engage in

any fine-tuning. However, this mode is limited to a single computing node, usually on the

master node.

One key advantage of Spark is its advanced job execution scheme, which utilizes a
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Directed Acyclic Graph (DAG) of stages and a lazy evaluation approach to optimize the

execution of iterative algorithms. This approach enables developers to understand the

processing path better and optimize their applications accordingly. In recent years, nu-

merous systems and algorithms have emerged that leverage Spark’s distributed processing

capabilities to support spatial queries over large, distributed spatial datasets. These sys-

tems typically rely on built-in or on-top implementations, allowing developers to choose

the best approach to meet their requirements. While some work focused on the library’s

performance, using different parameters [13], other works focused on the efficiency of al-

gorithms used.

Spark GraphX is built on top of Spark’s RDD to support parallel computation of

graph-based RDDs such as GraphRDD and VertexRDDs [14]. It offers a platform to im-

plement graph-processing systems with the underlying framework of Spark. To support

message passing, which is essential in graph and tree algorithms, GraphX implements

the Pregel API [15]. Messaging is required to pass information between vertices of a

graph. The GraphX component also provides support for performing operations on di-

rected multigraphs. Previous studies have been conducted using four worker nodes and

show the framework’s potential in big data that involves preserving and modifying dis-

tributed graphs [16]. However, further work must demonstrate scalability in a cluster

environment. Another disadvantage of GraphX is the inefficiency in the construction of

dynamic graphs. It is the best fit for static graphs streamed in fixed-sized windows. As

graphs change over time, GraphX reconstructs the entire graph repetitively, which adds

computational overheads, causing an increase in execution times and memory usage [17].

GeoSpark is a three-layered architecture, an in-memory framework that supports spa-

tial data in Spark. It extends the core of Sparks’ native Resilient Distributed Datasets

(henceforth RDDs) with the Spatial Resilient Distributed Dataset Layer and the Spatial

Query Processing Layer [18]. The Spatial RDD layer provides support for the QuadTree



16

and R-Tree data structures [19]. The Spatial RDD layer introduces three new RDDs,

namely PointRDD, RectangleRDD, and PolygonRDD, that allow the representation of

spatial data in Spark. These RDDs enable a wide range of geometrical operations, such

as overlap detection, distance computation, and minimum bounding rectangle calculation.

SpatialSpark is a distributed computing framework that supports indexed spatial joins

and range queries [20]. However, in specific scenarios involving data-intensive applica-

tions, it was observed that the framework’s scalability might be limited when running on

multiple computing nodes as opposed to a single node. The communication overheads

between computing nodes, which can become a bottleneck, are believed to be the stem of

the issue, further influenced by the number of partitions. To optimize the performance of

SpatialSpark for distributed spatial data processing, one could consider tuning the frame-

work’s partitioning strategy, network configuration, and resource allocation based on the

application’s specific data and computational requirements. Additionally, implementing

efficient data serialization and compression techniques can reduce communication over-

heads and improve the overall scalability of the framework.

One essential type of algorithm used in computational geometry is the Range Query.

A range query algorithm performs a search operation on a collection of values and identi-

fies all the data points between a user-specified range. There are different approaches to

performing search queries, for instance, the KDTree-based approach of Range Search. An-

other tree-based variant of range queries is the Spark-based Interpolation Search (SPIS),

specifically developed for use with Spark, without which the filtering mechanisms would

be inefficient [21].

2.1.3 Multi-Agent Spatial Simulations Library

The Multi-Agent Spatial Simulations Java (henceforth MASS) Library is an ABM
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library proposed to conduct spatial simulations in a parallel environment. MASS has

successfully addressed challenges such as agent migration and good resource utilization.

MASS has been under development for over a decade ever since. The use of MASS library

in big data analysis has shown promising results over the years. The most abundantly

tested features of MASS in these years have been in solving problems in multidimensional

spaces.

In MASS, ABM components are represented using the two modelling objects: Places

and Agents. Places represent the simulation’s environment, while agents are the entities

or actors, each called an agent within that environment. Places elements (each called a

place) are distributed among computing nodes on a cluster and can be located using a

globally known set of coordinates. For instance, Fig 2.1 shows a two-dimensional mapping

of places using x and y coordinates. Once mapped, all places are assigned to threads

and can communicate with each other and with agents that visit them during program

execution. Agents are stored in bags on each process and can traverse the cluster to visit

places. When agents move between nodes, their data is serialized and passed between

the cluster nodes via TCP communication. Not all simulations require both places and

agents, as some simulations may only need places for computation. The MASS library

functions using a master-worker pattern to control the simulation. Computing node 0

acts as the master or host node, while the other nodes are the worker or remote nodes.

User applications interact with the MASS host node, and MASS controls all supporting

communication with the worker nodes internally.

2.2 Previous Work

Early work by S. Gokulramkumar focused on applying the foundational concepts of MASS

in computational geometry [22]. While the work proved that users could develop applica-

tions in MASS without experience, users would have to develop complex data structures

and algorithms. The work introduced four essential applications in the said domain: Clos-
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Figure 2.1: MASS Model

est Pair of Points, Convex Hull, Delaunay Triangulation, and Voronoi Diagram. At the

time, the maximum number of nodes used to measure performance and scalability was

eight.

For work to be extended and bolster the construction of graphs, the infrastructure

in MASS was added by J. Gilroy [23]. The library’s contributions include adding the

GraphPlaces class, which contains the bulk of graph construction and maintenance func-

tionality, and support importing graphs of HIPPIE and MATSim file types. Furthermore,

the GraphPlaces component allows adding and removing individual vertices and edges in

graphs. This work also addressed the challenges of creating dynamic data structures to

allow continuous changes in the data structure.

Further work done by S. Paronyan focused on evaluating applications using MASS
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against its counterparts [24]. The work added two applications to the existing applications

library: Range Search, Largest Empty Circle, Point Location, and Euclidean Shortest

Path. The work also compared MASS implementations to that of MapReduce and Spark

counterparts. The measurements conducted at the time involved a maximum of 12 nodes.

To address issues such as wastage of memory and slow execution times of MASS in [22]

and [24], Y. Guo [25] implemented and performed evaluations of three data structures in

MASS: Binary Tree, Continuous Space, and QuadTree. Using the ContinuousSpace com-

ponent optimized the creation of places by allowing each place to cover a specific range of

coordinates. This way, there would be a reduction in the overall number of places created

by MASS, resulting in reduced computational overheads. The SpaceAgent component’s

inclusion into the core library allows the use of agents over the SpacePlace data structure.

The SpaceAgent component allowed users to define application-specific agent functional-

ities on top of the default propagate method. The propagate method could spawn agents

in the von-Neumann and Moore Neighboring places of a place.

The development of BinaryTree and QuadTree data structures supported the creation

of tree data structures in MASS since the only available option was GraphPlaces. Tree

creation offered an opportunity to develop applications reliant on data storage, sorting and

searching. The QuadTree data structure also helped solve the problem of handling uneven

data distributions, impacting how sub-places to agents are assigned. The QuadTreeAgent

component allows the use of agents over the tree data structures.

Lastly, V. Mohan identified and implemented eight automated agent navigation pat-

terns to analyze structured data [26]. With this automated migration, an application

developer using MASS would effectively perform less coding and focus more on their

data. The research addressed shortcomings of MASS without the built-in functions that

significantly impacted the performance of applications involving large datasets. Two of

our benchmark applications were updated and measured for their accuracy, performance,
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and programmability. The measurements conducted at the time involved a maximum of

sixteen nodes.

The line-up of contributions from former students was pending a formal analysis of

the performance and programmability. With respect to programmability analysis, metrics

were collected manually previously. The metrics included LoC and, in some cases, cy-

clomatic complexity. The programmability analysis collectively for all applications must

be redone using a code analysis tool to produce metrics that cannot be affected by hu-

man errors. In terms of performance analysis, the datasets used to test the applications

during the time were insignificant for big data scenarios and lacked a formal evaluation

methodology.

Summary

While some work with MapReduce and Spark has extended big-data coverages from plain

datasets to distributed data structures, their endeavours are not always successful due to

the nature of data streaming. ABM provides an intuitive approach to solving geometry

algorithms with swarming, propagation, and collision of agents. Since ABM solutions are

parallelizable, we can leverage the benefits of handling complex data structures to solve

applications in computational geometry. The data represented in computational geome-

try problems are normally sets of points in the Euclidean space. We selected fundamental

problems for which algorithms have been described in [27]. Problems that initially origi-

nated as a means to accurately compute taxes for lands by the Pharaoh’s now form the

basis of a larger area of problems with a wide range of applications.

For this work, we use text files containing the input data for our applications. While

the data files for the applications in this research do not require any special pre-processing

for MASS to handle, data represented in MATSIM and HIPPIE file types must be pre-

processed. The datapoints in MATSIM and HIPPIE files must be sorted by vertex IDs
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where each of the file types follows a specific structure to organize the data [28]. Other

data pre-processing tasks include the modification of shape files for geographic information

systems to text format for MASS. Lastly, the fine-tuning of MASS offers the benefit of

enhancing application performance by removing redundant code, in contrast to Spark and

MapReduce.



Chapter 3

Related Work in Agent-based Approach

This section covers the literature on agent-based modelling toolkits and their attempts

made for application in computational geometry. It is important to note that most of these

toolkits are not parallel frameworks. Parallel-ABM libraries in Java are very limited in

number.

3.1 Agent Based Frameworks

3.1.1 Repast Simphony

Repast Simphony is a single-node agent-based modelling toolkit based on Java [29]. This

toolkit has been used to develop an application to solve the convex hull problem using the

elastic band algorithm [30]. The space for the simulation is built-up in 2D and placing

data points over it. Agents behave as an elastic band, starting from the outer perimeter

of the space and moving inwards. As agents collide with the data points, they record the

data points. Although this work focused on discovering the most natural way of solving

the convex hull problem, the repast model underperformed compared to the primary Java

version. Furthermore, using an additional library for performing a search algorithm adds

to the execution time overhead. This search was necessary for the algorithm.

3.1.2 NetLogo

NetLogo is a single node multi-agent based programming and modelling environment de-

veloped to simulate natural and social phenomena. It is well suited for modelling complex
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systems developing over time. Modellers can instruct hundreds or thousands of agents,

all operating independently, making it possible to explore the connection between the

micro-level behaviour of individuals and the macro-level patterns that emerge from their

interaction.

An extensive collection of built-in applications from art, biology, computer science,

and mathematics to name a few, are packaged into the toolkit [31]. Agent migration

patterns in ABM, such as the von-Neumann neighbourhood and Moore neighbourhood

algorithms, are inspired by cellular automata. These patterns of agent migration are

prevalent in computational geometry applications such as closest pair of points, where-in

agents migrate outwards from source points in all directions. Lastly, the Voronoi diagram

is also part of this collection of applications. Voronoi diagrams are the partitioning of

a plane with n points into convex polygons such that each polygon contains exactly one

generating point, and every point in a polygon is closer to its generating point than to

any other.

3.1.3 DMASON

MASON is a single-node open-source agent-based modelling simulation toolkit based on

Java. It supports applying ABMs in geographical-information systems and social network

simulations. MASON focuses on simulations of much more complex systems with a small,

high-performance, self-contained simulation core so that many models can be run in par-

allel or involve up to millions of agents.

The DMASON framework is a parallel agent-based simulation framework written in

Java based on the MASON toolkit that aims to hide the complexity of the distribution

of agents between nodes to the developers. It was initially developed to harness unused

computers in scientific centres that could take profit from distributing their MASON

simulations and allows simply launching simulations on a distributed system using its
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provided Master and Worker applications [32]. Currently, work still needs to be done

using this framework for solving computational geometry applications. However, given

the strengths of this library, it would be worth developing the applications.

3.1.4 Other multi-agent systems

The JaCaMo project is another framework used to describe multi-agent systems. Ja-

CaMo provides a tuple-based communication infrastructure that allows agents to share

data and coordinate their activities through a shared tuple space. The library has three

key components: agents provided by Jason, simulation environment provided by Cartago

and organization provided by Moise [33]. Jason is an interpreting platform that extends

AgentSpeak, a language for agents based on their beliefs, desires and intentions to solve

problems. Cartago is an infrastructure for modelling the environment of the simulation.

Lastly, Moise is a framework used to define the structural elements of the rest of the sim-

ulation. In the area of computational geometry, no work exists using the JaCaMo library.

Jade is a distributed agent-based modelling library. It is meant for building agent

systems but needs more support for simulation infrastructure [34]. Thus, it distinguishes

itself from being a simulation framework because it has neither a scheduler nor the con-

cept of having a ‘clock’ such as MASS or Repast. The scalability of this library is limited,

thus, is not well suited for multi-agent-based simulations. A single agent is mapped to

one thread, allowing them to migrate through environments. One helpful feature built-in

is its GUI for monitoring remote agents, which can be helpful. However, given its limita-

tions, very limited work has been done using this library. In the context of computational

geometry, no work exists using this library.

The Ascape tool is written entirely and used with Java. It is a research-oriented soft-

ware which takes an object-oriented approach. Similar to Repast, this toolkit is packaged

into an IDE [35]. It provides a wide range of built-in functions and libraries for modelling
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various aspects of complex systems, such as spatial environments, agent behaviours, and

communication among agents. In the context of computational geometry, no work exists

using this library either.

3.2 Summary

Studies have been conducted on utilizing simulation frameworks for agent-based modelling

for data science using Repast Simphony and NetLogo [36]. However, the study pointed

out the lack of support for systems to support such simulations. Similarly, the work

done using ABM libraries in computational geometry is limited. One of the main reasons

for this is that parallel ABM libraries are not widely researched and developed. The

comparison between a parallel library (e.g., MASS Java) against single-node libraries in

terms of the execution performance will be limited to single-node executions of MASS

applications. Thus, we mainly focus on comparing the programmability. The big data

libraries, on the other hand, focus on execution performance. It is an important factor

when dealing with large sets of data. However, one of the critical aspects which still needs

to be addressed is the target users of these libraries. Typically, it would be data scientists

using such libraries. We move forward with the assumption that data scientists also give

importance to the programmability of the library. They would want to write simple code

in less number of lines. With frameworks such as Ascape and Repast Simphony which

are good toolkits for agent modelling, the built-in features do not support a wide range

of model-building approaches [37].
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Implementation

This section describes three achievements of this research: (1) tools development to com-

pare MASS with Repast, MapReduce, and Spark in their programmability, (2) applica-

tion development to compare their programmability and execution performance, and (3)

preparation of performance evaluation.

4.1 Tools Development

This section explains the development of two code analysis tools: each meant to analyze

code in Java and C++ respectively. An additional tool was developed to ease the execu-

tion of MASS applications with automated node configuration file generation.

4.1.1 Java Static Code Analysis Tool

A static code analysis tool is necessary to perform the programmability analysis of our

applications. The Java static code analysis tool builds upon the work done by a former

high school intern at the DSLab, Kent Fukuda. He developed a tool: LoC, short for Line

of Code. The tool can read an input file, identify whether it is a Java or C++ file and read

each line of the file. The tool identified the number of lines in the code, comments, and

blank lines in each file without using a parser. However, a parser is required to analyze

each file’s contents further, identify variables and methods, and compute the cyclomatic

complexity. The JavaParser library parses classes written in Java in this tool. JavaParser

is an open-source library that provides many methods to parse, extract code fragments
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and build abstract syntax trees.

The static code analyzer is a function-based tool which identifies and counts the num-

ber of conditionals, iteration, exception handling, logical operator, break, and return

statements used in a class. Each of these statements introduces a new logical path into

a program, causing a change in flow. Identifying these statements allows the computa-

tion of McCabe’s cyclomatic complexity per method. This code complexity metric is a

representative flow complexity of a program. It is an important metric to determine a

program’s stability and confidence level. LoC is a measure to identify how much program-

ming is necessary to implement an application. Cyclomatic complexity is a metric used

to determine the complexity and stability of a program based on the number of logical

paths in it. The LoC and cyclomatic complexity are good metrics to explain better how

much complex code one needs to develop for an application. The cyclomatic complexity

is computed for each method of a program separately. Initially, the complexity of each

method/function in the program is one (=1), and for every aforementioned statement

encountered, the complexity of the method is incremented by one. We also compute the

average complexity of a method in a class.

This code analyzer consists of seven components (see Appendix A): (1) Runner initi-

ates the code analysis process; (2) InitiateVisit initiates the MethodVisitor to visit sections

of the code and increment the counter of each statement; (3) MethodVisitor component is

the point of invocation of the Parsing process. A list maintains the count of each logical

statement encountered in the code; (4) LinesOfCodeAnalyzer works on a directory. It

combs the target directory for analysis and finds all source code files; (5) Pinter prints

the results of the code analysis process onto the console and into a text file; (6) State-

mentCounter tracks the occurrences of statements; and (7) DataCollector collects all the

metrics of an application directory.

Additionally, the tool can be run from any directory by the user, including the working
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directory. For example, users can call the tool from a MASS Application’s directory. The

tool will identify the current working directory, explore all files and folders in the directory,

and analyze relevant code files.

4.1.2 C++ Static Code Analysis Tool

C++ code is hard to parse. We explored parsing libraries such as CPP-Parser and ANTLR

(ANother Tool for Language Recognition) before implementing the tool using ANTLR

for its decently available documentation. ANTLR is a parser generator for C, CSharp,

HTML and more. This tool uses ANTLR’s C++ Grammar files. The grammar files

contain rules that define how C++ code is parsed [38]. The rest of the tool’s structure is

similar to the Java code analysis tool (See Appendix B). During development, we realized

that ANTLR surprisingly had no specific rules to parse an else-if statement as intended.

On the contrary, the parsing of ‘if’ and ‘else’ had no issues. The ‘else-if’ statement

was parsed separately as an ‘if’ and an ‘else’ statement. The parsing introduced an

inconsistency in our results because the counts of statements produced were incorrect.

To fix this, we defined a rule in ANTLR’s grammar file to correctly parse the ‘else-if’

statement.

4.1.3 NodesXML File Generator Tool

An additional implementation to support the automation of benchmarking was required.

MASS application users and developers require a node configuration file to specify the

nodes/machines that will run the application. The configuration file is a file that lists the

master and worker nodes of the cluster. The principle of this tool is simple. When called

from within a MASS Application folder, the tool will instantly generate a nodes.xml file

for the application. A user passes two arguments: (1) The number of nodes; and (2) The

assigned port number.
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A port number is necessary for MASS to perform messaging operations between nodes.

A third and optional argument is the preference of the master node. By default, the

master node is decided as ’cssmpi1h.uwb.edu’ by the tool. This tool utilizes the Javax

XML Package to generate the XML document. The tool fetches the username required

in the node configuration file for MASS, thus minimizing user inputs. Users can also call

this tool from within a MASS application directory. The tool creates the configuration

file in the currently active directory. This feature eases the use of the tool further.

4.2 Application Development

Using the code analyzing tools, this research conducted two comparative studies: (1)

MASS Java versus Repast in automated agent migration and (2) MASS Java versus

MapReduce/Spark in computational geometry. The automated agent migration in study

1 served as the basis of study 2’s agent-based computational geometry. These studies

needed to complete the following application development before the comparisons: 4.2.1:

MASS base code for Repast applications, 4.2.2: Breadth-first search in Repast for study

1, and 4.2.3: Range search, and 4.2.4: Largest empty circle for study 2.

4.2.1 MASS Base Code for Repast Applications

The MASS base code extracts all the structural elements developed to mimic MASS in

Repast for study 1: MASS versus Repast. This base code implements a set of routines that

are necessary for conducting a simulation. The base code consists of seven components

(see Appendix C): (1) The ApplicationBuilder component is a template component that

provides a basic structure of context building in Repast. A ContextBuilder is necessary

for all applications in Repast. A context consists of agents and the simulation environ-

ment, the places; (2) The FileInputReader is a utility component that reads input data

files and populates place and vertex objects; (3) The AgentManager is essential since it

manages operations such as agent creation, termination, and controlling agent migration;
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(4) The agent component creates objects that will act as the agents in applications; (5)

The Place component develops the space and acts as a point of invocation of method calls

to the AgentManager; (6) The Graph component is used to construct the graph. It acts

as a placeholder for agents, vertices, and places; (7) The Vertex component is used to

create vertices of the graph. Each vertex object contains a list of its neighboring vertices

and the distances.

Every agent is assigned a unique identifier, an agent ID. The identifier is the footprint

of an agent. An agent leaves behind a footprint upon visiting a place. A place provides

an environment for an agent and part of a graph or problem. A vertex object is stored in

a place and is used to construct graphs. The footprint is beneficial in tracking and termi-

nating agents when visiting a place already visited by another agent, a feature inspired

by the PropagateRipple method implemented in MASS [26]. Agents in the closest pair

of points application implement this logic, where agents terminate upon visiting a place

visited by an agent originating from a different place.

4.2.2 Breadth-First Search

This application is used for MASS vs Repast comparison. The BFSBuilder is a component

of this application that builds the simulation objects (see Appendix D). It adds objects

of the graph into the context and renders it on the GUI. The GraphGen component gen-

erates a graph and neighbours of each node. Each place acts as the node of the graph,

and each place has neighbouring places. The Graph object contains a list of place objects

where each place holds one vertex of the graph. Each place is home to precisely one agent.

At the beginning of the simulation, only agent 0 at place 0 is active. All other agents are

dormant, meaning they cannot migrate or perform any activity.

A scheduled method in each place calls the AgentManager to allow all active agents

to migrate to a neighbouring place. At the start of the simulation, agent 0 looks for its
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neighbouring places and picks one to which it will migrate and return. On arrival back to

the source place, the agent triggers a dormant agent at the visited place to be activated.

The AgentManager performs the activation of an agent. From Fig 4.1, the agent signals

the AgentManager to activate agent 1 residing in place 1. The AgentManager keeps track

of all the places visited by agents. If more places have yet to be visited, the scheduled

method in each place triggers the active agent residing in that place to migrate to a

neighbouring place. Finally, with no more places to explore, the simulation ends.

Figure 4.1: Breadth First Search

4.2.3 Range Search

The Repast Simphony application is developed by re-engineering the underlying imple-

mentation of the MASS application set in computational geometry that is used for com-

parison with MapReduce/Spark. The context builder for the application resides in the

RangeSearch component (see Appendix E). The RangeSearch component reads the input

file and constructs the KDTree before building the context. The AgentManager initiates

the search for nodes in the KDTree within the query range.

From Fig 5.10, an agent first starts at the root node: node 1. If the coordinates’

bounds are on the node’s left child, the agent continues traversing, i.e., migrating to the
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left child. If a point lies on the right child node, AgentManager triggers the activation

of an agent residing in the child node to start traversing. To further understand agent

behaviour, the number of agents used for the traversal, a method to count the total number

of agents activated in the simulation is implemented. A critical difference between the

Repast and MASS versions is that while MASS spawns a new agent, Repast Simphony

activates an agent. Thus, activating an agent in the application increases the counter

by one. Agents continue traversing and fetching results from the KDTree until all data

points are collected.

Figure 4.2: Range Search

4.2.4 Largest Empty Circle

The previous implementation of the Largest Empty Circles application was incorrect. The

implementation computed the farthest pair of points from the input data sets separately

and applied a brute-force approach to computing the farthest pair of points among them.

Additionally, the implementation is not executable because of flaws in the simulation

setup. As a result, we re-implemented this application for MASS.

The Largest Empty Circles problem, also known as the Toxic waste dump problem,

builds on two sets of data points: Cities and Dump Sites. The goal is to identify a

dump site farthest from all the cities to dispose of toxic waste and minimize the impact
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on human establishments. The space aspect of the application leverages the SpacePlace

component of MASS to describe the problem over continuous space. The agent aspect

of the application was developed using the SpaceAgent component of MASS and imple-

mented automated agent migration patterns such as PropagateRipple. The underlying

algorithm of this application follows a brute-force approach.

The application requires two sets of agents. The first set of agents resides in the points

representing cities (henceforth city agents). These agents act as static observer agents.

These agents do not propagate, and their job is to monitor if an agent originating from a

different place enters the place where they reside. The second set of agents reside in the

waste dump sites (henceforth site agents). These agents propagate to other places.

At the start of the simulation, a variable of type ‘double’ is initialized to the minimum

value it can store. From Listing 4.1, the simulation continues for as long as site agents

are active. The city agents first monitor their current place and identify if any site agents

entered their place. If a site agent visits a city, we calculate the distance between the

dump site from which the site agent originated from and the city. If this distance exceeds

the current value of the maxDistance variable, we record the city and the dump site

coordinates. After the end of the simulation, we print the maximum distance variable

and the associated points.
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Listing 4.1: Largest Empty Circles MASS implementation pseudo-code

1 doub l e maxDistance = Double .MIN VALUE ;

2 wh i l e ( v e r t e xAgen t s . nAgents ( ) > 0){

3 Object s i t e P a i r s = C i t yAgen t s . c a l l A l l ( F a r t h e s tPa i rAgen t . COLLECT PAIRS , n u l l ) ;

4 f o r ( Object s i t e o b : ( Object [ ] ) s i t e P a i r s )

5 {

6 // Compute the d i s t a n c e between C i t y and Dump S i t e from which Agent

7 o r i g i n a t e d . I f t h i s d i s t a n c e i s g r e a t e r than the c u r r e n t maxDistance

8 va lue , s e t maxDistance as the c u r r e n t d i s t a n c e and r e c o r d Dump S i t e

9 and C i t y Po i n t s .

10 }

11 v e r t e xAgen t s . c a l l A l l ( F a r t h e s tPa i rAgen t . PROPAGATE RIPPLE ) ;

12 v e r t e xAgen t s . manageAl lSpace ( ) ;

13 }

From Fig 4.3(a), initially, the data is scattered over the 2-dimensional space. MASS

computes the space size depending on the maximum and minimum values of the data

points from both sets. We map the data points to places. To observe agents’ behaviour,

Fig 4.3(b) shows a section of the space in a grid where each cell is one place. In the first

migration, the agent residing in the site spawns child agents in the von-Neumann and

Moore neighboring places.

From Fig 4.4(a), newly spawned child agents continue to spawn agents in their von-

Neumann and Moore neighbouring places. Eventually, from Fig 4.4(b), an agent enters

the city with the static agent. The static agent records the distance between a city and a

site. We compare the distance between the points to the current value of the maxDistance

variable. If the computed distance exceeds maxDistance, we set the value of maxDistance

to the recently computed distance and save the site and city points. At this stage, we

terminate the site agents originating from the site. This simulation continues until we

compute all the distances between sites and cities.
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(a) Section of Space (b) First agent Migration

Figure 4.3: Largest Empty Circles Initial Migrations

4.3 MASS Fine-Tuning as Preparation for Performance Evalu-

ation

MASS applications required fine-tuning to reduce wastage of resource utilization (Note

that MapReduce and Spark benchmark programs have already been fine-tuned for compu-

tational geometry). All MASS applications perform logging operations included by former

students for debugging. In a large-scale test, the logging operations become resource in-

tensive. Thus, the logging operations in all the applications were turned off. Further and

more importantly, optimizing the size of the simulation space is necessary. Especially the

MASS applications that do not implement the SpacePlace component to define the space

must be tweaked. The SpacePlace component efficiently handles place creation by only

creating as many places as required depending on the minimum and maximum values of

the dataset. The regular place component, on the other hand, does not perform such

optimization by default. As a result, some applications, such as the convex hull, created

an exponentially large number of places. To fix this, we implemented a helper method in

the application to compute the minimum and maximum values in the dataset depending

on which places are created.
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(a) Agent Migration using Propagate
Ripple

(b) Agent Migration Static City agent
and Site agent Collision

Figure 4.4: Largest Empty Circles: Finding Distance between City and Dump Site
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Evaluation

We compared MASS and Repast in their agent migration and MASS versus MapRe-

duce/Spark in computational geometry, both measured in programmability and execution

performance. This section first verifies the correctness of the analyzing tools, then looks

into programmability, and finally measure the execution performance.

5.1 Verification of Evaluation Tools

The code analysis tool for Java was used to evaluate the programmability of all the ap-

plications in this research. Since no external tools are available that produce McCabe’s

cyclomatic complexity for applications in Java, manual verification is the only way to

verify the correctness of the tool. As a result, we performed a manual collection of the

metrics while comparing MASS and Repast applications. The metrics from the manual

process and the code analysis tool were recorded in Excel spreadsheets and compared (see

Appendix F).

The verification revealed inconsistencies in the results from the code analysis tool. The

tool did not implement methods to identify exception handling statements and logical

operators. To rectify the incorrect results, we updated the code analysis tool to support

maintaining the occurrences of exception handling statements and logical operators in a

HashMap.
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5.2 Programmability Analysis

This section compares the programmability between MASS and Respast in agent migra-

tion as well as the programmability between MASS and MapReduce/Spark in computa-

tional geometry.

5.2.1 MASS versus Repast

This comparative work used the following four applications: Breadth-first search (hence-

forth BFS), Triangle counting, Range search, and Closest pair of points (henceforth CPP)

to evaluate their agent migration features. MASS no longer requires applications to write

fine-grain instructions to support automatic agent migration, tree traversal, and 2D prop-

agation. The inclusion of automated agent migration over complex distributed data struc-

tures supports tree traversals and propagation.

To evaluate the programmability of the applications, we compute the Lines of Code

(henceforth LoC) and cyclomatic complexity of the code. Agent LoC represents LoC used

to define the agent behaviour in the simulation space. Space LoC is code that defines the

space upon which the problem is distributed and built.

As shown in Table 5.1, the overall LoC in Repast is higher than MASS (i.e., 1545 com-

pared to 1056 in total) because of the need for code defining the structural elements of the

problems, including the creation of graphs and trees. Agent LoC is higher in Repast (i.e.,

553 compared to 274) because of the mandatory use of AgentManager, much of which

contributed to the agent LoC. Space LoC is higher, too, in Repast (i.e., 378 compared to

186) because it is used to develop the space and is a point of invocation of method calls to

the AgentManager. This simple process seeks fine-grained instructions when initiating,

performing, and ending the simulation.
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CPP in MASS used an additional class, taking advantage of the strengths of object-

oriented programming in storing the CPP results; in contrast, for Repast, a simple array

of points stores the results. Repast’s CPP saw reduced code (i.e., 314 compared to 362)

because of the simplified approach to recording the results. The cyclomatic complexity

in MASS is increased through frequent iterations and conditionals, much of which is

contributed by calls made to the base methods in MASS. It ranges from 2.25 to 3.944

compared to Repast’s cyclomatic complexity, which ranges from 1.785 to 2.6. Finally,

in BFS with Repast, the modified AgentManager increased the agent LoC. Space LoC

was majorly increased because, when compared to implementations of the other Repast

applications, the generation of vertices and their neighbouring vertices was in-built into

the application.

Table 5.1: Quantitative Programmability Comparison between MASS and Repast Sim-
phony [39]

Measures Libraries BFS Tri Count Range Search CPP

LoC MASS 79 175 400 362
Repast 432 260 539 314

Cyclomatic MASS 2.25 3.875 6.83 3.1
Complexity Repast 1.785 2.45 2.6 2.31
Agent LoC MASS 17 40 122 95
(A) Repast 229 76 139 109
Space LoC MASS 19 37 120 10
(S) Repast 111 94 130 43
Model Mgmt MASS 43 98 158 257
LoC - (A + S) Repast 92 90 270 162

5.2.2 MASS versus MapReduce/Spark

This comparative work used the following six applications: (1) Closest pair of points; (2)

Largest empty circles; (3) Convex hull; (4) Euclidean shortest path; (5) Point location;

(6) Range search in computational geometry. From Fig 5.1 and Table 5.2, MapReduce

requires the largest LoC because of the configuration of jobs and helper components to

construct complex data structures and finer-grained computations for computing results.

On the other hand, Spark requires the least LoC because of the flexible and easy oper-

ations available to be performed on RDDs. LoC in MASS applications are in between
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because of code describing the agent and space components. MapReduce and Spark for

ESP required the support of custom components to construct multidimensional objects

as obstacles.

Figure 5.1: Lines of Code (Bar graph representation of MASS, MapReduce, and Spark)

The cyclomatic complexity in MASS is high because of calls to the core library for

agent and space operations. With fewer functions performing the simulations, the average

cyclomatic complexity per method increases naturally. As shown in Table 5.3, the cyclo-

matic complexity of MapReduce and Spark are relatively lower because of the increased

use of modularized and highly-cohesive functions. In MapReduce, a significant impact on

the cyclomatic complexity is caused by the Map (maximum of 9 in Range search) and

Reduce (maximum of 45 in Point location) functions followed by methods developed to

serve as helper functions or deduce results (maximum of 40 in Euclidean shortest path).

In Spark, a significant impact to the cyclomatic complexity is caused by the Driver pro-

grams, i.e., the main methods (maximum of 38 in Point location). All other methods in

the MapReduce and Spark implementations are minimal, reducing overall complexity.

In MASS, all methods implementing core library functions cause a significant impact
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to the cyclomatic complexity (maximum of 36 in Range search). MASS implementa-

tion’s space and agent aspect involves multiple methods interacting with the core library.

Frequent switch statements are used to call the appropriate methods from the library. Fur-

thermore, methods describing initialization of the simulation space and agent behaviour

frequently use loop statements resulting in a high flow complexity.

Table 5.2: Lines of Code of MASS, MapReduce, and Spark (Logic Only)

Libraries
Application MASS MapReduce Spark

Closest Pair of Points 362 562 275
Convex Hull 429 524 375
Euclidean Shortest Path 598 1276 1118
Largest Empty Circle 469 634 326
Point Location 357 405 310
Range Search 426 265 224

Table 5.3: McCabe’s cyclomatic complexity of MASS, MapReduce, and Spark (per
method)

Libraries
Application MASS MapReduce Spark

Closest Pair of Points 4.05 2.43 3.00
Convex Hull 5.08 3.03 3.03
Euclidean Shortest Path 4.55 3.21 2.83
Largest Empty Circle 4.30 4.65 7.06
Point Location 2.54 4.45 4.16
Range Search 6.83 4.53 4.64

Applications that implement one of the eight built-in automated agent migration tech-

niques result in reduced LoC for agent components. Applications that require problem-

specific agent migration techniques to be developed often require detailed instructions.

These detailed instructions are straightforward and frequently use conditional statements

to call base methods from the core library. The space aspect of MASS applications is

easy. Since most applications begin with the raw data (unmodified data) distributed over

the space, the process is simple. For applications requiring special initialization logic (eg;

Convex hull) to create places, there is an increase in the code complexity of the space

components because of frequent loops and conditionals. Overall, MASS applications are

easy to develop and require natural thinking approaches.
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5.3 Performance Evaluation

5.3.1 MASS vs Repast

Repast applications depend heavily on the user interface. Each application and the struc-

ture of the problem space are rendered on the display. The application shown in Fig 5.2

is Breadth-first search with 50 vertices connected by edges. Buttons on this interface

allow users to start and end simulations. From Table 5.4, we started facing issues while

testing when we benchmarked the applications with the largest data sets. For example,

the GUI struggled to render 10,000 vertices of the graph on display, which is unsurprising

considering that the entire simulation was being performed on one system, resulting in

insufficient memory. We continued testing the 10,000 vertices data set without rendering

the graph on display, defeating the purpose of having an interface. Without the render-

ing, the application performed poorly, requiring over one hour to complete the execution.

When compared to a single-node multi-threaded execution of MASS with 10, 100 and

1000 vertices, Repast was slower. For the 10,000 vertices, MASS was not able to complete

the execution because of insufficient memory. However, on increasing the cluster size to

2 computing nodes with MASS, the execution of the application with 10,000 vertices was

successful. MASS creates a higher number of agents compared to Repast. As a result,

there is an increase in demand for memory.

Table 5.4: Breadth First Search Benchmarking Results Elapsed Time (in seconds)

Number of Vertices MASS Repast

10 0.059 1.6
100 0.187 1.5876297
1000 4.298 4.7715473
10000 - 3837.312504

Table 5.5 shows the results for Range search in Repast. The time to construct the

KDTree is fast overall, regardless of the data size. The tree is constructed recursively by

halving the data and creating left and right branches, making it an efficient approach.
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Figure 5.2: Breadth-First Search Repast Simulation

Overall, the Range search process was also very efficient because agents do not traverse

the entire Tree. Instead, agents check the bounds/coordinates passed as input starting

at the root node. If the points are present on the left branch, the agents traverse to the

left. This process is vice versa if the bounds are on the right-side branch. At every stage,

agents perform this check. As a result, there is a decrease in the total number of agents

created for the simulation. An additional feature allowed us to calculate the total num-

ber of agents required in the application. hen compared to a single-node multi-threaded

execution of MASS with 100, 500 and 5000 vertices, Repast was slower. Observable dif-

ferences in performance are seen in the largest dataset (10,000 vertices). The recursive

KDTree construction is efficient, and the smaller datasets are not large that they cannot

fit into the memory.
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Table 5.5: Range Search Benchmarking Results Elapsed Time (in seconds)

Number of Vertices MASS Repast

100 0.131 1.5650227
500 0.159 1.5223931
5000 1.209 1.5709776
10000 4.095 3.2501259

5.3.2 MASS versus MapReduce/Spark

This section analyzes their performance to parallelize the six computational geometry

applications. The illustration of each application results from an average of three tests

performed for each node configuration. Detailed measurements are listed in tables in

Appendix F-L. The benchmark measurements were performed when the operational load

on the cluster was comparable.

Closest Pair of Point

All implementations of the Closest pair of points application use the same datasets. The

MASS implementation maps data points to places in a 2-dimensional continuous space.

Agents start at the data points. Agents perform the MigratePropogateRipple technique

to find the closest neighbouring place. The MapReduce and Spark implementations of

CPP follow a Divide and Conquer strategy by dividing the input points into stripes. Each

stripe contains Three points. After merging adjacent stripes, the closest pair of points

are computed for each resulting merged stripe. We follow this process until there is only

One stripe remaining.

From Fig 5.5, the MASS implementation of CPP demonstrated significant improvements

when the cluster size increased, followed by Spark. The MASS implementation bene-

fits from the ABM approach, leading to a simple strategy. The MapReduce and Spark

implementations rely on computations at each stage of merging stripes, increasing the ex-

ecution time due to the computational overhead. MASS improved 12.50 times faster with

8 nodes over a single node for 50,000 data points and a 26.83 times improvement with 12

nodes over a single node for 100,000 data points. There was no significant change in the
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execution speeds of MapReduce for both sets of data. The maximum size of the input

files between both parameters was 1,150 Kilobytes. The flattened data file was small and

could not leverage Hadoop’s block partitioning. The partitioned data was of suitable size

for just one node to process the entire block, leading to poor CPU scalability.

Figure 5.3: CPP: 50,000 Points

Figure 5.4: CPP: 100,000 Points

Figure 5.5: Closest Pair of Points: CPU Scalability of MASS, MapReduce and Spark
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Convex Hull

Figure 5.6 demonstrates the performance of all three implementations. The MASS imple-

mentation of convex hull implemented the elastic band algorithm approach [30]. The data

points are mapped to places, and agents are initialized at the grid’s perimeter. Agents

migrate inwards, resulting in collisions with data points. Upon collision, an agent is ter-

minated. The data points agents collide with are collected till all agents are terminated.

The MapReduce and Spark implementations, on the other hand, follow a Divide and

Conquer strategy. The data is divided into groups containing one or two points. Convex

hulls are created for each group individually. Finally, individual convex hulls are merged

with neighbouring hulls iteratively until there is only one convex hull.

The Spark implementation performed better overall despite not significantly improv-

ing execution times with CPU scalability. Spark maintained an average of 11 seconds over

all the node configurations for both datasets. We believe that the workloads cause the

consistent results produced by Spark. The workloads for Spark are not computationally

intensive to benefit from being distributed. On the other hand, MASS performed the

fastest with 50,000 data points, achieving an execution time of 8.48 seconds with 8 nodes.

Lastly, MapReduce could not be benchmarked successfully with both the 12-node and

24-node configurations datasets. MapReduce tasks failed during the reduce operations

while configured with 12 and 24 nodes, with an error indicating that the status was not

reported to the master node within a timeout period. Increasing the timeout period from

the default 600 seconds to 5000 seconds and above was unsuccessful. We are unsure of

the likely cause of the timeout errors.
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(a) 50,000 Points (b) 100,000 Points

Figure 5.6: Convex Hull: CPU Scalability of MASS, MapReduce and Spark

Euclidean Shortest Path

The Euclidean shortest path required the construction of geometric objects that would

act as obstacles in all three implementations. Due to the lack of support for constructing

complex objects in MapReduce and Spark, additional computations were necessary with

the support of external libraries.

For the MASS implementation, the creation of obstacles was supported by places,

adding a computational overhead. However, the obstacle initialization did not broadly

impact the performance of MASS overall. Figure 5.7 demonstrates the performance of

all three implementations. We saw promising results with MASS from 1 node through 4

nodes, after which the execution time increased rapidly. The MASS implementation cur-

rently sends the input data to all the nodes in the cluster and eventually to each place in

the simulation. Given the wastage of memory caused by the current strategy, the master

node is burdened by communicating the data file to all the nodes in the cluster. Thus,

as the cluster size increases, the master node performs the additional work of sending the

data file to each node. The measurements proved that our MASS implementation could

have been improved for CPU scalability.
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For Spark, the additional support for obstacle creation demanded significant comput-

ing power, resulting in the best performance overall. The performance of Spark on a

single node was poor when compared to MASS’. With spatial scalability, the performance

improved. Spark outperformed MASS in the smaller dataset but could not outperform

MASS in the latter dataset (20k Obstacles). The high performance improvement of Spark

in terms of percentage will be higher purely because of the poor performance on a single

node. Lastly, MapReduce yielded the slowest execution times without significant per-

formance improvements. Due to the lack of support for constructing complex objects in

MapReduce, the Map functions were tasked with constructing the obstacle objects using

custom components.

(a) 10,000 Obstacles for 20,000 Points (b) 20,000 Obstacles for 40,000 Points

Figure 5.7: Euclidean Shortest Path: CPU Scalability of MASS, MapReduce and Spark

Largest Empty Circles

Figure 5.8 demonstrates the execution times of our implementations of the Largest empty

circles using MASS, MapReduce and Spark. In contrast to Spark and MapReduce, the

MASS implementation showed significant improvements in execution time when increas-

ing the size of the cluster. The MASS implementation took 252.95 seconds and 1017.46

seconds, with 50,000 points and 100,000 points in the Sites and Vertex (Cities) datasets.

The MASS implementation in both cases performed the best with 12 nodes but was still

outperformed by Spark. Although Spark did not demonstrate considerable improvements
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in CPU scalability, the execution consistently outperformed the MapReduce and MASS

implementations. The data shuffling process in Spark resulted in a stagnant performance.

The execution time of MASS was increased by using the ManageAll operation for agents.

The ManageAll operation is necessary to synchronize the status of all the agents during

the simulation.

The MapReduce implementation was the slowest. The implementation required the

use of seven different types of jobs. The first job was responsible for identifying the

data points from the sites data that form a convex hull. The results of the first job are

written into a temporary file. The second job reads the outputs from the first job to

further compute a global hull, the results of which are written into a file. The third and

fourth jobs perform the same tasks as the first and second jobs. The final three jobs

are responsible for computing the largest empty circle and require intermediate results

between each job. The increased execution times are attributed to the repetitive write

and read operations between each job. The frequent read and write operations are disk

intensive.

(a) 50,000 Points (b) 100,000 Points

Figure 5.8: Largest Empty Circles: CPU Scalability of MASS, MapReduce and Spark
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Point Location

We benchmarked all three implementations of the Point location problem with 500,000

and 2,000,000 points. Fig 5.9 shows the performance of all three implementations with

the three datasets. Overall, Spark demonstrated better performance with CPU scalabil-

ity. The Spark implementation flattens the data before constructing trapezoid objects.

Before searching for the query point, the Spark implementation takes advantage of the

mapPartitions() method to transform Trapezoid RDD all at once instead of performing it

on each row of data one by one. The Spark implementation balances out the heavyweight

processing of the construction of the trapezoids with the efficient transformation of the

trapezoids to improve overall performance. Spark performed the best with the 500,000

and 2,000,000 points datasets on 16 nodes (6.67 seconds and 7.67 seconds).

Vertical scaling did not improve the performance of our MASS implementation. Agents

cause the slowdown in our MASS implementation. Our MASS implementation starts with

one agent on each computing node. The number of agents increases as agents migrate

through the trapezoids. Agent activity increases as we increase the number of nodes in

our cluster. The manageAll() operation to synchronize the constantly migrating agents

adds an overhead.

Finally, the MapReduce implementation did show significant improvements overall.

The reducing phase of the implementation was responsible for creating trapezoid objects.

The trapezoids are written to a temporary file for the next phase of Map and Reduce

tasks to be executed for finding the query points. The intermediate writing and reading

operations of the MapReduce implementation add an overhead.
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(a) 500,000 Points (b) 2,000,000 Points

Figure 5.9: Point Location: CPU Scalability of MASS, MapReduce and Spark

Range Search

Fig 5.10 demonstrates the execution times of our implementations of Range search using

MASS, MapReduce and Spark. The MapReduce implementation significantly improved

with the 1,000,000 coordinates dataset compared to the 500,000 coordinates dataset. How-

ever, MapReduce collectively did not demonstrate good CPU scalability. The fastest per-

formance measurements were recorded with a single node up to 4 nodes, after which the

performance declined. The KDTree for the MapReduce implementation is constructed in

an array. As the input file size increases, the memory available on a single node must

be increased to construct the KDTree. As a result, adding up to 4 nodes improved the

performance. Furthermore, the search process for the query points is implemented during

the Reduce phase, with the support of an ArrayList. All points within the user-specified

query points are identified using a recursive process.

Our Spark implementation yielded strong results with CPU scalability to a maximum

of 8 nodes. The Spark implementation reads the entire dataset into an RDD before be-

ing processed to create nodes of the KDTree. The overhead added by initialising points

followed by the KDTree construction drastically increases the execution time. The high

performance improvement of Spark in terms of percentage will be higher purely because

of the poor performance on a single node.
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Unfortunately, we could not successfully benchmark the MASS implementation in one

specific case. The 1,000,000 points data set could not be tested with 2 nodes because the

execution would get stuck after the construction of 65% of the KDTree. Threads enter

the waiting state and never resume, causing a hangup. In all the other testing instances,

the agent performance of MASS outperformed MapReduce and Spark.

(a) 50,000 Points (b) 100,000 Points

Figure 5.10: Range Search: CPU Scalability of MASS, MapReduce and Spark
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Conclusions

6.1 Summary

We have conducted extensive studies in two directions. First, we analysed the automated

agent migration of MASS against Repast Simphony. The study compared the applica-

tions’ flow complexity and the code size necessary for describing the simulation, space

and agents. We used four applications, each implemented using MASS and Repast. Our

analyzing tools found that the flow complexity of MASS applications was higher than

that of Repast but required less code describing finer-grained instructions. We also tested

the capability of Repast for big data and observed that handling large sets of data was

inefficient because of memory limitations, which showed the need for cluster computing.

For this evaluation, we constructed and stored data structures in the memory for

MASS, in comparison to Spark, which flattens and streams the data into the memory.

The approach for analyzing data structures with MASS is simple and is more effective

for dispatching agents over it. We do not consider streaming data in MASS similar to

Spark since it is not efficient. For instance, Spark’s graph streaming allows dynamically

changing structures but requires the construction of the entire graph each time the graph

is modified.

Second, we performed a comparative analysis of MASS against MapReduce and Spark.

To perform the quantitative analysis, we selected and benchmarked six applications in

computational geometry; each implemented using MASS, MapReduce and Spark. Our



54

analysis shows that Spark required the least amount of code. The overall cyclomatic com-

plexity of MASS applications was the highest. While MapReduce and Spark applications

had lower flow complexities, the methods were highly cohesive. The driver applications

in Spark were highly complex, whereas the Map and Reduce methods in MapReduce are

significant contributors to increased flow complexity.

With respect to the ease of programming for big data, we cannot say that one frame-

work is easier than the other. The paradigms of each of the three frameworks are entirely

different from one another. Algorithm approaches for MapReduce and Spark follow Divide

and Conquer strategy. On the other hand, algorithm approaches of MASS applications

also include intuitive but Brute-force strategies. With respect to performance, MASS

showed impressive spatial scalability when compared to MapReduce and Spark. While

one application revealed a slowdown of agent migration in MASS, it outperformed Spark

and MapReduce in most cases. MapReduce maintained poor performance in all the ap-

plications because of the repetitive expensive disk operations.

6.2 Future Directions

The static code analysis tools developed for Java and C++ in this research can be used to

analyze future developments not limited to this work or libraries. The scripts developed

to automate the execution of applications can be tailored to automate the execution of

applications in the future. Additionally, the collection of benchmark applications in the

field of computational geometry can be expanded by implementing the Voronoi diagram

and Delaunay triangulation. Furthermore, the synthetic data used in our benchmarking

can be replaced with natural data. For instance, the applications can be implemented

into Geographical information systems (GIS). This research focused on the quantitative

analysis of MASS, MapReduce, and Spark. Furthermore, a qualitative analysis of the

three libraries must be performed. Lastly, data streaming for MASS can be considered

only for adding and deleting data structures that have already been constructed.
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ACRONYMS

Symbol Meaning

ABM Agent-Based Modelling

ANTLR ANother Tool for Language Recognition

LoC Lines of Code

MASS Multi-Agent Spatial Simulation

GUI Graphical User Interface

BFS Breadth-First Search

CPP Closest Pair of Points

CH Convex Hull

ESP Euclidean Shortest Path

PL Point Location

LEC Largest Empty Circles

RS Range Search

CPPParser C++ Parser

RDD Resilient Distributed Dataset

XML Extensible Markup Language

GIS Geographical Information Systems

TCP Transmission Control Protocol
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APPENDICES

A Class Structures of Static Code Analysis Tool for Java

Figure A.1: Static Code Analysis Tool for Java
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B Class Structure of Static Code Analysis Tool for C++

Figure B.1: Static Code Analysis Tool for C++
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C MASS Base Code for Repast

Figure C.1: MASS Base Code
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D Repast Breadth First Search

Figure D.1: Breadth First Search Components
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E Repast Range Search

Figure E.1: Range Search Components
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F Verification of Evaluation Tools

Figure F.1: Manual verification of accuracy of code analysis tool metrics
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G Closest Pair of Points Results

Table G.1: Closest Pair of Points Execution Times (in seconds)

Number of Nodes Dataset Size (# of Points) MASS Java MapReduce Apache Spark

1 50,000 282.17 389.67 338.00
Node 100,000 931.98 433.67 1133.67
2 50,000 84.10 393.67 236.00

Nodes 100,000 268.25 431.67 758.67
4 50,000 33.14 412.67 147.67

Nodes 100,000 81.96 431.67 451.67
8 50,000 22.57 365.33 90.33

Nodes 100,000 39.53 430.33 226.67
12 50,000 25.30 386.00 75.00

Nodes 100,000 34.73 430.33 233.00
16 50,000 37.01 388.33 63.33

Nodes 100,000 47.56 448.67 165.00
24 50,000 52.64 393.00 80.33

Nodes 100,000 53.59 440.67 162.33
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H Convex Hull Results

Table H.1: Convex Hull Execution Times (in seconds)

Number of Nodes Dataset Size (# of Points) MASS Java MapReduce Apache Spark

1 50,000 12.70 52.67 11.33
Node 100,000 45.88 51.67 11.67
2 50,000 13.49 49.00 11.00

Nodes 100,000 29.59 54.33 11.67
4 50,000 9.48 50.67 11.67

Nodes 100,000 29.54 51.00 11.33
8 50,000 8.48 54.00 11.33

Nodes 100,000 26.11 54.00 12.00
12 50,000 9.26 - 11.33

Nodes 100,000 24.92 - 11.67
16 50,000 12.34 59.00 11.00

Nodes 100,000 44.26 56.67 11.33
24 50,000 10.28 - 11.33

Nodes 100,000 33.78 - 11.33
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I Euclidean Shortest Path Results

Table I.1: Euclidean Shortest Path Execution Times (in seconds)

Number of Nodes Dataset Size (# of Obstacles) MASS Java MapReduce Apache Spark

1 10,000 210.20 722.87 307.22
Node 20,000 791.03 3174.14 2176.43
2 10,000 147.53 723.91 198.48

Nodes 20,000 608.49 3401.44 1271.59
4 10,000 153.25 798.71 139.41

Nodes 20,000 504.50 3534.55 971.92
8 10,000 231.34 795.84 121.84

Nodes 20,000 1323.96 3643.29 744.39
12 10,000 281.38 804.30 117.18

Nodes 20,000 1654.91 3267.58 695.49
16 10,000 341.84 751.52 227.10

Nodes 20,000 1838.38 6043.41 1318.82
24 10,000 417.98 1117.837 209.24

Nodes 20,000 2267.14 5514.56 1264.31
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J Largest Empty Circle Results

Table J.1: Largest Empty Circle Execution Times (in seconds)

Number of Nodes Dataset Size (# of Sites and Vertices each) MASS Java MapReduce Apache Spark

1 50,000 252.95 169.00 4.67
Node 100,000 1017.46 167.33 5.00
2 50,000 73.37 166.00 4.33

Nodes 100,000 288.29 168.67 5.33
4 50,000 28.62 166.00 5.33

Nodes 100,000 90.46 166.00 5.67
8 50,000 12.32 166.00 5.00

Nodes 100,000 34.33 165.33 5.00
12 50,000 10.08 165.00 5.33

Nodes 100,000 24.88 164.00 5.67
16 50,000 11.45 167.67 6.00

Nodes 100,000 24.71 168.67 6.33
24 50,000 13.88 161.33 5.33

Nodes 100,000 22.74 164.00 6.67
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K Point Location Results

Table K.1: Point Location Execution Times (in seconds)

Number of Nodes Dataset Size (# of Points) MASS Java MapReduce Apache Spark

1 500,000 29.67 81.67 9.33
Node 2,000,000 108.23 180.33 17.33
2 500,000 24.53 59.67 9.67

Nodes 2,000,000 78.07 115.33 15.33
4 500,000 28.30 57.67 9.00

Nodes 2,000,000 90.73 94.00 14.00
8 500,000 43.60 58.67 8.33

Nodes 2,000,000 148.70 84.33 13.00
12 500,000 62.83 63.33 9.33

Nodes 2,000,000 221.00 80.33 12.67
16 500,000 90.13 65.00 6.67

Nodes 2,000,000 315.73 81.33 7.67
24 500,000 129.40 66.00 7.33

Nodes 2,000,000 470.57 77.67 8.00
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L Range Search Results

Table L.1: Range Search Execution Times (in seconds)

Number of Nodes Dataset Size (# of Obstacles) MASS Java MapReduce Apache Spark

1 500,000 24.52 154.43 3,080.33
Node 1,000,000 85.32 708.80 12,245.67
2 500,000 22.72 115.96 1,831.33

Nodes 1,000,000 - 392.08 5,142.33
4 500,000 10.78 110.95 1,479.67

Nodes 1,000,000 39.67 242.86 600.33
8 500,000 20.04 116.96 183.00

Nodes 1,000,000 84.30 246.09 580.00
12 500,000 9.02 116.62 180.00

Nodes 1,000,000 71.79 246.04 540.67
16 500,000 11.05 258.93 181.33

Nodes 1,000,000 26.56 295.72 561.00
24 500,000 11.69 336.02 181.00

Nodes 1,000,000 22.40 388.80 641.33

Table L.2: Range Search Benchmark Results - Distributed KDTree Construction (time
in seconds)

Number of worker nodes 500,000 points 1,000,000 points

1 7.37 14.74
2 1603.42 -
4 2542.32 5054.24
8 3898.99 7998.26
12 3633.13 8201.09
16 3996.57 8507.11
24 4603.35 9682.51
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M Range Search Results

Table M.1: Range Search Execution Times (in seconds)

Number of Nodes Dataset Size (# of Obstacles) MASS Java MapReduce Apache Spark

1 500,000 24.52 154.43 3,080.33
Node 1,000,000 85.32 708.80 12,245.67
2 500,000 22.72 115.96 1,831.33

Nodes 1,000,000 - 392.08 5,142.33
4 500,000 10.78 110.95 1,479.67

Nodes 1,000,000 39.67 242.86 600.33
8 500,000 20.04 116.96 183.00

Nodes 1,000,000 84.30 246.09 580.00
12 500,000 9.02 116.62 180.00

Nodes 1,000,000 71.79 246.04 540.67
16 500,000 11.05 258.93 181.33

Nodes 1,000,000 26.56 295.72 561.00
24 500,000 11.69 336.02 181.00

Nodes 1,000,000 22.40 388.80 641.33

Table M.2: Range Search Benchmark Results - Distributed KDTree Construction (time
in seconds)

Number of worker nodes 500,000 points 1,000,000 points

1 7.37 14.74
2 1603.42 -
4 2542.32 5054.24
8 3898.99 7998.26
12 3633.13 8201.09
16 3996.57 8507.11
24 4603.35 9682.51
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N Running Benchmark Scripts

Find the benchmark applications under the following branch till updated in the develop

branch: anii develop

The scripts to run the benchmarks are placed in the corresponding folders of the

applications. Each application consists of 3 sub-folders containing each of the implemen-

tations. The following applications folder names can be found in the MASS applications

repository:

1. ClosestPairOfPoints under Applications folder

2. LargestEmptyCircles under Applications folder

3. RangeSearch under Applications folder

4. ConvexHull (developed by Shaun Stangler, Jason Lim, and Jaron Wang in [41]) under

ComputationalGeometry folder

5. EuclideanShortestPath (developed by Richard Ng in [40]) under Applications folder

6. PointLocation under Applications folder

Each of the folders contains the MASS, MapReduce, and Spark implementations.

Placed in each folder is the run script to automate the testing of the application on 7

different node configurations: 1, 2, 4, 8, 12, 16, and 24 nodes. The control access of the

run scripts must be modified so that then scripts can be executable. This can be done

using the following command: chmod 700 runScriptFileName.sh
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