Enhancing Agent Execution Performance in MASS Java Library

Bo Fu

Term Report of Work Done

At 2025 Autumn Quarter

Master of Science in Computer Science & Software Engineering

University of Washington

12/10/2025

Thesis Committee:
Prof. Munehiro Fukuda, Committee Chair
Prof. Min Chen, Committee Member

Prof. Robert Dimpsey, Committee Member

l. Introduction

The Multi-Agent Spatial Simulation (MASS) Java library is a distributed simulation framework
that supports agent-based modeling over spatial structures such as arrays and graphs. The
framework separates two core components: Places, which represent distributed data structures,
and Agents, which are mobile entities that operate across Places. This architecture allows the
system to simulate complex, parallel activities across distributed environments.

Recent studies [1][2] have shown that MASS Java has potential as an agent-based graph
database system, although its performance remains limited in certain scenarios. These
limitations are mainly due to the lack of optimization for graphs on agent migration and
execution performance.

To address these limitations, the thesis will introduce enhancements on Agent initialization
control, lambda expression support and asynchronous agent migration. These Agent
performance improvements will ultimately practicalize agent-based graph computing and DB
systems by making them more efficient. And the effectiveness of these improvements will be
evaluated with benchmark programs for graph computing and graph databases.

l. Motivation

The original version of the MASS Java library introduced agent-based modeling over distributed
environments, enabling Agents to dynamically navigate graphs across multiple processes [3].
Later, support for automated Agent migration over distributed data structures was added,
allowing Agents to move between nodes without manual coordination [4]. More recently,
Place-level execution has been improved through METIS-based graph partitioning and
Aeron-based messaging [5].

Building on these developments, Yuan Ma [1] evaluated MASS Java as a graph database and
benchmarked its performance against major graph database systems, while Sumit Hotchandani
[2] explored agent-based link prediction using the platform. Although these programs
demonstrate the potential of MASS Java as a graph database system, performance remains
constrained due to limited optimization of agent execution, particularly in initialization,
migration, and reductive computation. The current function invocation model also requires
substantial boilerplate to express agent operations, which may reduce overall programmability.

This thesis research focuses on improving the programmability and execution performance of
agents in MASS Java, addressing limitations to practicalize agent-based graph computing and
database systems. One major limitation is that agents are instantiated on every graph vertex
during queries in an agent-based graph DB system, which introduces unnecessary overhead and
degrades query performance. To address it, this quarter’s work introduces a new initialization
API that allows agents to be deployed exactly on graph vertices that meet their initial queries.

Besides, because the MASS Java library lacked reduction support, developers had to gather all
Agents or Places on the main node and perform the computation manually, such as finding the
maximum value. This approach introduced significant communication and execution overhead
and did not take advantage of the parallel capabilities of remote nodes. To solve this problem,
this quarter’s work implements reduction methods based on lambda expressions, which can
both improve programmability by reducing boilerplate code and enhance execution
performance through parallel reduction.

ll. Design

During this quarter, the work of this thesis primarily focused on two goals: Agent initialization
control and the lambda expression based reduction. The following sections describe the design
rationale and how they help improve the execution performance of MASS Java framework.

A. Agent Initialization Control

Load Graph
Start Agent
Initialization
Pick One

GraphPlaces

Initialize Some
Agents on It

Yes

Load Graph
Start Agent
Initialization
Pick One

GraphPlaces

Initialize Some
Agents on It

®

(a) Original Agent Initialization Logic (b) Ideal Agent Initialization Logic

Figure 1. Agent Initialization Control Diagram

As shown in Figure 1, when Agents are initialized, the MASS Java Library populates them on the
vertices of the graph (known as GraphPlaces). In the original implementation, each GraphPlace

2

is assigned at least one Agent, and these Agents then participate in subsequent execution and
migration. However, in certain applications like GraphDB query, not all GraphPlaces require
Agents. In such cases, introducing a conditional check for each GraphPlace allows the system to
determine whether initialization is necessary, thereby reducing both the Initialization cost and
the overhead incurred during later execution.

B. Reduction computation based on lambda expressions

MASS
Devlopers

Lambda
Expressions

Reductive
Computation

D1 Local Storage

Results Partial Results

Local Remote
/ Reduction Agent Data—] D2 Storage
Partial Results

Figure 2 Execution Result Dataflow with Lambda Expressions

As discussed earlier, the original MASS Java library required collecting all Agents or Places on the
main node to perform reductions, which introduced communication overhead and prevented
parallel computation. A better approach is shown in Figure 2. The reduction logic is expressed as
a lambda expression and distributed to remote nodes, where each node performs the
computation locally and produces a partial result. These partial results are then aggregated by
the main node to obtain the final outcome. For applications that require frequent reductions,
such as ACO-based TSP (Ant Colony Optimization based Traveling Salesman Problem), this
approach can significantly improve execution performance. This approach also enhances
programmability by allowing developers to express reduction operations with lambda
expressions rather than manually handling data collection and aggregation.

V. Implementation
A. Agent Initialization Control
1. Conditional Check in AgentBase.java

To allow application developers to control where agents are initialized, this work introduces a
conditional check in the constructor of Agents. To stay consistent with the design of the MASS
Java library and allow flexible customization, the implementation uses the existing functionld
based mechanism to invoke developer-defined functions. Based on the return value of the
function called on each Place, the system determines whether an agent should be initialized at
that location.

Listing 1 is an abstracted view of the initialization workflow, showing how the system selects the
appropriate initialization path based on the underlying Places type (lines 6-12). The full source
code could be found in Appendix.

/* Abstracted initialization logic */
AgentsBase(... , functionId, callArgument) {

// Identify the type of Places (regular places, graph places, or property graph

places)

if (currentPlaces is PropertyGraphPlaces) {
initializeForPropertyGraph(...);

} else if (currentPlaces is GraphPlaces) {
initializeForGraph(...);

} else {
initializeForRegularPlaces (...);

1

Listing 1 Agent Initialization Based on Place Types

Listing 2 shows the conditional check logic. Each Place invokes a customized method through
callMethod() using a functionld (line 5) and obtains its return value. In MASS Java, callMethod()
is the mechanism for invoking application developer-defined functions. Application developers
override this method in their customized Place class, allowing the framework to dispatch and
execute the developer-defined method based on the given functionld. Based on this return
value, Agents are populated on that Place if the result is true (lines 7-10).

/* Abstracted per-place initialization */
for each place in places {
flag = place.callMethod (functionId, callArgument)
7 if flag is true:
s create one or more agents at this place

9 else:
10 skip this place

Listing 2 Agent Initialization on Each Place

2. Agent Constructor and Communication in Agents.java

Listing 3 shows the constructor of Agents, which is directly invoked by application developers. It
calls the constructor of AgentBase and then invokes the message-sending function (lines 5-7).

/* Abstracted constructor logic */

Agents(..., functionId, callArgument) {
super(..., functionId, callArgument)
localAgents = new array[sizeDfSystem]

initializeOnMaster (functionId, callArgument)

Listing 3 Agents Constructor

Listing 4 illustrates the message synchronization process during the construction of Agents. As
MASS Java operates in a distributed environment where graph vertices are partitioned across
multiple machines, the condition used for agent initialization must also be distributed.
Therefore, the constructor constructs the initialization message, sends it to all nodes, and
synchronizes the execution (lines 6—14), ensuring that the developer-defined conditional check
is applied consistently across the entire system.

/* Abstracted master-side initialization logic */
initializeOnMaster (functionId, callArgument) {

// prepare initialization message containing functionId and callArgument
message = createInitializationMessage(..., functionId, callArgument)

// send initialization message to all remote nodes
for each remoteNode in remoteNodes {
remoteNode.send (message)

}

// synchronize with all slave nodes
barrierAllSlaves (localAgents)

// record local population and register this Agents instance
localAgents [0] = getLocalPopulation ()
registerAgentsInstance (this)

Listing 4 Message Synchronization During Agents Construction

The modifications also include changes to constructors of Agents for PropertyGraphPlaces and
Space. However, since the underlying principles are similar, they are not elaborated here, and
the source code can be found in the Appendix.

B. Reduction computation based on lambda expressions

To address previous limitations about reduction, the new implementation expresses the
reduction logic as a lambda expression. The lambda expression is then distributed to all nodes,

allowing each node to execute the reduction locally and produce a partial result. These partial
results are finally gathered and aggregated on the main node to obtain the global outcome.

1. Functional Interface Definition
The lambda expressions are implemented as two serializable functional interfaces:

e SerializableFunction serves as the mapper, transforming each local element into an
intermediate value to be aggregated later.

e SerializableBinaryOperator serves as the reducer, combining two intermediate values
into one so that partial results from different nodes can be merged into a final result.

2. Reduction Method for Main Node in AgentBase.java

Listing 5 shows how the main node initiates a reduction operation. It first receives the

customized lambda expression from the application (line 3), then distributes the corresponding
message to all nodes (lines 6-9). Next, it triggers the local reduction on the local machine (lines
12-18). Finally, it collects all partial results from the nodes and aggregates them (lines 23 to 30).

/* Abstracted reduce workflow */
reduce (mapper, reducer) {

// distribute reduction request to remote nodes

for each remoteNode in remoteNodes {
message = createReduceMessage (..., mapper, reducer);
remoteNode . send (message)

}

// collect partial results from all nodes
partialResults = new arrayl[sizeOfSystem]
partialResults [0] = localReduce (mapper, reducer)

for each remoteNode in remoteNodes {
response = remoteNode.getMessage ()
partialResults [remoteNode.pid] = response

1

// merge partial results using the reducer
result = null

for each partial in partialResults {
if result is null:

result = partial
else if partial is not null:
result = reducer.apply(result, partial)

return result

Listing 5 Reduce Logic on Main Node

[EI

BN N N
R

3. Reduction Methods for Every Node in AgentBase.java

Listing 6 illustrates the local reduction process within a single node using multiple threads.
Shared variables and thread local storage are first initialized (lines 5-6). All worker threads are
then resumed in reduction mode, and the main thread also participates in the computation
(lines 8-9). After thread synchronization (line 10), partial results are aggregated using the
reducer function to produce the final result (lines 14-19), which is returned to the caller (line
21).

/* Abstracted node-level reduction logic */
localReduce (mapper, reducer) {

initializeSharedVariablesForThreads (mapper, reducer)
setThreadPartialReturns(new array[threadNum])

MThread.resumeThreads (reduceMode)
localReduce (mapper, reducer, mainThreadId)
MThread.waitForAllThreads ()

result = null

for each partial in threadPartialResults {
if result is null:

result = partial
else if partial is not null:
result = reducer.apply(result, partial)

}

return result

Listing 6 Reduce Logic on Every Node

Listing 7 illustrates the abstracted thread-level reduction logic executed by each worker thread.
Each thread initializes its local state and iteratively processes Agents from the shared queue
(lines 5-11). Then, the mapper function is applied to each Agent and valid results are combined
using the reducer function (lines 13-20). After all assigned Agents are processed, the thread’s
partial result is stored in the shared array (line 23), which will be aggregated later on the main
thread.

L R I CON R CIN I

/* Abstracted thread-level reduction logic */
localReduce (mapper, reducer, tid) {

MThread. initAgentQueue (tid)
result = null

while true {
agent = MThread.pullNextAgent ();
if agent is null:
break

value = mapper.apply(agent)
if value is null:

continue

if result is null:

result = value
else:
result = reducer.apply(result, value)
}
threadPartialResults[tid] = result

synchronizeThreads (tid)

Listing 7 Reduce Logic on Every Thread
4. Examples and Simplified Reduction Methods

This work also added several higher level utility methods to simplify common reduction tasks.
While the core interface requires developers to provide both a mapper and a reducer lambda
expression, some frequent operations like counting can be expressed more concisely. These
utility methods serve both as conveniences and as examples for application developers.

e collectBest selects the best Agent according to a developer defined binary operator,
which determines how two candidates are compared during reduction.

o collectTopK retrieves the top K Agents according to a developer provided comparison
operator, returning a ranked subset of Agents.

e count performs a distributed counting operation by aggregating the number of Agents
across all nodes.

The modifications also include reduction methods for Place-level classes. However, since the
underlying principles are similar, they are not elaborated here, and the source code can be
found in the Appendix.

V. Expected Results and Evaluation Plan

Due to time constraints, this quarter’s work does not include an evaluation of the impact on
execution performance. Based on preliminary expectations, the lambda expression based

reduction is likely to provide substantial performance improvements, especially for applications
that require frequent reductions such as ACO based TSP. The benefit of initialization control
depends on the specific application scenario. It may also provide noticeable performance
improvements if it can be leveraged by queries in GraphDB.

As shown in Table 1, the evaluation of the work presented in this thesis will be carried out
during the Winter and Spring quarters, with the features developed during the independent
study also included as part of the comprehensive assessment. The evaluation includes
benchmarking and programmability comparisons between the improved and original versions
of the MASS Java library, as well as comparisons against other mainstream libraries.

Table 1 Future Evaluation Plan

Quarter Weeks Evaluation Plan Notes

Winter 2026 | Week 7-9 | Benchmarking and analysing the Benchmark result report
programmability improvements using
existing datasets and applications.

Spring 2026 | Week 1-2 | Find mainstream libraries to compare
with and appropriate program

Spring 2026 | Week 3-4 | Compare performance with current MASS
Java and mainstream libraries.

Spring 2026 | Week 5-6 | Finish performance comparison. Comparison report

VI. Conclusions

This quarter’s work introduces a more flexible and customizable mechanism for Agent
initialization control. By allowing developers to specify initialization conditions through
customized functions, the system can avoid unnecessary agent creation and reduce both
initialization and subsequent execution overhead. In addition, this work extends the MASS Java
library with support for lambda expression based reduction, which can significantly improve the
efficiency of reduction operations.

Despite these improvements, the current work has certain limitations like the lack of
comprehensive benchmarking. Further evaluation will be applied in the next phase to fully
assess the performance impact of these enhancements. The evaluation will also include the
features implemented during the independent study, such as the multi threaded execution of
Agents, the Hazelcast inspired graph partitioning, and the lambda expression based callAll
functions.

References

[1] Yuan Ma, Michelle Dea, Lillian Cao, and Munehiro Fukuda, "Toward Implementing an
Agent-based Distributed Graph Database System", The 4th Workshop on Knowledge Graphs and
Big Data In conjunction with the IEEE Big Data 2024, pages 3456-3465, December 15-18, 2024

[2] S. Hotchandani, “Agent-based Link Prediction in Graph Database,” 2025. Accessed: Jul. 17,
2025. [Online]. Available:
https://depts.washington.edu/dslab/MASS/reports/SumitHotchandani_wi25.pdf

[3] J. Gilroy, S. Paronyan, J. Acoltzi, and M. Fukuda, “Agent-Navigable Dynamic Graph
Construction and Visualization over Distributed Memory,” in Proc. of the IEEE International
Conference on Big Data (Big Data), Atlanta, GA, USA, 2020, pp. 2957-2966.

[4] V. Mohan, A. Potturi, and M. Fukuda, “Automated Agent Migration over Distributed Data
Structures,” in Proc. of the 15th International Conference on Agents and Artificial Intelligence
(ICAART), Lisbon, Portugal, 2023, pp. 363-371.

[5] A. Ahire, “MASS JAVA LIBRARY TOWARDS ITS USE FOR A GRAPH DATABASE SYSTEM,” Mar.
2025. [Online]. Available:
https://depts.washington.edu/dslab/MASS/reports/AtulAhire_wi25.pdf

10

Appendix
Complete source code of this implementation can be found in the branch:
mass_library_developers/mass_java_core/fuchacha/agent-initialization

mass_library_developers/mass_java_core/fuchacha/lambda

11

	I.​Introduction
	II.​Motivation
	III.​Design
	A.​Agent Initialization Control
	B.​Reduction computation based on lambda expressions

	IV.​Implementation
	A.​Agent Initialization Control
	1.​Conditional Check in AgentBase.java
	2.​Agent Constructor and Communication in Agents.java

	B.​Reduction computation based on lambda expressions
	1.​Functional Interface Definition
	2.​Reduction Method for Main Node in AgentBase.java
	3.​Reduction Methods for Every Node in AgentBase.java
	4.​Examples and Simplified Reduction Methods

	V.​Expected Results and Evaluation Plan
	
	VI.​Conclusions
	References
	Appendix

