
The University of Washington Bothell
CSS-700: Masters Thesis - Term Report

Parallelization of Agent-based Models over
Multi-GPUs

Brian Luger
Professor: Dr. Munehiro Fukuda

16 March 2023

Introduction

The purpose of this paper is to provide a summary of the progress made towards my thesis
work during Winter quarter, 2023. The work consisted of finishing the multi-GPU agents
implementation and porting SugarScape over to using the new multi-GPU library. In ad-
dition to this, some progress was made towards completing my thesis paper and time was
devoted towards fixing bugs and supporting the single-GPU version of the MASS CUDA
framework.

Background

My thesis work involves scaling the MASS CUDA Agent-based Modeling (ABM) framework
from a single GPU to multiple GPUs. The impetus of this work is to enable the execution
of larger, more computationally bound, simulations by way of distributing memory and
compute across multiple GPU devices. Memory is distributed by partitioning simulation
state across the multiple GPU devices. This increases our spatial performance and allows
a greater amount of memory to be made available to a simulation. Compute is distributed
by breaking work down into task functions that are then allocated to each GPU device
for execution. This increases temporal performance by increasing the number of streaming
multi-processors available to a simulation.

To assist in analyzing the impact of this work, the SugarScape and BrainGrid ABM
applications were selected to measure improvements in the spatial and temporal performance
of the multi-GPU library.

Spatial performance will be measured by sampling the memory usage of each application
with increasingly larger simulation spaces. Similarly, for temporal performance, we will

1

measure the execution time of each application. With the exception of simulation size,
all other configurable parameters of the applications will be kept constant. This enables
consistent results across multiple runs. Additionally, to ensure deterministic results, both
BrainGrid and SugarScape have been refactored to support deterministic execution. This
was done by means of a configurable seed value, used to initialize the random number
generator, that can be passed into the application via a command line option.

Data from both single and multi-GPU versions of the framework will be collected and
used to understand the impact of the changes. To help ensure correctness of the benchmark
applications, the SimViz GUI will be used to visualize execution results and confirm correct
simulation behavior.

SugarScape

SugarScape is a simulation wherein agents are used to model ants attempting to locate
and consume sugar that is placed in two distinct mounds within a 2-dimensional simulation
space. Each sugar mound contains a single element of sugar on the low end, and grows to 4
elements of sugar towards the peak of the mound. Ants are initialized randomly across the
simulation space and by default, make up a fifth of the area.

As soon as an ant is initialized it begins to look for sugar. Up to three cells in the north,
east, south, and west direction are visible to the ant. Each tick of the simulation, the ant
will evaluate all visible cells and move toward the cell that contains the most sugar. The ant
will randomly choose among the favored cells if there are multiple favorites. If no favored
cell is identified, or there is simply no sugar near the ant, it will move in a random direction,
hoping to locate some. If an ant cannot find sugar within three simulation steps, it ”dies”
and the agent is deleted.

When sugar is consumed, waste is left behind by the ant. The total amount of waste,
and its impact on the ant, are calculated as an average of the total waste in all immediate
neighboring cells. If the waste exceeds a configured threshold, it has the potential to kill off
residing ants.

The output of the simulation shows how ants migrate towards areas with higher amounts
of sugar. This can be seen in Figure 1 below wherein red dots represent ants and darker
shades of yellow indicate more sugar. It can be observed that the majority of ants make
their way to the center of the mounds where the most sugar can be found, with fewer and
fewer ants at the lower levels.

2

Figure 1: SugarScape simulation output.

BrainGrid

BrainGrid simulates a self-organizing neural network wherein neurons connect through
synaptic terminals in axons and dendrites, sending and receiving signals between them.
The simulation is initialized with a configured percentage of excitatory, inhibitory, and neu-
tral neurons across a 2-dimensional simulation space. Once initialized, each neuron creates
one axon and seven dendrites, each of which grow outwards from the soma in an attempt
to locate neighboring neurons. Axons are used to send signals from neurons and dendrites
are used to receive them. Only excitatory neurons can create signals, however all neurons
can receive and forward them.

Each step of the simulation, an excitatory neuron has a chance to generate a signal. If
one is created, it is initialized to a strength of 1.0 and forwarded down the neurons axon.
The signal will continue down an axon until it encounters a synaptic terminal, at which
point it fans out to all branches. If a neighboring dendrite is encountered, it continues to
follow it until it reaches the associated neuron soma.

Different categories of neurons modulate signals in different ways. Excitatory neurons,
upon receiving a signal, will amplify it by a pre-configured percentage before propagating
it down its axon. Inhibitory neurons will reduce the signal strength by a pre-configured
percentage, and neutral neurons will not modulate the signal strength at all.

The output of the simulation is an artificial neural network wherein neurons are con-
nected through their axons and dendrites. Signals are propagated across the network, initi-
ated by excitatory neurons. A visual representation of this can be seen in Figure 2 below.
Here the neuron somas are colored a dark, navy blue. Excitatory neurons are purple. In-
hibitory neurons are dark gray. Neutral neurons are blue, and signals are green. Axons are
shaded slightly darker than dendrites, and signal strength impacts the shade of green used
to color them. Inhibited signals being a brighter shade, while excited signals being slightly
darker.

3

Figure 2: BrainGrid simulation output.

SimViz GUI

SimViz stands for Simulation Visualization and it is a basic GUI tool that makes use of
OpenGL[1], GLAD[2], and GLFW[3] to help visualize the output of a simulation. Prior to
its creation, visualization of simulations in the CUDA library were relegated to outputting
large matrices into logs and attempting to discern correctness from them. I believe this may
have led to oversights in simulations such as SugarScape where, prior to being refactored,
had ants moving only in the east direction.

SimViz is comprised of a GUI and a basic C++ support library. The support library
can be integrated into simulation logic to output simulation steps to a ‘viz‘ file on the local
file-system. These files can then be read and stepped through by the GUI application to
visualize steps of the simulation. Each step represents a snapshot of the simulation space
at a configured output interval.

The GUI application supports the ability for the user to pause the simulation and step
through it frame by frame to help glean a deeper understanding of how agent and place
objects are behaving. Additionally, simulation space is mapped to a 2-dimensional texture,
which is then rendered to the window object. This allows it to render simulations of all sizes
without impacting the window size. While not currently supported, it should also make it
easier to support zooming in on specific areas of the simulation space, in future iterations
of the GUI. Figures 1 and 2 above are both snapshots of the GUI application. GIFs created
from real-time playback of simulations can be found in the Heat2D[4], SugarScape[5], and
BrainGrid[6] application README files.

The support library makes it easy for developers to integrate it with their simulation
logic. It does this by handling the creation of the simulation file and populating it with
necessary header data. The only user requirement is that they output RGB information for
each cell of the 2-dimensional simulation space. The SimViz app currently only supports
2-dimensions, however support for 3-dimensions may be added in the future should there
become a need. Below is a code snippet from the SugarScape application that shows how

4

a SimViz file is created, and how RGB colors are defined and subsequently used to output
simulation steps.

1 . . .
2 // Excerpt from SugarScapes main func t i on
3 // Create v i z f i l e i f i n t e r v a l i s non−zero .
4 s imviz : : RGBFile v i z F i l e (s i z e , s i z e) ;
5 i f (i n t e r v a l > 0) {
6 v i z F i l e . open (vm[” o u t f i l e ”] . as<std : : s t r i ng >() . c s t r ()) ;
7 }
8
9 . . .

1 . . .
2 // Excerpt from SugarScapes d i sp laySugar func t i on .
3 unsigned char ∗ p laceCo lor = new unsigned char [3]{192 , 192 , 192} ;
4 unsigned char ∗ sugarColor1 = new unsigned char [3]{255 , 255 , 153} ;
5 unsigned char ∗ sugarColor2 = new unsigned char [3]{255 , 255 , 102} ;
6 unsigned char ∗ sugarColor3 = new unsigned char [3]{204 , 204 , 0} ;
7 unsigned char ∗ agentColor = new unsigned char [3]{192 , 0 , 0} ;
8
9 . . .

10
11 i f (n agents > 0) {
12 v i z F i l e . wr i t e ((char ∗) agentColor , s imviz : : NumRGBBytes) ;
13 } e l s e i f (curSugar > 2) {
14 v i z F i l e . wr i t e ((char ∗) sugarColor3 , s imviz : : NumRGBBytes) ;
15 }
16
17 . . .

Multi-GPU Agents

Unlike Places, which represent static state, Agents are dynamic in that they can actively
move around a simulation space. This poses a few challenges unique to them that are not
present in the multi-GPU implementation of places.

The first challenge is to co-locate the agent with the same device as the place on which
it resides. We want to do this to minimize communication between devices. If an agent
resides on a place that lives on device 0, then that agent should also live in the memory of
device 0. Because agents can move around the simulation space, it’s possible for all of them
to reside on places that live on a single device. In order to account for this, enough memory
is allocated on each device to provide space for all available agents. See Figure 3 below.

5

Figure 3: Multi-GPU Agent Construction.

A resident boolean is stored on each agent to determine whether or not it is resident
on a device. This allows callAll functions to target only agents that resident on the device
in which the callAll method is being executed.

1 // Agent s t r u c t
2 template <typename T, typename P>
3 s t r u c t AgentV2 {
4 s i z e t index ;
5 bool i sA l i v e ;
6 −−> bool r e s i d en t ;
7
8 PlaceV2<P>∗ p lace ;
9 s i z e t des tP lace Idx ;

10 . . .
11 } ;
12
13 // c a l l A l l Kernel
14 template <typename A, typename T, c l a s s F>
15 g l o b a l void ca l lA l lAgent sKerne l (mass : : AgentV2<A, T>∗ agents , s i z e t numAgents , F func) {
16 s i z e t idx = mass : : getGlobalIdx 1D 1D () ;
17 i f (idx >= numAgents) { re turn ; }
18 −−> i f (! agents [idx] . r e s i d en t) { re turn ; }
19 i f (! agents [idx] . i sA l i v e) { re turn ; }
20
21 func(&agents [idx]) ;
22 }

When an agent migrates from a place on one device to a place on another, a kernel is
invoked that updates the device location of all agents. It does this by looking at the index
of the place in which it resides and determining, based on that index, which device it should
be on. It then sets the resident flag appropriately. This approach enables the ability to
do this with a single kernel function executed in a parallel manner across all agents on both
devices.

0.1 Agent Termination

Agents have the concept of life in that they can be alive, meaning they are active, can
migrate, spawn other agents, and callAll functions can be invoked to manipulate their state.

6

They can also be dead which means they are inactive, cannot migrate, cannot spawn or be
processed by callAll functions, and their state can be overwritten by newly spawned agents.
Terminating an agent effectively means settings its state such that it is dead, or inactive.

This is done via a terminateAgent function that can be invoked and provided with the
agent in which the caller wishes to terminate. When this is done, the provided agent is
marked for termination by setting its isAlive field to false.

1 // Agent s t r u c t
2 template <typename T, typename P>
3 s t r u c t AgentV2 {
4 s i z e t index ;
5 −−> bool i sA l i v e ;
6 bool r e s i d en t ;
7 . . .
8 } ;

This maintains the terminated agents state so that any parallel processing happening
at the time of termination can continue without error. While preventing all subsequent
processing for that agent from occurring as no further callAll functions will be executed
over it.

0.2 Agent Spawning

Agent spawning is one of the more complex actions an agent can perform. This is because
spawning can happen in parallel and there is a finite, static, amount of space allocated for
agents to live in. To add to this, places need to be updated with references to the agents
that reside on them. This introduces the potential for more agents to be spawned than
there is memory for, as well as for race conditions to occur when updating pointers to these
agents from within the place in which they are residing.

There are a couple of things done to mitigate these issue. The first is that spawn

invocations do not create new agents within the callAll functions in which they are invoked.
Instead, when spawn is invoked, an atomic counter, kept in global memory, is incremented.
This counter tracks the number of alive agents. If its value, after being incremented, is
below the max number of agents, then there is guaranteed to be available space for the new
agent.

Once the callAll in which the spawn function was invoked returns, a separate kernel is
executed to create the agent state for the newly spawned agents. Because there is a one to
one relationship between threads and agents, race conditions are not a concern during agent
construction. However, places also maintain pointers to the agents that reside on them.
Because more than one agent can reside on a place at a given time, the function logic that
updates the place must be thread-safe.

To facilitate concurrent updates to a places agents array, an atomic compare-and-swap
(CAS) function is used. When we want to add an agent to the array, an addAgent function
is invoked that enumerates it, looking for an available space. When it encounters one, as
indicated by a null pointer value, it attempts to claim that space for the agent, using an
atomicCAS, as shown in the excerpt below. Because this is an isolated function call, no
instructions from other threads can be interleaved between it. Meaning that if a thread
successfully updates the pointer value, then we can conclude that no other thread will be
able to. Thus, no race conflicts can occur.

7

1 . . .
2 unsigned long long i n t nu l l = 0 ;
3 agentAddr = atomicCAS(
4 (unsigned long long i n t ∗)&agents [i] ,
5 nu l l ,
6 (unsigned long long i n t) newAgent
7) ;
8
9 // I f the address o f the array index matches our

10 // newAgent address , then i t was s u c c e s s f u l .
11 i f ((unsigned long long i n t) newAgent ==
12 (unsigned long long i n t) agents [i]) {
13 added = true ;
14 }
15 . . .

Future Work

Over the course of Winter quarter, two more benchmark applications have been created
by Christopher Sumali. These are intended to assist with measuring the performance of
dynamic agents in scenarios where more than one agent can reside on a place. Christopher
implemented them using the single-GPU version of the MASS CUDA library. As such, they
will need to be ported to the multi-GPU version. Additionally, I will need to complete the
remainder of my thesis paper and give my final defense.

8

References

[1] “OpenGL - The Industry Standard for High Performance Graphics.” [Online]. Available:
https://www.opengl.org/

[2] “GLAD: Multi-Language Vulkan/GL/GLES/EGL/GLX/WGL Loader-Generator based
on the official specs.” [Online]. Available: https://github.com/Dav1dde/glad

[3] “An OpenGL library | GLFW.” [Online]. Available: https://www.glfw.org/

[4] “Heat2D README.” [Online]. Available: https://bitbucket.org/mass library
developers/mass cuda core/src/develop/applications/heat2d/README.md

[5] “SugarScape README.” [Online]. Available: https://bitbucket.org/mass library
developers/mass cuda core/src/develop/applications/sugarscape/README.md

[6] “BrainGrid README.” [Online]. Available: https://bitbucket.org/mass library
developers/mass cuda core/src/develop/applications/braingrid/README.md

9

https://www.opengl.org/
https://github.com/Dav1dde/glad
https://www.glfw.org/
https://bitbucket.org/mass_library_developers/mass_cuda_core/src/develop/applications/heat2d/README.md
https://bitbucket.org/mass_library_developers/mass_cuda_core/src/develop/applications/heat2d/README.md
https://bitbucket.org/mass_library_developers/mass_cuda_core/src/develop/applications/sugarscape/README.md
https://bitbucket.org/mass_library_developers/mass_cuda_core/src/develop/applications/sugarscape/README.md
https://bitbucket.org/mass_library_developers/mass_cuda_core/src/develop/applications/braingrid/README.md
https://bitbucket.org/mass_library_developers/mass_cuda_core/src/develop/applications/braingrid/README.md

	Agent Termination
	Agent Spawning

