
A Survey, Model Design, and Benchmark 
Test Implementation of Agent-Based 
Applications 
By Caleb Yang 

Mentor Professor Munehiro Fukuda 

Introduction 
The survey of simulation applications in the fields of biology, business/industry, and 

economics/social sciences that rely on agent-based modeling has previously identified key 

characteristics in the agent-based model. These key characteristics include agent types, agent 

micro-behaviors, modes of communication, and finally simulation topologies. Previously, one 

sequential benchmark test was implemented, Brain Grid. This past quarter the following 

sequential benchmark test have been implemented; financial modeling, social network 

modeling, and MatSim. The Tuberculosis model’s sequential benchmark test is close to 

completion. 

Application Model Overview 
In the survey/literature review two family of model classes; static and dynamic agent 

applications. Static agent applications indicate that the modeled entities stay in place after 

initialization, whereas dynamic agent applications do have the modeled entities move about its 

environment after initialization. It was later determined that the clustered agents model can be 

classified differently when changing the dynamics, such as when the entities (i.e., banks and 

firms) become environmental elements and messages become the agents in their stead. 

Static Agent Applications  
Brain Grid <Neural Networks>:  

  
Figure 1: Neural Network Active Neuron Growth 

Original Application Summary: 
Brain Grid is an application that models the 
functionality and growth of neural synapses. 
The simulation environment is comprised of 
three types of neurons: active, inhibitory, and 
neutral. Active neurons initiate the growth in 
Moore's neighborhoods, whereas neutral 
neurons perpetuate it and inhibitory 
neutralizes it. 
 



Financial Modeling <Clustered Agents>:   

 
Figure 2: Clustered Agent Multicast Event 

Original Application Summary: 
The original application models three 
financial relief solutions: liquidated by a 
purchase & assumption, bail-out, bail-in. 
Thus, to model it there are three agents: 
banks, firms, households. There are seven 
phases used to model financial relief 
including loan request, raise liquidity, and 
dividend payout. 
 
This model was used to better understand 
the effectiveness of a bail-in solution to the 
alternative purchase and assumption and 
especially a bail-out. 

Social Network Modeling 
<Network of Static Agents>:  

 

 
Figure 3: Communication of 1st-degree 

Original Application Summary: 
The original application models social 
networks for further analysis. The modeled 
network initially needs to match the 
extrapolated data representative of a given 
social network. To do this messaging rules 
were established to emulate the 
environment in the source network. Then the 
model is given several combinations of 
network characteristics to establish accurate 
modeling. 
 
This model was used to better understand 
developing social networks such as online 
forums and gaming clans. 



Game of Life <Cellular Automata>:   

 
Figure 4: Illustrates a simple propagation 

Original Application Summary: 
The (Conway’s) Game of Life illustrates the 
propagation and death of cells in its 
environment. 
 
There are no longer studies being done on 
this model, because it has been exhausted of 
mathematical significance. 

Dynamic Agent Applications  
Tuberculosis:  

 
Figure 5: T-Cell response to infected macrophage 

Original Application Summary: 
The original application models the biological 
response from the inflammatory system to a 
Tuberculosis infection.  
 
The model like most models made for 
biological simulations allowed researchers 
additional control and reduced  

Virtual Design Team:   

 
Figure 6: Illustrates VDT’s architecture  

Original Application Summary:  
Virtual Design Team modeling evolved into a 
system where dynamic work could be done 
(i.e., surgical procedures). The basics 
included a generalization of employee 
hierarchy and a process graph as scene in the 
image to the left. 
 
This model was developed for industrial and 
research usage, to identify procedural and 
personal bottlenecks and other efficiencies. 



MatSim:   

 
Figure 7: Illustrates converging roads 

Original Application Summary: 
MatSim is a competitor modeling framework 
that specializes in modeling traffic. 
 
This framework has been used to understand 
traffic better in relation to events such as 
construction and new environmental 
elements. Though it still needs to 
encapsulate emergency states such as a car 
crash. 

 

Model Design 

Brain Grid <Neural Networks> 

Brief Discussion of Implementation 
The neural networks model will require two classes to be made, the grid and the neuron. As 

stated earlier the neuron will need to come in three types: active, inhibitory, and neutral. Thus, 

the neuron class should support an enum for the types ACTIVE, INHIBITORY (INACTIVE for 

brevity), and NEUTRAL. The complete environment will be represented by the grid, who is 

responsible for enforcing the toroid space, and safety of the synapse growth.  

The synapse growth is limited by three conditions: INHIBITORY neurons, point-to-point 

synapses. and non-redundant synapses. With these condition the neuron class will need to 

support an enum for stages: VISIT1, VISIT2, ENACTED, CONNECTED, STOPPED, INDEF. The 

normal growth pattern utilizes the first three enums where VISIT1 and VISIT2 are used to 

denote alternating growth periods, and ENACTED denotes a grown neuron. The next two 

enums are used to denote "completed" synapses (i.e. synapses that will not be intercepted). 

Lastly INDEF will be used to denote the default state of non-active neurons because the growth 

simulation starts from the active neurons. 

Code Snippet 
Before a Neuron can grow it must ensure that it is a possible to do so. In the Brain Grid model, 

there are multiple things that can stop a synapse’s growth. For the method that does, it 

assumes that the connections between ACTIVEs are already handled, and like noted earlier a 

destination Neuron that is INACTIVE will stop it. Additionally, a destination Neuron that is 

completed will stop it. More complexly, redundant synapses cannot exist. To account for 

redundant synapses the unconfirmed synapse must first be used to identify the ACTIVE Neuron 

at the other end. At that point the neighbor of this ACTIVE Neuron will be searched through a 

similar traversal to confirm or reject the “new” synapse. 



 



 

 

Financial Modeling <Clustered Agents> 

Brief Discussion of Implementation 
The clustered agents model will require two classes (agent, and cluster) and a driver. The 

reason why the model requires the model is because the simulations phases must be 

synchronized and centralized.  On the other hand, the cluster is made to be generic enough to 

pass one-to-one and multicast messages, such as being responsible for out and in buffers that 

notify agents and update messages. Lastly agents need to have an API such that they can model 

data updates, data transfers, and connection transactions. 



Code Snippet 
To accommodate communication between agents each need know what are the simulation 

phases. To initiate the simulation each agent must keep the phase consistent, and through the 

messages sent during those phases.  

 

 



Social Network Modeling <Network of Static Agents> 

Brief Discussion of Implementation 
The model will require two entities; a graph and agent. Since the topology of the environment 

is a bidirectional graph, storing the connection between nodes will be done in a triangular 

adjacency matrix to cut down on half the memory. Additionally, note that in a social network on 

a preexisting system like Facebook will require that "friends" (first-degree neighbor) not be 

limited, therefore a node can have 0 "friends" to even 500 "friends". The original application 

required statics to be kept throughout the simulation to gauge the communication of the 

network, including a network's tendency to communicate with nodes outside of its immediate 

network. Therefore, after constructing the adjacency matrix, each node must also know what 

nodes are n-degree neighbors for future usage since a node can communicate with any other 

node without traversing the graph. For each node to know each degree of neighbor, the 

initialization phase must include a modified breadth-first search algorithm to be run on all 

nodes. 

Code Snippet 
The modified breadth-first search algorithm determines the nth-degree of neighbor for a node 

by utilizing two queues. The elements within the process queue is representative of the same 

degree. Additionally, the next queue are the corresponding elements, to the elements within 

the process queue. The process queue removes an element when it places that element’s 

neighbors into the next queue. Once the process queue is emptied, it is swapped with the next 

queue. 

 



 

MatSim 

Brief Discussion of Implementation 
The model will require three entities; graph (junction information), agent (car), place (road). 

Unlike the topology for social network modeling, MatSim represents roads which includes one-

way roads. Therefore, each portion of the road will be represented by a one-way road and a 

value in a adjacency matrix will represent the junction between roads. To simply model the 

motion of traffic, each agent (car) will have a predetermined path that is calculated via 

Dijkstra's Algorithm and stored within each agent.  



Code Snippet 
Instead of having an agent (car) class, the test maintains a list of paths, where paths are 

representative of a route. Any road holding a car, is holding an id of agents for a graph 

maintained structure mentioned earlier that holds all car paths. The simulation starts out with 

each road and attempt to move every car based off the stored paths. If the car can move to the 

next road is pops off a road id from its path. To visualize; “- “symbolizes completion of a car’s 

route, “*” symbolizes a moving car, and “$” symbolizes a stopped car. Because of the 

sequential nature one car can move faster than intended if the following road ids are greater 

than the one it currently sit upon. 

 



 

Tuberculosis 

Brief Discussion of Implementation 
The model will require another toroidal graph environment with generic agents. The reason 

why generic agents were chosen is because they simplify the simulation greatly. Instead of 

having T-Cells and Macrophage, there are inactive/active and infected/noninfected flags. 

Because there are several place elements and flags within the system, the dispersal method 

was made generic to accommodate bacterial growth, chemical diffusion, and bacterial 

elimination.   



References 
Bryan C. Thorne, Alexander M. Bailey, “Multi-cell Agent-based Simulation of the Microvasculature to 

Study the Dynamics of Circulating Inflammatory Cell Trafficking, Annals of Biomedical Engineering, 

2007 

Bryan C. Thorne, Alexander M. Bailey, Shayn M. Peirce, "Applying Agent-Based Modeling to Studying 

Emergent Behaviors of the Immune System Cells", Briefings in Bioinformatics Vol 8 (No. 4) 245-257, 

2007 

Caroline C. Krejci, Benita M. Bearmon, “Modeling Food Supply Chains Using Multi-Agent Simulation”, 

Winter Simulation Conference, 2012 

Chee Siang Ang, Panayiotis Zaphiris, “Simulating Social Networks of Online Communities: Simulation as a 

Method for Social Design”, Human-Computer Interaction, 2009 

Eric Bonabeau, "Agent-based modeling: Methods and techniques for simulating human systems", PNAS, 

2002 

Fukuda, M., Stiber, M., Salathe, E., & Kim, W., “CDS&E: Small: Multi-Agent-Based Parallelization of 

Scientific Data Analysis and Simulation.”, 2013 

Herbert Gintis, "Long-range Research Priorities in Economics, Finance, and the Behavioral Sciences", 

Santa Fe Institute, 2010 

Jose L. Segovia-Juarez, Suman Ganguli, “Identifying control mechanisms of granuloma formation during 

M. tuberculosis infection using an agent-based model”, Journal of Theoretical Biology, 2004 

Kent D.Miller, “Agent-Based Modeling and Organization Studies: A critical realist perspective”, 

Organization Studies, 2015 

Luis F.O. Jacintho, Andre F.M. Batista,Terry L. Ruas, Maria G.B. Marietto, Fabio A. Silva, “An Agent-Based 

Model for the Spread of the Dengue Fever: A Swarm Platform Simulation Approach”, Spring 

Simulation Multiconference, 2010 

M.-H. Chang, J.E. Harrington Jr, "Chapter 26: Agent-Based Models of Organizations", Handbook of 

Computational Economics, 2006 

MASS C++, Parallel-Computing Library for Multi-Agent Spatial Simulation in C++, February 24th, 2015,  < 

http://depts.washington.edu/dslab/MASS/docs/MassCpp.pdf > 

Olivier Kooy, "Understanding the causal relations in organizational structures of project teams", System 

Engineering, Policy Analysis and Management, TU Delft, Master Thesis, 2012 

Rebuilding the MOSAIC, Fostering research in the social, behavioral, and economic science at the 

national science foundation in the next decade, 2011 

Thomsen, Jan, Raymond E. Levitt, John C. Kunz, Clifford I. Nass, Douglas B. Fridsma, “A Trajectory for 

Validating Computational Emulation Models of Organizations” Journal of Computational & 

Mathematical Organization Theory, 1999 


