

© Copyright 2022

Yutian Cui (Caroline Tsui)

Agent-based Graph Applications in MASS Java and Comparison with Spark

Yutian Cui (Caroline Tsui)

A dissertation

submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Computer Science & Software Engineering

University of Washington

2022

Reading Committee:

Prof. Munehiro Fukuda, Chair

Prof. Robert Dimpsey, Member

Prof. Hazeline Asuncion, Member

Program Authorized to Offer Degree:

Computer Science & Software Engineering

University of Washington

Abstract

Agent-based Graph Applications in MASS Java and Comparison with Spark

Yutian Cui (Caroline Tsui)

Chair of the Supervisory Committee:

Prof. Munehiro Fukuda

Computing & Software Systems

Graph theory is constantly evolving as it is applied to mathematics, science, and technology, and

it has active applications in communication networks, computer science, and geographic

information system. Research on the implementation and optimization of graph theory is of great

significance to various fields. However, due to the increasing size of databases today, the volume

of datasets in industry has reached the level of petabytes (1,024 terabytes) and even exabytes

(1,024 petabytes), which can generate graphs contains millions of vertices and edges. Analyzing

and processing massive graphs has become a principal task in numerous fields. It is very

challenging to process and compute rapidly growing, huge datasets in a reasonable amount of time

with limited computing and memory resources. In order to meet the need for improved

performance, some solutions, parallel computing frameworks, have emerged in the industry one

after another. Nevertheless, it is unclear that how these parallel framework differ in term of

performance and programmability for graph theory research or graph application development.

The goal of this project is to compare the performance and programmability of two parallel

libraries, MASS Java developed by the DSLab at the University of Washington Bothell, and Spark

developed by the AMPLab at the University of California Berkeley, for graph programming. In

order to balance performance and programmability, we used MASS Java and Spark Java to design

and develop Graph Bridge, Minimum Spanning Tree, and Strongly Connected Components

respectively, for a total of six graph applications. After more than three times testing each

application and comparing their performance, the execution results show that: 1) For the Graph

Bridge application, when running small datasets, the MASS Java version performs better when

tested with one and two computing nodes. When using more than four computing nodes, the

performance of the MASS Java version drops precipitously, and the performance of the Spark

version is slightly better than MASS. When running large datasets, the execution performance of

the MASS Java version is significantly improved with the increase of computing nodes, while the

Spark version cannot complete all tests due to high memory overhead; 2) For the Minimum

Spanning Tree application, the execution time of the MASS Java version and the Spark version

increases with the number of computing nodes. The execution time of the MASS version increases

significantly, while that of the Spark version increases slightly. 3) For the Strongly Connected

Components application, the MASS Java version consistently performs better than the Spark

version. After calculating Lines of Code, Boilerplate Code Ratio, and Cyclomatic Count per

application, and measuring and evaluating the programmability, the conclusions show that: the

programmability of the MASS Java version has generally better than the Spark version. Different

from the Spark version, MASS Java supports communication between vertices, which greatly

increases the flexibility of algorithm implementation and reduces the complexity of code. In

addition, from the perspective of development engineers or users, MASS Java is more intuitive in

implementation and more suitable for developing graph applications.

 i

TABLE OF CONTENTS

List of Figures .. iv

List of Tables .. v

Listings ... vi

Chapter 1. Introduction ... 1

1.1 Parallel Frameworks ... 1

1.1.1 MASS .. 2

1.1.2 Spark ... 2

1.2 Motivation ... 3

1.3 Project Goals ... 4

Chapter 2. Background ... 6

2.1 Parallel Libraries ... 6

2.1.1 Graph in MASS Java .. 6

2.1.2 Spark, GraphX and Pregel .. 9

2.2 Graph Applications ... 11

2.2.1 Graph Bridge ... 11

2.2.2 Minimum Spanning Tree .. 13

2.2.3 Strongly Connected Components ... 15

Chapter 3. Related Works ... 19

3.1 GraphLab .. 19

 ii

3.2 GraphMat .. 20

3.3 Summary ... 20

Chapter 4. Parallelization Graph Applications ... 21

4.1 Graph Bridge ... 21

4.1.1 MASS Java Design and Implementation .. 21

4.1.2 Spark Design and Implementation .. 24

4.2 Minimum Spanning Tree .. 26

4.2.1 MASS Java Design and Implementation .. 26

4.2.2 Spark Design and Implementation .. 28

4.3 Strongly Connected Components ... 30

4.3.1 MASS Java Design and Implementation .. 30

4.3.2 Spark Design and Implementation .. 31

Chapter 5. Parallel Performance and Programmability Evaluation .. 33

5.1 Graph Bridge ... 35

5.1.1 Performance Comparison.. 35

5.1.2 Programmability Comparison ... 36

5.2 Minimum Spanning Tree .. 38

5.2.1 Performance Comparison.. 38

5.2.2 Programmability Comparison ... 40

5.3 Strongly Connected Components ... 42

5.3.1 Performance Comparison.. 42

5.3.2 Programmability Comparison ... 43

 iii

Chapter 6. Conclusion & Future Work ... 45

Bibliography .. 47

Appendix .. 49

 iv

LIST OF FIGURES

Figure 2.1 Visual representation of a distributed graph [13] .. 8

Figure 2.2 Vertex container and distribution [13] .. 8

Figure 2.3 Spark Architecture [17] ... 9

Figure 2.4 Graph with 7 vertices and 1 bridge (highlighted in red) 12

Figure 2.5 Minimum spanning tree of a graph (highlighted in red) 14

Figure 2.6 Graph with strongly connected components (highlighted in different colors) 16

Figure 4.1 Demonstration of Graph Bridge in parallel ... 22

Figure 4.2 Demonstration of Minimum Spanning Tree in parallel 26

Figure 4.3 Demonstration of Strongly Connected Components in parallel 30

Figure 5.1 Performance Comparison of Graph Bridge using Dolphin 36

Figure 5.2 Performance Comparison of Minimum Spanning Tree 40

Figure 5.3 Performance Comparison of Strongly Connected Components 42

 v

LIST OF TABLES

Table 2.1 Relationships (containment, inheritance) between MASS Java classes 7

Table 5.1 Datasets Graph Properties ... 34

Table 5.2 Performance Comparison of Graph Bridge .. 36

Table 5.3 Lines of Code (LoC) and Boilerplate Code Ratio in Graph Bridge 37

Table 5.4 Cyclomatic Count in Graph Bridge .. 37

Table 5.5 Parallel Methods or Operators Count in Graph Bridge 38

Table 5.6 Performance Comparison of Minimum Spanning Tree 39

Table 5.7 Lines of Code (LoC) and Boilerplate Code Ratio in MST 40

Table 5.8 Cyclomatic Counts in MST .. 41

Table 5.9 Parallel Methods or Operators Count in MST .. 41

Table 5.10 Performance Comparison of Strongly Connected Components 42

Table 5.11 Lines of Code (LoC) and Boilerplate Code Ratio in SCC 43

Table 5.12 Cyclomatic Count in SCC... 43

Table 5.13 Parallel Methods or Operators Count in SCC ... 44

 vi

LISTINGS

Listing 2.1 Code snippet of Tarjan’s Graph Bridge (Sequential) 12

Listing 2.2 Code snippet of Kruskal’s Minimum Spanning Tree (Sequential) 14

Listing 2.3 Code snippet of Tarjan’s SCC (Sequential) ... 16

Listing 4.1 Code snippet of driver GB in Graph Bridge.. 23

Listing 4.2 Code snippet of gb() in Graph Bridge driver ... 23

Listing 4.3 Code snippet of Graph Bridge using Spark .. 25

Listing 4.4 Code snippet of driver MST in Minimum Spanning Tree 27

Listing 4.5 Code snippet of mst() in Minimum Spanning Tree driver 27

Listing 4.6 Code snippet of Minimum Spanning Tree using Spark 29

Listing 4.7 Code snippet of driver SCC in SCC using MASS Java 31

Listing 4.8 Code snippet of SCC using Spark .. 32

 vii

ACKNOWLEDGEMENTS

Words cannot express my gratitude to my professor and chair of my committee, Dr. Munehiro

Fukuda, for his invaluable patience and feedback. I also could not have undertaken this journey

without my defense committee members, Dr. Dimpsey and Dr. Asuncion, who generously

provided knowledge and expertise.

I am also grateful to my team members in Distributed System Lab (DSLab), especially Yan

Hong and Brian Luger, for their help, late-night feedback, and support.

Lastly, I would be remiss in not mentioning my family, especially my parents and Grayson Li.

Their belief in me has kept my spirits and motivation high during this process. I would also like to

thank my cat Dobby for all the entertainment and emotional support.

 1

Chapter 1. INTRODUCTION

In mathematics, graph theory [1] provides an abstract model of entities and their relationships in

the form of graphs. In computer science, graph is a data structure consisting of a set of vertices

and a set of edges connecting pairs of vertices. Graph is usually used to describe a specific

relationship between certain entities, with vertices representing the entity, and edges representing

the relationship between the corresponding two entities.

Many real-world situations, such as social networks, biological networks, neural

relationships, can conveniently be described by means of a graph consisting of a set of vertices

together with edges joining certain pairs of these points. For example, the vertices could represent

people, with edges joining pairs of friends; or vertices might be communication centers, with edges

representing communication links. Graph computing is to model data (anything in the objective

world and the relationship between entities) in the form of a graph, and calculate and analyze the

dataset. Therefore, the research on graph theory and graph computing has strong practical

significance.

This chapter 1) briefly introduces the two parallelization frameworks, MASS Java and Spark;

2) discusses the motivation for studying graph applications and choosing these two parallel

programming libraries; and 3) presents the goals of this capstone project.

1.1 PARALLEL FRAMEWORKS

This section briefly introduces two parallelization frameworks, MASS Java and Spark.

 2

1.1.1 MASS

Multi-Agent Spatial Simulation (hereinafter refers to as “MASS”) [2] is an agent-based parallel-

computing library for multi-agent and spatial simulation over a cluster of computing nodes. MASS

started as a research project at the of Distributed Systems Laboratory (hereinafter refers to as

“DSLab”) [3] led by Professor Munehiro Fukuda of University of Washington Bothell in 2010,

currently available in several languages, including Java [4], C++ [5], and CUDA [6]. Over the

years, many of the ideas behind the system were presented in various journals and research papers

over the years. MASS provides an intuitive programming framework for big data processing that

can simulate many real-world problems, such as bioinformatics, social networks, geographic

information system and climate analysis [7]. MASS follows the master-worker architecture,

worker nodes spawn processes, and the processes communicate with each other through TCP

connections. Places and Agents are two crucial components to the MASS library. MASS also

supports other data structures, including arrays, binary trees, quadtrees, continuous spaces, which

can better meet the needs of users in various situations.

1.1.2 Spark

Apache Spark [8] is a parallelization framework developed by Scala language, which provides a

unified computing engine for big data analysis. Spark follows the master-worker architecture with

two main processes, a driver and executors, and a cluster manager — the driver is responsible for

distributing Spark applications into actual Spark jobs that run on worker nodes; the cluster manager

is responsible for allocating and releasing resources for spark jobs. Spark provides a fault-tolerant

abstraction termed as Resilient Distributed Datasets (hereinafter refers to as “RDD”) [9], which is

the immutable collection of elements partitioned over the distributed computing nodes.

 3

1.2 MOTIVATION

Graph is an abstraction of the relationship in nature, which can be applied to simulate many real-

world problems, such as social networks, biological networks, and neural relationships, and then

get the best solution through a series of algorithms and computations. Therefore, the study of graph

theory has a strong practical significance, which is the motivation of this project to choose

parallelization graph applications.

With the rapid development of the Internet and mobile Internet [10], the volume of datasets

in real academia and industry is often huge, reaching the level of petabytes (1,024 terabytes) or

level of exabytes (1,024 petabytes) of data, including billions of or even trillions of records from

millions of people, and these data can generate graphs contains millions of vertices and edges.

Analyzing and processing massive graphs has become a principal task in different fields. When

existing sequential tools encounter huge datasets, high-performance computations cannot be

completed with a single computing node [11]. It is very challenging to process and compute rapidly

growing, huge datasets in a reasonable amount of time with limited computing and memory

resources. In order to meet the need of improving performance, parallelization and the use of

distributed memory are common techniques for solving huge graph problems. So far, there have

been some parallel frameworks that can be used for distributed computing, such as MASS, Spark,

Pregel, Repast Simphony, GraphLab, JGraphT and ringo.

Based on the purpose of discussing and comparing the performance and programmability of

different parallelization frameworks, we have chosen two distinct parallelization structures. And

most important, Spark is currently used and dominates in the industry. So Spark is a good baseline

for comparing MASS.

 4

For the purpose of discussing and comparing the performance and programmability of

different parallelization frameworks, we have chosen two distinct parallelization structures, MASS

Java and Spark Java. Spark is not an Agent-based framework, and Spark is currently used and

dominant in the industry. Therefore, Spark is a good baseline for comparing MASS. Spark

provides in-memory computing by iterating RDD [9] and reducing data movement, while the

Agent-based framework MASS provides direct communication between vertices by Agents

migrating. The obvious feature difference between these two parallel frameworks prompted us to

use the MASS and Spark frameworks to design and implement three graph applications in this

capstone project, to find out the advantages and disadvantages of the Agent-based MASS and data

processing Spark in graph programming, and evaluate the performance and programmability of

application.

1.3 PROJECT GOALS

Due to the motivations mentioned above, the project goals for this capstone work are as follows:

• Design and implement Graph Bridge application using MASS Java and Spark, and evaluate

the performance and programmability between MASS Java and Spark.

• Design and implement Minimum Spanning Tree application using MASS Java and Spark,

and evaluate the performance and programmability between MASS Java and Spark .

• Design and implement Strongly Connected Components application using MASS Java and

Spark, and evaluate the performance and programmability between MASS Java and Spark .

The rest of this white paper is organized as follows: Chapter 2 discusses the background of parallel

libraries MASS, Spark and sequential approaches of graph applications. Chapter 3 reviews related

works of parallel graphic programs. Chapter 4 describes the design and implementation details of

 5

parallelization using MASS Java and Spark. Chapter 5 evaluates the performance and

programmability of the graph applications. Finally, Chapter 6 summarizes the limitations and

future improvements of this white paper.

 6

Chapter 2. BACKGROUND

This chapter aims to provide an in-depth overview of the MASS Java library and Spark from a

graph programming perspective. And introduces the graph classification, the research implications

of three graph applications, and the solution of the sequence tool.

2.1 PARALLEL LIBRARIES

2.1.1 Graph in MASS Java

In the previous chapter 1.1.1, we briefly introduced the MASS Java framework, and we learned

that the MASS library has two crucial components: Places and Agents.

Places is a distributed data structure (e.g. graph) of Place objects (e.g. vertex) that are

dynamically allocated over a cluster of computing nodes. Places are managed by a set of global

indexes, and each Place element can be identified by an index. Data can be saved in a specific

Place and exchanged in different Place. Once Place is initialized and generated, its position

is fixed. It will exist on the computing node at the time of distribution until the end of the program

execution.

Agents are a group of execution instances that can be migrated. Agents have several

common APIs: 1) They can migrate() to any place: each Agent object can specify the index

of the next Place to indicate where to migrate next; 2) spawn() another Agent; and 3) kill()

itself. Agents can interact with the Place where they reside and manipulate data stored there.

On each compute node, multiple threads check in to each Agent one by one and process each

Agent’s requests. Agents can move between Places. Agents can carry their own data when

 7

migrating to different Places, or they can transfer the data to the Place, so that other Agents

can access the data when they arrive at the Place.

DSLab has successfully added distributed graph data structure to the MASS Java library [14].

It was originally designed and implemented by former lab member Justin Edward Gilroy in 2020

[15] and refactored by current lab member Brain Luger in 2021 [13, 16]. These preliminary works

have greatly improved the efficiency of our development of graph applications.

The distributed graph data structure has two crucial components: GraphPlaces and

GraphAgent. As shown in the Table 2.1 below, GraphPlaces extends from Places and

consists of VertexPlace, which extends from Place. GraphAgent extends from the

Agent.

Table 2.1 Relationships (containment, inheritance) between MASS Java classes

MASS Basic Library MASS Graphic Library

Places

Contains ⇩ .

Place

⇦ GraphPlaces

Extends Contains ⇩ .

⇦ VertexPlace

Agents

Contains ⇩ .

Agent

Extends Contains ⇩ .

⇦ GraphAgent

2.1.1.1 GraphPlaces and VertexPlace

In the MASS Java library, the distributed graph data structure is called GraphPlaces.

GraphPlaces is an extension of the existing Places with the ability to support simulations.

Each GraphPlaces is composed of VertexPlaces.

As shown in Figure 2.1 below, the vertices in the graph are nearly evenly distributed on a

cluster of computing nodes. When we add vertices to the graph, we follow a loop so that the

 8

vertices are balanced throughout the cluster. Each vertex is represented by a VertexPlace

object. A vertex contains a list of outgoing edges and data about the vertex itself.

Figure 2.1 Visual representation of a distributed graph [13]

As shown in Figure 2.2 below, on each compute node, vertices are stored in a single vector.

A single vector can grow dynamically with the size of the graph. After the graph is constructed,

agents can migrate from one vertex to another through edges.

Figure 2.2 Vertex container and distribution [13]

2.1.1.2 GraphAgent

The GraphAgent class extends from Agent and overrides the map function with a function that

maps the initial population of agents onto the graph. This feature works well in both single-

computing node and multi-computing node deployments, ensuring an even distribution of agents

 9

in both cases. Therefore, GraphAgent also implements the agent's proper work on the graph data

structure, such as spawn(), migration(), kill().

2.1.2 Spark, GraphX and Pregel

In the previous chapter 1.1.2, we briefly introduced the Spark framework. We learned that Spark

is a data processing parallel analysis and computing engine.

Figure 2.3 Spark Architecture [17]

As shown in Figure 2.3 above, Spark follows the master-worker architecture with two main

processes: 1) a driver and executors, and 2) a cluster manager. The driver is responsible for

distributing Spark applications into actual Spark jobs that run on worker computing nodes. The

cluster manager is responsible for allocating and releasing resources for spark jobs. From the

perspective of computing, the code lines in the operators are executed on the executor side, and

other code lines are executed on the driver side.

Spark provides a fault-tolerant abstraction termed as RDD [8], which is the immutable

collection of elements partitioned over the distributed computing nodes and the smallest

computing unit of Spark. Each RDD stores running data and encapsulated immutable computing

 10

logic. At runtime, each RDD divides into several partitions and processes on different computing

nodes.

Spark provides three operators — transformation operator, action operator, and control

operator, which can be executed in parallel on RDD partitions. Transformation operators, such as

map(), and filter(), construct new RDDs by transforming parent RDDs. Action operators,

such as collect() and count(), calculate the RDD and return the result to the driver. Spark

evaluates transformations lazily by delaying execution until the action operator is requested.

Transformations are further classified into narrow and wide based on the dependencies involved

in RDD creation. Objects residing in a single partition only depend on objects residing in a single

partition of the parent RDD, with narrow dependencies, such as map(), filter(). Instead,

objects depend on objects residing in multiple partitions of the parent RDD, with wide-ranging

dependencies, such as reduceByKey(). Thus, extensive dependencies require expensive

shuffle operators involving reallocation of data among worker nodes.

Spark GraphX [18] extends the concept of RDD to support several new graph RDD, such as

GraphRDD, VertexRDD, EdgeRDD, and provides many popular graph-related operators, such

as mapVertices(), mapEdges(), joinVertices() and groupEdges(). Since

vertices should be handled in the context of their neighbors, GraphX also introduces the concept

of triples and edges that can join vertex structures. In addition, GraphX implements the Pregel

API [19], which uses its sendMsg() and mergeMsg() functions to automatically pass

duplicate messages from one vertex to its neighbors.

Because it is completely different from Agent-based Model MASS and Spark is a popular

parallelization framework today, we chose Spark as the comparison framework of this capstone

 11

project in order to get a more objective understanding the position of MASS's performance and

programmability in the domain of parallelization framework.

2.2 GRAPH APPLICATIONS

Graphs in this context consist of vertices connected by edges and can be classified as directed

graph, undirected graph; weighted graph, and unweighted graph.

• Directed graph is a graph consisting of a set of vertices connected by directed edges.

• Undirected graph is a connected set of vertices where all edges are bidirectional.

• Weighted graph is a graph in which each branch is assigned a numerical weight. Thus, a

weighted graph is a special type of labeled graph where the labels are numbers (often

considered positive).

• Unweighted graph is a graph with no edge weights.

Among them, 1) Graph Bridge is suitable for undirected graphs; 2) Minimum Spanning Tree

is suitable for undirected weighted graphs; and 3) Strongly Connected Components is suitable for

directed graphs.

2.2.1 Graph Bridge

In graph theory, a bridge is a special edge of a graph whose removal increases the number of

connected components of the graph. This graph application aims to find all bridges in an undirected

graph. Graph bridges are used in social network analysis, and bridge recognition can help identify

the strength or weakness of a relationship between two users or between two organizations.

 12

Figure 2.4 Graph with 7 vertices and 1 bridge (highlighted in red)

In 1974, Robert Tarjan described the first algorithm for finding bridges in a graph. Tarjan's

graph bridge algorithm [20] performs the following steps:

Listing 2.1 Code snippet of Tarjan’s Graph Bridge (Sequential)

1. public class GraphBridge {

2. int[] disc;

3. int[] low;

4. int[] parent;

5. LinkedList<Integer>[] adjLists;

6. int timer = 0;

7. Set<Pair<Integer, Integer>> bridges = new HashSet<>();

8.

9. void findBridge(LinkedList<Integer>[] adjLists) {

10. for (int i = 0; i < adjLists.length; i++) {

11. if(disc[i] == -1) {

12. dfs(adjLists, i);

13. }

14. }

15. }

16.

17. void dfs(LinkedList<Integer>[] adjLists, int root) {

18. // base case

19. disc[root] = timer;

20. low[root] = timer;

21. timer++;

22.

23. // recursive rule

24. for (Integer nei : adjLists[root]) {

25. if (disc[nei] == -1) {

26. parent[nei] = root;

27. dfs(adjLists, nei);

28. low[root] = Math.min(low[root], low[nei]);

29. if (disc[root] < low[nei])

30. bridges.add(new Pair<>(root, nei));

31. } else if (nei != parent[root]) {

32. low[root] = Math.min(low[root], disc[nei]);

33. }

 13

34. }

35. }

36. ...

37. }

Tarjan's algorithm is a common method among existing sequential tools. Listing 2.1 shows

the depth-first search traversal from the root vertex to each vertex, and updates the discovery

value, low value and parent value (hereinafter referred to as three values) of each vertex, and

finds all bridges in the graph by judging of conditional statement line 29 in the process of

backtracking. Now we assume a graph has v vertices and e edges. First, we start from the root

vertex and run depth-first search traversal on each of its neighbors. When passing through each

vertex, update the three values on the vertex in turn. When the last vertex is reached, the

backtracking stage starts, which updates the low value on the entire path and judges each edge. If

the low value of the current vertex is found to be greater than parent vertex, then the edge

connecting the parent vertex is a new bridge of the graph.

2.2.2 Minimum Spanning Tree

In graph theory, a tree is a way of connecting all vertices together. There is one and only one path

from any vertex to any other vertex of the tree, so a graph can generate more than one tree. The

edges of the original graph of the minimum spanning tree are weighted. The minimum spanning

tree is a spanning tree with the smallest total weight in an undirected weighted graph. Depending

on graph, there may be more than one minimum spanning tree – more than one tree is a minimum

spanning tree when the sum of all edge weights is the same. There is one and only one minimum

spanning tree if the sum of all edge weights is different. This application is intended for use in

network design areas such as roads, telephone, electrical and cable-laying.

 14

Figure 2.5 Minimum spanning tree of a graph (highlighted in red)

Czech scientist Otakar Borůvka developed the first known algorithm for finding a minimum

spanning tree [21] in 1926, he wanted to solve the problem of finding an efficient coverage of

Moravia with electricity. The other two sequential algorithms commonly used now are Prim

algorithm and Kruskal algorithm. All three are greedy algorithms. Kruskal's algorithm performs

the following steps:

Listing 2.2 Code snippet of Kruskal’s Minimum Spanning Tree (Sequential)

1. public class MinimumSpanningTree {

2. int lines;

3. int[][] graph;

4. boolean[] connected;

5. List<Edge> result = new ArrayList<>();

6.

7. private static long mst(List<String> result) {

8. int size = graph.length;

9. long sum = 0;

10. long visitedNode = 1;

11. PriorityQueue<Edge> minHeap = new PriorityQueue<>();

12. connected[0] = true;

13.

14. for (int i = 1; i < size; i++) {

15. if (graph[0][i] != 0)

16. minHeap.offer(new Edge(0, i, graph[0][i]));

17. }

18. while (visitedNode != size && !minHeap.isEmpty()) {

19. Edge edge = minHeap.poll();

20. if (!connected[edge.to]) {

21. for (int i = 0; i < size; i++) {

22. if (!connected[i] && graph[edge.to][i] != 0)

23. minHeap.offer(new Edge(edge.to, i,

graph[edge.to][i]));

 15

24. }

25. connected[edge.to] = true;

26. result.add(edge);

27. sum += edge.cost;

28. visitedNode++;

29. }

30. }

31. if (visitedNode != size) return -1;

32. return sum;

33. }

34.

35. static class Edge implements Comparable<Edge> {

36. int from, to, cost;

37. }

38. ...

39. }

Kruskal's algorithm is a common method among existing sequential tools. Listing 2.2 shows

a graph, by sorting all its edges and sequentially taking the edge with the minimum cost to judge

the conditional statement line 22, if a cycle is not generated, then add it to the current minimum

spanning tree set. Now we assume a graph has v vertices and e edges. First, we sort the e edges

from small to large. Among the e edges, we pop out each minimum edge in turn. If the two vertices

of the edge are found to be located on two trees, then merge the two trees into one tree; if the two

vertices of the tree are located in the same tree, then ignore this edge and continue running. After

all the edges have been visited, if all vertices can be found on this spanning tree, then this is the

minimum spanning tree we are looking for, otherwise, there is no minimum spanning tree.

2.2.3 Strongly Connected Components

In the mathematical theory of directed graphs, a graph is said to be strongly connected if every

vertex is reachable from every other vertex. Strongly connected components of an arbitrarily

directed graph form a partition into subgraphs that are themselves strongly connected.

 16

Figure 2.6 Graph with strongly connected components (highlighted in different colors)

Tarjan's depth-first search mentioned earlier also extends Tarjan’s strongly connected

component algorithm [22]. Tarjan’s strongly connected components algorithm performs the

following steps:

Listing 2.3 Code snippet of Tarjan’s SCC (Sequential)

1. public class StronglyConnectedComponents {

2. int disc;

3. int[] discoveries;

4. int[] low;

5. Deque<Integer> stack;

6. boolean[] onStack;

7.

8. private static void SCC() {

9. ...add

10. for (int i = 0; i < graph.size(); i++) {

11. if (discoveries[i] == -1) {

12. dfs(i);

13. }

14. }

15. }

16.

17. private static void dfs(int cur) {

18. // base case

19. stack.offerFirst(cur);

20. onStack[cur] = true;

21. discoveries[cur] = low[cur] = disc;

22. disc++;

23.

24. // recursive rule

25. for (int nei : graph.get(cur)) {

26. if (discoveries[nei] == -1) {

27. dfs(nei);

28. }

29. if (onStack[nei]) {

30. low[cur] = Math.min(low[cur], low[nei]);

 17

31. }

32. }

33.

34. if (discoveries[cur] == low[cur]) {

35. List<Integer> curRes = new ArrayList<>();

36. for (int node = stack.peekFirst(); ; node =

stack.peekFirst()) {

37. curRes.add(stack.pollFirst());

38. onStack[node] = false;

39. if (node == cur) {

40. break;

41. }

42. }

43. sccResult.add(curRes);

44. countSCC++;

45. }

46. }

47. }

Tarjan’s algorithm is a common method among existing sequential tools. Listing 2.3 shows

running depth-first search traverse from the root vertex to each vertex, updating the low value of

each vertex, and finding all the components based on the same index value. Now we assume a

graph has v vertices and e edges. The index value is the counter of components. S is the vertices

stack, which starts empty and stores a history of vertices that have been explored but not yet added

to a strongly connected component. The current stack of nodes pops up only when the complete

strongly connected component is found. The outermost loop searches for each node that has not

yet been visited, ensuring that nodes that cannot be reached from the first node are still eventually

visited. The function strongconnect performs a single depth-first search on the graph, finds

all successors to node v, and reports all strongly connected components of the subgraph. When

each node completes recursion, if its low is still set to its index, then it is the root vertex of the

strongly connected component, consisting of all the vertices above it on the stack. The algorithm

 18

pops the stack up and includes the current vertex, rendering all of these vertices as a strongly

connected component.

 19

Chapter 3. RELATED WORKS

This chapter aims to briefly introduce the graph applications and techniques that exist today for

graph programming, and differentiate those works from our capstone project.

3.1 GRAPHLAB

GraphLab [23] is a graph-based high-performance distributed computing framework written in

C++, started in 2009 by Professor Carlos Guestrin of Carnegie Mellon University, and is now an

open-source project under the Apache License.

GraphLab is a vertex-centric system, unlike MASS, which is also known as "think-as-a-

vertex". Each vertex computes its new state based on its current state and the messages received

from its neighbors. Each vertex then sends its new state to its neighbors using message passing.

The synchronous version follows the Batch Synchronous Parallel (BSP) model, which performs

parallel computations in iterative steps and synchronizes between machines at the end of each step.

This means that recipients in the same iteration do not have access to messages sent in one iteration;

receiver vertices receive their messages in subsequent iterations. Computation stops when all

vertices converge to a fixed point or after a predefined number of iterations. GraphLab has three

functions in analyzing graphs: Gather, Apply and Scatter (GAS). The GAS model allows each

vertex to collect data from its neighbors, apply computational functions to itself, and then disperse

relevant information to some neighbors if necessary. GraphLab uses vertex-cut (i.e. edge-disjoint)

partitions, not edge-cuts. This duplicates vertices and helps to better distribute the work of very

high degree vertices. These vertices exist in social networks and network graphs because they

follow a power law distribution. The replication factor of a vertex is the number of machines that

replicate that vertex. GraphLab automatically uses all available cores and memory in the machine.

 20

Existing graph benchmarks using GraphLab include Breadth-First Search (BFS), K-means,

Logistic regression, Page Rank, Connected Components, Triangle Counting, Collaborative

Filtering, and Belief Propagation [24, 25]. However, the three graph applications in this project

are not included.

3.2 GRAPHMAT

GraphMat [26] is a single-node multi-core graph framework written in C++. GraphMat takes

vertex programs and maps them to generalized sparse matrix-vector multiplication operations. We

get the productivity benefits of vertex programming while enjoying the high performance of an

easy-to-understand and reason about matrix backend, while allowing users with knowledge of

vertex programming a smooth transition to a high-performance environment. GraphMat is a multi-

core optimized vertex programming model that achieves within 1.2x of native, hand-coded,

optimized code on a variety of graph algorithms.

Existing graph benchmarks using GraphMat include Page Rank, Breadth-First Search (BFS),

Triangle Counting, Collaborative Filtering, and Single Source Shortest Path (SSSP) [27]. However,

the three graph applications in this project are not included.

3.3 SUMMARY

According to the survey, neither Graph Bridge, Minimum Spanning Tree, nor Strongly Connected

Components have precedents for benchmark graph tools, which is of great research significance

considering their usage scenarios in many real-life situations. Therefore, these three applications

are suitable as graph applications to implement and compare the performance and programmability

of two graph libraries, MASS Java and Spark.

 21

Chapter 4. PARALLELIZATION GRAPH APPLICATIONS

This chapter describes the design and implementation details of three graph applications using

MASS Java and Spark respectively. It also includes simple demonstration to explain how the

application works.

It is worth noting that in order to make the application have better performance, we chose to

replace the built-in standard Java collections with Fastutil Collection [28]. Built-in Java

collections such as HashMap, HashSet can consume large amounts of memory as the collection

size increases and are tightly coupled to the internal data structures used. Optimizing performance

to increase running speed benefits from the use of different internal data structures, such as

IntList, IntOpenHashSet, and the use of Fastutil collections.

4.1 GRAPH BRIDGE

4.1.1 MASS Java Design and Implementation

When finding a bridge in a graph, three concepts need to be considered: 1) Discovery value

means the time when first visit this vertex; 2) Parent value means which vertex does it come from;

and 3) Low value means the vertices will update the low values during the backtracking session,

so that the vertices are in the same component if they have the same low values. When the low

value of vertex a is larger than the discovery value of the vertex b, we have found a bridge.

 22

Figure 4.1 Demonstration of Graph Bridge in parallel

As seen in Figure 4.1 (a), initially, Places are generated from the dataset file, and generated

one agent on Place 0. At every iteration of Agent function execution, the agent examines the

neighborhood and performs the following actions. If there is a valid neighbor, the Agent migrates

to the neighbor with the smallest id, and then spawn() child agent with parent agent information

in the remaining neighbors; otherwise, kill() this agent. At the same time, the agents update

their own information (discovery value, parent value and low value). If the Agent visits a certain

vertex for the second time, it will enter a cycle and backtracking phases. The Agent will return

along the original path, update the low value accordingly, and mark all the Places of the cycle

as being within the cycle. If the agent visits the vertex for the third time, it means that the cycle

phase ends, but the backtracking phase continues and starts looking for bridges. If a bridge is found,

the information of the discovered bridge will be stored on the Place with a smaller endpoint id

 23

of the bridge, and the agent will continue backtracking phase until the agent enters the range of a

cycle or returns to the root node, then the Agent will be kill(). After repeating this procedure

until all agents are killed, all graph bridges will exist on places with smaller id. Finally, the Main()

driver collects graph bridges from all places in parallel.

The following Listing 4.1 shows the main function of the graph bridge application, and its

main computation is in the function gb().

Listing 4.1 Code snippet of driver GB in Graph Bridge

1. public class GB {

2. public static void main(String[] args) {

3. GraphPlaces graphPlaces = init(graphPath, printPlaces);

4. gb(graphPlaces);

5. ObjectSet<Bridge> results = processResults(graphPlaces);

6. stopMASS();

7. }

8. }

As shown in Listing 4.2, the the gb() function covers the main functions of calling MASS

Java, line 9 and 12 callAll() and line 10 and 13 manageAll(). By passing parameters to

the line 9 callAll() function, specific functions in MyAgent are called to make Agents

complete the specified steps. The first step is to complete the computation of the Agent arriving

at a Place, and the second step is to complete the migration of the Agents. line 10 and 13

manageAll() is a function that allows all Agents to start processing, spawn(), migrate()

and kill(), at the same time. The following two application using MASS Java will use these

APIs as well, so we will not repeat this later.

Listing 4.2 Code snippet of gb() in Graph Bridge driver

1. private void gb(GraphPlaces graphPlaces) {

2. Agents crawlers = new Agents(0, MyAgent.class.getName(), null,

graphPlaces, 1);

 24

3. crawlers.callAll(MyAgent.init_);

4.

5. int curAliveAgents = crawlers.nAgents();

6. int iteration = 0;

7.

8. while (curAliveAgents > 0) {

9. crawlers.callAll(MyAgent.onArrival_);

10. crawlers.manageAll();

11.

12. crawlers.callAll(MyAgent.migrateTo_);

13. crawlers.manageAll();

14.

15. iteration++;

16. }

17. }

4.1.2 Spark Design and Implementation

Spark implementation to parallelize Graph Bridge application uses basic Spark abstraction,

Resilient Distributed Datasets (RDD). Graph vertices maps to a JavaPairRDD and newly

generated graph vertices map to new JavaPairRDD in each iteration, due to the immutable

nature of Spark RDD. We did not choose to use Spark GraphX mainly because EdgeRDD and

VertexRDD in GraphX are extended from org.apache.spark.rdd.RDD. But our application needs

to continuously update the information of vertices and iterate according to the updated information,

using Spark JavaPairRDD undoubtedly more flexible than GraphX, it can store the vertex id as

a value for processing, instead of accessing and disassembling each vertex when using VertexRDD.

The Spark version was revised based on previous lab members Maxwell Seto’s version [29].

In Spark implementation as shown in Listing 4.3, finding bridge happens through a series of

narrow-dependency transformations operators (such as flatMapToPair()), followed by an

expensive wide-dependency transformation operators (such as reduceByKey()), that shuffles

 25

data across all the computing nodes. Finally, the driver gathers the bridges on each vertex via

collect() action operator.

Initially, vertices are generated in the graph from the dataset file. At every iteration of function

execution, the active vertex examines the neighborhood and performs the following actions. If

there is a valid neighbor, set the current vertex as “VISITED” and other neighbor vertices are set

to “ACTIVE”, and the new discovery value and low value are passed to other neighbor vertices;

otherwise, set the state of this vertex to “DEAD”. If there is currently a vertex that meets the

backtracking condition, it is judged whether the edge is a bridge. At each step, we use

reduceByKey() to update the information of each vertex. After repeating this procedure until

all vertices are non-active, all graph bridges will exist on the vertices. Finally, the driver

collects() graph bridges from all vertices in parallel.

Listing 4.3 Code snippet of Graph Bridge using Spark

1. public class GB implements Serializable {

2. private static Object2ObjectMap<Integer, IntSet>

gb(JavaPairRDD<Integer, Vertex> graphRDD) {

3. final Broadcast<IntList[]> broadcastAdjList =

jsc.broadcast(adjList);

4. CollectionAccumulator<String> accumulatorBridges =

jsc.sc().collectionAccumulator("accumulatorBridges");

5.

6. int iteration = 0;

7.

8. // Depth-first seach loop.

9. while (graphRDD.count() > 0) {

10. // Step 1 of depth-first seach: Visited a vertex.

11. graphRDD = visited(graphRDD);

12.

13. // Step 2 of depth-first seach: Expanded a vertex.

14. graphRDD = expanded(graphRDD, broadcastAdjList,

accumulatorBridges);

15.

16. iteration++;

17. }

18. return processComponentResults(accumulatorBridges);

 26

19. }

20. }

4.2 MINIMUM SPANNING TREE

4.2.1 MASS Java Design and Implementation

When finding a minimum spanning tree in a graph, one concepts need to be considered: Cutset,

which is a set of edges with exactly one endpoint in the subgraph. When all vertices are on a tree

without cycle and the total weights number is the smallest, we have found the minimum spanning

tree.

Figure 4.2 Demonstration of Minimum Spanning Tree in parallel

 27

As seen in Figure 4.2 (a), initially, Places are generated from the dataset file, and generated

agents based on the input parameter and we have two agents in this case. At every iteration of

agent function execution, the agent performs the following actions. Select the edge with the

smallest cost from the cutset at the current Place, and migrate to the other end of the edge. If two

agents visit the same Place, pass the information to the Agent with the smaller id and kill()

the other one. If the agent finds that the current smallest edge will form a cycle in the the generated

minimum spanning tree, this edge will be discarded and continue to explore the second smallest

edge. When the size of minimum spanning tree is equal to the size of the graph, kill() the last

Agent. Finally, the driver collects the final minimum spanning tree from all Places in parallel.

The following Listing 4.4 shows the main function of the minimum spanning tree application,

and its main computation is in the function mst().

Listing 4.4 Code snippet of driver MST in Minimum Spanning Tree

1. public class MST {

2. public static void main(String[] args){

3. // Generate Places.

4. GraphPlaces graphPlaces = init(graphPath, printPlaces);

5. mst(graphPlaces);

6. stopMASS();

7. }

8. }

The following Listing 4.5 shows the mst() function of the minimum spanning tree

application, which also covers calling the main functions of MASS Java.

Listing 4.5 Code snippet of mst() in Minimum Spanning Tree driver

1. private void mst(GraphPlaces graphPlaces) {

2. Agents crawlers = new Agents(agentId++, MyAgent.class.getName(),

null, graphPlaces, graphPlaces.size());

3. crawlers.callAll(MyAgent.init_);

4. crawlers.manageAll();

 28

5.

6. int curNumOfEdges = 0;

7. int targetNumOfEdges = graphPlaces.size() - 1;

8. int iteration = 0;

9.

10. // Finding loop until all edges have been found.

11. while (curNumOfEdges < targetNumOfEdges) {

12. curNumOfEdges = 0;

13.

14. // Step 1. on arrival

15. crawlers.callAll(MyAgent.onArrival_);

16. crawlers.manageAll();

17.

18. // Step 2. migrate

19. crawlers.callAll(MyAgent.migrateTo_);

20. crawlers.manageAll();

21.

22. // Step 3. Get the number of current edges

23. processMSTResult(graphPlaces);

24. curNumOfEdges = result.size();

25.

26. iteration++;

27. }

28. }

4.2.2 Spark Design and Implementation

Spark implementation to parallelize Minimum Spanning Tree application uses Spark abstraction,

Resilient Distributed Datasets (RDD). Graph vertices maps to a VertexRDD and newly generated

graph vertices map to new VertexRDD in each iteration, due to the immutable nature of Spark

RDD.

In Spark implementation, minimum spanning tree happens through a series of transformations

operators (such as flatMapToPair() and flatMap()) and finally, the driver gathers the

edges of minimum spanning tree on each vertex via collect action operator.

Initially, vertices are generated in the graph. At every iteration of function execution, it is

divided into two functions of visited() and migrate(). The active vertex examines the

 29

neighborhood and performs the following actions in visited() function. Get the edge with the

minimum cost, if this edge will not form a loop on the current minimum spanning tree, add it.

Otherwise, discard the edge and choose the edge with the second smallest cost. The migration()

function will get the cutset of the new vertex in the broadcast variable and add to the cutset of

current vertex. Then, calculate the number of edges in the current minimum spanning tree. If it is

equal to the vertex minus one, the program ends; otherwise, continue to repeat the above steps.

After repeating this procedure, the minimum spanning tree will be generated.

The following Listing 4.6 shows the mst() function of the graph bridge application, which

covers the main function of calling Spark. flatMap()is an operator that allows vertices to be

processed in parallel to find the edge with the minimum cost, and reduce () is to deduplicate

all vertices.

Listing 4.6 Code snippet of Minimum Spanning Tree using Spark

1. public class MST implements Serializable {

2. private static void mst(String filePath, boolean

printGeneratedRDD, boolean printEachRDD) {

3. final Broadcast<ObjectRBTreeSet<Edge>[]> broadcastCutsets =

jsc.broadcast(cutsets);

4.

5. int curNumOfEdges = 0;

6. int targetNumOfEdges = (int) graphRDD.count() - 1;

7. int iteration = 0;

8.

9. // Finding loop until all edges have been found.

10. while (curNumOfEdges < targetNumOfEdges) {

11. curNumOfEdges = 0;

12.

13. // Step 1. Visited each vertex

14. graphRDD = visited(graphRDD, broadcastCutsets);

15.

16. // Count the current number of found edges.

17. curNumOfEdges = countEdges(graphRDD);

18.

19. // Step 2. Migrate to the next vertex.

20. graphRDD = migrate(graphRDD);

 30

21.

22. iteration++;

23. }

24. }

25. }

4.3 STRONGLY CONNECTED COMPONENTS

4.3.1 MASS Java Design and Implementation

GraphPlaces and GraphAgent are also used to parallelize Graph Bridge application.

GraphPlaces map to graph vertices that hold neighbors’ information throughout the lifetime of the

application. GraphAgent starts from each vertex, searches for strongly connected components in

parallel in the graph and calculates the total number of strongly connected components.

When finding a strongly connected component in a graph, one concept need to be considered:

Low value. The vertices will update the low values during the backtracking session, so that the

vertices are in the same component if they have the same low values.

Figure 4.3 Demonstration of Strongly Connected Components in parallel

 31

As seen in Figure 4.3 (a), initially, Places are generated from the dataset file, and generated

agents at each Place. At every iteration of Agent function execution, the agent examines the

neighborhood and performs the following actions. If there is a valid neighbor, the Agent migrates

to the neighbor with the smallest id, and then spawn() child agent with parent agent information

in the remaining neighbors; otherwise, kill() this agent. At the same time, the agents update

their own information (low value). If the Agent visits a certain vertex for the second time, it will

enter a component and backtracking phase. The Agent will return along the original path, update

the low value accordingly, and update the low value of all the Places in this component. If the

agent visits the vertex for the third time, it means that a component is found, update the information

of this component on the Place, and kill() the agent. After repeating this procedure until all

agents are killed, all components will exist on places with smallest id. Finally, the Main() driver

collects components from all places in parallel.

Listing 4.7 Code snippet of driver SCC in SCC using MASS Java

1. public class SCC {

2. public static void main(String[] args){

3. // Generate Places.

4. GraphPlaces graphPlaces = init(graphPath, printPlaces);

5. scc(graphPlaces);

6. stopMASS();

7. }

8. }

4.3.2 Spark Design and Implementation

Spark implementation to parallelize Graph Bridge application uses basic Spark abstraction,

Resilient Distributed Datasets (RDD). Graph vertices maps to a JavaPairRDD and newly

generated graph vertices map to new JavaPairRDD in each iteration, due to the immutable

nature of Spark RDD.

 32

In Spark implementation, finding strongly connected components happens through a series of

narrow-dependency transformations operators (such as flatMapToPair()). Finally, the driver

gathers the components on each vertex via collect() action operator.

Initially, vertices are generated in the graph from the dataset file. At each iteration of function

execution, the active vertex examines the neighborhood and performs the following actions. If

there are valid neighbors (the neighbor vertex id is larger than the current vertex id), a different

exploration path is generated. Otherwise, set the finish status of current vertex to true. If the vertex

visits a certain vertex for the second time, it meets the backtracking conditions, obtain the vertices

list of the current component and stores it on the collection accumulator and set the finish status

of current vertex to true. After repeating this process until all vertices are inactive, all components

will exist on the vertex. Finally, the driver collects all components from collection accumulator in

parallel.

Listing 4.8 Code snippet of SCC using Spark

1. public class SCC implements Serializable {

2. private static Object2ObjectMap<Integer, IntSet>

scc(JavaPairRDD<Integer, Vertex> graphRDD) {

3. final Broadcast<IntList[]> broadcastAdjList =

jsc.broadcast(adjList);

4. CollectionAccumulator<String> accumulatorComps =

jsc.sc().collectionAccumulator("accumulatorComps");

5. int iteration = 0;

6. while (graphRDD.count() > 0) {

7. // Step 1 of depth-first seach: Visited a vertex.

8. graphRDD = visited(graphRDD);

9. // Step 2 of depth-first seach: Expanded a vertex.

10. graphRDD = expanded(graphRDD, broadcastAdjList,

accumulatorComps);

11. iteration++;

12. }

13. return processComponentResults(accumulatorComps);

14. }

15. }

 33

Chapter 5. PARALLEL PERFORMANCE AND

PROGRAMMABILITY EVALUATION

This chapter presents experimental results on the MASS and Spark parallel implementations

discussed in Chapter 4, and discusses performance analysis and programmability analysis of

parallel applications.

In the performance analysis, we discusses according to the following methods:

Measure the performance: We use the same datasets as input data and the same execution

environment (a cluster of eight to twelve computing nodes provided by the University of

Washington, Bothell, DSLab) to compare the execution time of executing different parallel

libraries version of the graph applications under different nodes (node 1, 2, 4, 8 or 12). Two rounds

of testing were performed, with each application tested three times in each round. The final results

is taken as the average of the three test results of the second round.

Optimized the applications after first round of testing: It should be noted that all

applications are implemented and optimized using Fastutil [28], a fast and compact type-

specific collection for Java. This optimization step only modifies the data structure type of

variables in all applications, but does not change other parts of code. The optimization results are

remarkable. Many out of memory errors that occurred in the first round of testing can be

successfully completed in second round of testing.

Datasets: Applications were tested using the following Table 5.1 datasets. Among them, the

Graph Bridge and the Strongest Connected Component applications use real datasets. These

datasets are from biological networks and are scale-free and can generate many agents, which are

very suitable for testing with corresponding graph applications in our project. And the Minimum

 34

Spanning Tree uses datasets generated from GraphGen, a laboratory program. This is because no

suitable dataset for testing the performance of the minimum spanning tree was found when

searching for the real dataset. Most of the existing real datasets are belongs to social networks or

communication networks, with a lot of additional information, and it will be tedious to convert the

data set that can be used for the Minimum Spanning Tree.

Table 5.1 Datasets Graph Properties

Datasets Vertices Edges Weighted Directed Graph Applications

Dolphin 62 318 No No Graph Bridge

Power 4,941 6,594 No No Graph Bridge

500 500 63,300 Yes No Minimum Spanning Tree

1000 1000 250,639 Yes No Minimum Spanning Tree

Yeast 688 1,078 No Yes Strongly Connected Components

P2P 6,301 20,777 No Yes Strongly Connected Components

In the programmability analysis, we discusses and evaluates according to the following

methods or terminology:

LoC (Lines of Code): LoC is divided into three parts — Agent code, Place code, and

Boilerplate code. 1) Agent code represents the lines of code that is only related to the Agent. MASS

have agent code, but Spark don’t have agent code; 2) Place code represents the lines of code that

is only related to the Place. MASS have place code and the code in each operator in Spark can be

regarded as place code; and 3) Boilerplate code represents the lines of standard code that are

intended to initialize and manage the parallelization framework and are not related to application

implementation or computation.

Boilerplate Code Ratio: It measures the percentage of boilerplate code to the total number

of lines of code. Smaller boilerplate code ratio means easiness to set up the parallel environment.

 35

Lines of code measurement: presents in this section omitted comment and blank lines and

both versions followed standard java coding convention.

Cyclomatic Count: represents the number of if, while, for, and switch statements,

which is a count of the number of decisions in the code. It is a software metric used to determine

the complexity of an application. The higher the count, the more complex the code.

Parallel Methods or Operators Count: represents the number of used parallel methods. The higher

the count, the more complex the code.

5.1 GRAPH BRIDGE

5.1.1 Performance Comparison

Table 5.2 and the left of Figure 5.1 shows that the execution speed of the MASS version increases

and then decreases with the number of nodes when using the small data set Dolphin. It runs fastest

on two computing nodes, and its execution time is reduced by 40.169% compared with that of one

computing node. However, it is significantly slower when using 4 computing nodes. Such

execution results reveal that MASS requires greater memory overhead and more communication

time between nodes as the number of nodes increases during the execution of MASS version.

There was no significant change in the execution speed of the Spark version, which revealed that

when running a smaller data set, the resources provided by multiple computing nodes were offset

by the overhead generated by the communication between the nodes.

The figure on the right of Figure 5.2 shows that the MASS version execution time decreases

significantly with the increase of compute nodes when using the larger data set Power. This

execution result reveals that when running a larger data set, the overhead associated with

communication between nodes is less than the performance boost to the execution speed associated

 36

with more resources. In the Spark version, due to its immutable RDD feature, the new RDD

generated by each iteration will prompt the recalculation of the RDD with previous dependence.

Therefore, when fewer compute nodes are used, the memory will burst the stack due to excessive

storage of RDD. This feature also affects the results of 4 and 8 computing nodes. Its performance

is not as good as that of the MASS version.

Table 5.2 Performance Comparison of Graph Bridge

Dataset Libraries 1 Node 2 Nodes 4 Nodes 8 Nodes

Dolphin
MASS 6.261 3.746 37.472 20.132

Spark 35.233 32.138 32.233 33.884

Power
MASS 1514.241 1124.539 705.428 508.925

Spark OutofMemory OutofMemory 742.194 602.852

Figure 5.1 Performance Comparison of Graph Bridge using Dolphin

5.1.2 Programmability Comparison

Table 5.3 indicates that the overall LoC of MASS is lower than that of Spark due to the different

parallel paradigms. The Boilerplate Code Ratio of MASS accounts for 11.73% of the total LoC,

indicating that MASS is easy to set up parallel environment and execute applications. MASS

version includes four classes (MyAgent, MyVertex, ArgsToAgent, Bridge), some of which

 37

have only parameterized constructors for passing parameters to specific agents or places during

invocations of parallel methods. This framework-specific implementation increases the overall

LoC. Because Spark cannot communicate directly between vertices, this causes it to add more

logical judgments when transforming RDDs. For example, the Place object of the MASS version

can store and update information, however, Spark has to called reducingBy() to achieve this

feature, Spark needs to list all the situations one by one, so that it can accurately update the latest

and correct version of fields when there are multiple versions generated in the same iteration.

Table 5.3 Lines of Code (LoC) and Boilerplate Code Ratio in Graph Bridge

Modules MASS LoC Spark LoC

Agent code 147 -

Place code 26 179

Boilerplate code 23 53

Total Loc 196 232

Boilerplate Code Ratio 11.73% 22.85%

Table 5.4 shows the branch counts comparison of this application, showing that the code of

Spark version is more complex than MASS version. The Spark version uses a large number of

if() conditional statements to list various situations in detail. In addition, the data structure of

Spark version uses arrays to reduce memory usage. When transforming RDD, it is necessary to

use the for() loop multiple times to traverse the neighbors to find the next vertex that needs to

be visited.

Table 5.4 Cyclomatic Count in Graph Bridge

 MASS Cyclomatic Count Spark Cyclomatic Count

if 18 38

while 2 1

 38

for 3 11

switch 2 0

main() 1 1

Total 26 51

Table 5.5 presents the programmability analysis based on the number of parallel methods used

in MASS and Spark version. Spark uses more parallel methods than the MASS version. MASS

uses two parallel methods, init() and returnResults() in VertexPlace and uses three

parallel methods, init(), onArrival() and migrateTo() in GraphAgent. Spark uses

four transformation operators, mapToPair(), flatMapToPair(), flatMap() and

filter() , and three action operators count(), collect() and foreach(). Spark uses

more parallel operators than the MASS version implementation. The results show that MASS is

more practical and implementable than Spark.

Table 5.5 Parallel Methods or Operators Count in Graph Bridge

MASS Parallel Methods Spark Parallel Operators

MASS Place 2 Transformations 4

MASS Agent 3 Actions 3

Total 5 Total 7

5.2 MINIMUM SPANNING TREE

5.2.1 Performance Comparison

Table 5.6 and Figure 5.2 shows that the execution speed of the MASS version increases with the

number of computing nodes. This execution result reveals that when the MASS version is executed,

as the number of nodes increases, MASS requires greater memory overhead and more

communication time between computing nodes. This is because in the later stage of application

 39

execution, the agent make more random jumps between computing nodes, which brings more

overhead. The execution speed of the Spark version also increases with the increase of computing

nodes, but it is not particularly significant, indicating that the resources provided by multiple

computing nodes and the overhead generated by the communication between nodes are offset.

Both figures in Figure 5.2 show that MASS outperforms Spark on a single computing node and

two computing nodes, showing the superiority of MASS' computing power.

It should be noted that the MASS version can kill the most of the agents in 0.6 seconds, and

there are only 3 active agents left. The Spark version found 493 edges out of a total of 499 in 4.2

seconds. Both versions show the disadvantage of parallel processing of the minimum spanning

tree, requiring more time to find the last few vertices distributed on the cluster, in the later stage

of execution, as the communication between computing nodes increases, and the increase in

information stored by MASS Agent and Spark Vertex, this kind of communication brings huge

overhead, which causes the execution time to take more than ten times the time when there are

only a few active agents and active vertices left.

Table 5.6 Performance Comparison of Minimum Spanning Tree

Datasets Libraries 1 Node 2 Nodes 4 Nodes 8 Nodes 12 Nodes

500
MASS 6.158 19.184 31.777 35.250 42.323

Spark 27.843 28.859 31.881 35.508 43.188

1000
MASS 37.440 64.883 85.989 103.560 116.129

Spark 85.592 87.224 90.065 92.136 100.720

 40

Figure 5.2 Performance Comparison of Minimum Spanning Tree

5.2.2 Programmability Comparison

Table 5.7 shows that the overall LoC of MASS is similar to Spark. But the Boilerplate Code Ratio

of MASS only accounts for 11.73% of the total loc, indicating that MASS is easy to set up a

parallel environment and execute applications. MASS version includes 3 classes (MyAgent,

MyVertex, Edge), some of which have only parameterized constructors for passing parameters

to specific agents or positions during invocation of parallel methods. This framework-specific

implementation increases the overall LoC. Spark increases the overall LoC because it requires

more logical judgments.

Table 5.7 Lines of Code (LoC) and Boilerplate Code Ratio in MST

Modules MASS LoC Spark LoC

Agent code 122 -

Place code 32 135

Boilerplate code 25 45

Total Loc 179 180

Boilerplate Code Ratio 13.96% 25%

 41

Table 5.8 shows the branch counts comparison of minimum spanning tree application,

showing that the code of Spark version is more complex than MASS version. When the Spark

version needs to enumerate various situations in detail, it uses many if conditional statements.

Table 5.8 Cyclomatic Counts in MST

 MASS Cyclomatic Count Spark Cyclomatic Count

if 16 29

while 1 1

for 5 6

switch 2 0

main() 1 1

Total 25 37

Table 5.9 presents the programmability analysis based on the number of parallel methods used

in MASS and Spark version. Spark uses more parallel methods than the MASS version. MASS

uses two parallel methods, init() and returnResults() in VertexPlace and uses three

parallel methods, init(), onArrival() and migrateTo() in GraphAgent. Spark uses

four transformation operators, mapToPair(), flatMapToPair() and flatMap(), and

three action operators count(), collect() and foreach(). Consistent with the previous

discussion results, Spark uses more parallel operators than the MASS version implementation. The

results show that MASS is more practical and implementable than Spark.

Table 5.9 Parallel Methods or Operators Count in MST

MASS Parallel Methods Spark Parallel Operators

MASS Place 2 Transformations 3

MASS Agent 3 Actions 3

Total 5 Total 6

 42

5.3 STRONGLY CONNECTED COMPONENTS

5.3.1 Performance Comparison

Table 5.10 and Figure 5.3 shows that the MASS version consistently performs better than the

Spark version, and that frequent communication between vertices via agents can significantly

improve performance. Furthermore, as the number of nodes increases, the MASS version has a

significant speed-up, with time reductions of 53%, 52%, and 27%, respectively. Judging from the

execution results, this shows that MASS's flexible communication produces low overhead without

affecting performance. However, Table 5.10 shows that both MASS and Space encountered an

out-of-memory when testing a large data set, indicating that for this strongly connected

components application, MASS agent and Spark vertex carry a large amount of information for

calculation, which brings huge overhead as the edges of dataset increases.

Table 5.10 Performance Comparison of Strongly Connected Components

Datasets Libraries 1 Node 2 Nodes 4 Nodes 8 Nodes

Yeast
MASS 220.044 104.216 49.172 35.893

Spark 289.873 146.811 72.612 48.432

P2P
MASS OutofMemory OutofMemory OutofMemory 731.33

Spark OutofMemory OutofMemory OutofMemory OutofMemory

Figure 5.3 Performance Comparison of Strongly Connected Components

 43

5.3.2 Programmability Comparison

Table 5.11 Lines of Code (LoC) and Boilerplate Code Ratio in SCC

Modules MASS LoC Spark LoC

Agent code 135 -

Place code 29 167

Boilerplate code 29 47

Total Loc 193 214

Boilerplate Code Ratio 15.03% 21.96%

Table 5.11 indicates that the overall LoC of MASS is lower than that of Spark due to the different

parallel paradigms. The Boilerplate Code Ratio of MASS accounts for 15.03% of the total LoC,

indicating that MASS is easy to set up parallel environment and execute applications. MASS

version includes three classes (MyAgent, MyVertex, ArgsToAgent), some of which have

only parameterized constructors for passing parameters to specific agents or places during

invocations of parallel methods. This framework-specific implementation increases the overall

LoC. Spark increases the overall LoC because it requires more logical judgments.

Table 5.12 Cyclomatic Count in SCC

 MASS Cyclomatic Count Spark Cyclomatic Count

if 14 29

while 1 1

for 3 11

switch 2 0

main() 1 1

Total 21 42

 44

Table 5.12 below shows the branch counts comparison of this application, showing that the

code of Spark version is more complex than MASS version. When the Spark version needs to

enumerate various situations in detail, it uses many if conditional statements.

Table 5.13 Parallel Methods or Operators Count in SCC

MASS Parallel Methods Spark Parallel Operators

MASS Place 2 Transformations 2

MASS Agent 3 Actions 3

Total 5 Total 5

Table 5.13 above presents the programmability analysis based on the number of parallel

methods used in MASS and Spark version. MASS version uses the same number of parallel

methods as Spark. MASS uses two parallel methods, init() and returnResults() in

VertexPlace and uses three parallel methods, init(), onArrival() and migrateTo()

in GraphAgent. Spark uses two transformation operators, mapToPair()and

flatMapToPair()and three action operators count(), collect() and foreach().

Consistent with the previous discussion results, Spark uses more parallel operators than the MASS

version implementation. The results show that MASS is more practical and implementable than

Spark.

 45

Chapter 6. CONCLUSION & FUTURE WORK

This project completed the parallel implementation of three graph applications Graph Bridge,

Minimum Spanning Tree, and Strongly Connected Components using two frameworks MASS

Java and Spark Java, and compared the performance and programmability of these two

frameworks. All three applications were executed using at least 1, 2, 4, and 8 compute nodes.

The execution results show that, for testing with small datasets, the MASS Java version

performs best when running on a single computing node or two computing nodes, but when

running on more than 4 computing nodes, the performance of MASS Java degrades rapidly due to

high overhead. The performance of the Spark version does not change significantly with different

computing nodes. For testing with large datasets, the MASS Java version significantly improved

execution performance as the number of computing nodes increased, and the execution times were

consistently lower than Spark. Additionally, we compared programmability as well. After

calculating Lines of Code, Boilerplate Code Ratio, and Cyclomatic Count per application, and

measuring and evaluating the programmability, the conclusions show that: the programmability of

the MASS Java version has generally better than the Spark version.

This project verifies the correctness of the parallel results by comparing the parallel results of

MASS Java with those of Spark, as well as evaluating the performance and programmability.

Three graph applications implemented based on MASS and Spark shows that MASS has generally

better performance and programmability. Different from the Spark version, MASS supports

communication between vertices, which greatly increases the flexibility of algorithm

implementation and reduces the complexity of code. In addition, from the perspective of

development engineers or users, MASS allows users to write their solutions from the perspective

of the driver's seat and more suitable for developing graph applications.

 46

As for future work, graph applications developed by MASS Java can be compared with more

libraries for performance and programmability, such as JgraphT [30] and ringo [31] (Java graphic

libraries), to obtain a more comprehensive performance comparison analysis of MASS in the field

of parallel frameworks.

The source code for the MASS Java and Spark implementations is available in the repository

(https://bitbucket.org/mass_application_developers/mass_java_appl/branch/caroline/graph_appli

cations).

 47

BIBLIOGRAPHY

[1] J. A. Bondy; U. S. R. Murty, Graph Theory with Applications, University of Waterloo,

1982.

[2] DSLab, "Multi-Agent Spatial Simulation (MASS)," University of Washington, Bothell,

[Online]. Available: http://depts.washington.edu/dslab/MASS/index.html.

[3] DSLab, "Distributed System Lab (DSLab)," University of Washington, Bothell, [Online].

Available: https://depts.washington.edu/dslab/.

[4] DSLab, "MASS Java Manual," University of Washington, Bothell, 31 Aug 2016. [Online].

Available:

https://depts.washington.edu/dslab/MASS/docs/MASS%20Java%20Technical%20Manual

.pdf.

[5] DSLab, "MASS C++: Parallel-Computing Library for Multi-Agent Spatial Simulation,"

University of Washington, Bothell, [Online]. Available:

https://depts.washington.edu/dslab/MASS/docs/MassCpp.pdf.

[6] DSLab, "MASS CUDA: Parallel-Computing Library for Multi-Agent Spatial Simulation,"

[Online]. Available: https://depts.washington.edu/dslab/MASS/docs/MassCuda.pdf.

[7] Jason Woodring; Matthew Sell; Munehiro Fukuda; Hazeline Asuncion; Eric Salathe, "A

Multi-Agent Parallel Approach to Analyzing Large Climate Data Sets," in In 37th IEEE

International Conference on Distributed Computing Systems, Atlanta, GA, 2017.

[8] "Apache Spark," [Online]. Available: https://spark.apache.org/.

[9] "Spark RDD Programming Guide," [Online]. Available:

https://spark.apache.org/docs/latest/rdd-programming-guide.html.

[10] J. Donner, After Access: Inclusion, Development, and a More Mobile Internet, The MIT

Press, 2015.

[11] Cevher, Volkan; Becker, Stephen; Schmidt, Mark, "Convex Optimization for Big Data:

Scalable, randomized, and parallel algorithms for big data analytics," IEEE Signal

Processing Magazine (Volume: 31, Issue: 5), 2014.

[12] Charles M. Macal; Michael J. North, "Agent-based modeling and simulation," in

Proceedings of the 2009 Winter Simulation Conference (WSC), 2009.

[13] B. Luger, "Distributed Graph Data Structures," [Online]. Available:

http://depts.washington.edu/dslab/MASS/reports/BrianLuger_su21.pdf.

[14] Brian Luger; Munehiro Fukuda, "Wiki Graph Programming with MASS Java," [Online].

Available:

https://bitbucket.org/mass_library_developers/mass_java_core/wiki/GraphPlaces%20Class

%20and%20Cytoscape%20Integration.

 48

[15] J. Gilroy, "Dynamic Graph Construction and Maintenance," DSLab, [Online]. Available:

https://depts.washington.edu/dslab/MASS/reports/JustinGilroy_whitepaper.pdf.

[16] Justin Gilroy; Satine Paronyan; Jonathan Acoltzi; Munehiro Fukuda, "Agent-Navigable

Dynamic Graph Construction and Visualization over Distributed Memory," [Online].

Available: http://faculty.washington.edu/mfukuda/papers/biggraphs20.pdf.

[17] "Spark Cluster Mode Overview," [Online]. Available:

https://spark.apache.org/docs/latest/cluster-overview.html.

[18] "Spark GraphX," Apache, [Online]. Available:

https://spark.apache.org/docs/3.2.1/api/java/org/apache/spark/graphx/Pregel.html.

[19] Grzegorz Malewicz; Matthew H. Austern; Aart J. C. Bik, "Pregel: a system for large-scale

graph processing," in Proceedings of the 2010 international conference on Management of

data, ACM, pp. 135-146, New York, NY, USA, 2010.

[20] R. Tarjan, "Tarjan's bridge-finding algorithm," [Online]. Available:

https://en.wikipedia.org/wiki/Bridge_(graph_theory)#Tarjan's_bridge-finding_algorithm.

[21] Kwara, Nigeria; Joyce Ayoola; Emmanuel Asani, "A Comparative Study Of Minimal

Spanning Tree Algorithms," 2020 International Conference in Mathematics, Computer

Engineering and Computer Science (ICMCECS), 2020.

[22] R. Tarjan, "Tarjan's strongly connected components algorithm," [Online]. Available:

https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm#:~:

text=Tarjan's%20strongly%20connected%20components%20algorithm%20is%20an%20a

lgorithm%20in%20graph,path%2Dbased%20strong%20component%20algorithm..

[23] "GraphLab," Carnegie Mellon University, [Online]. Available:

https://en.wikipedia.org/wiki/GraphLab.

[24] Y. Low, "GraphLab: A Distributed Abstraction for Large Scale Machine Learning,"

[Online]. Available: https://www.cs.cmu.edu/~ylow/thesis/thesis.pdf.

[25] "Benchmarking of Distributed Computing Engines Spark and GraphLab for Big Data

Analytics," 2016 IEEE Second International Conference on Big Data Computing Service

and Applications (BigDataService), 2016, pp. 10-13, doi:

10.1109/BigDataService.2016.11..

[26] "GraphMat," [Online]. Available: https://github.com/narayanan2004/GraphMat.

[27] Narayanan Sundaram; Nadathur Satish; Md Mostofa Ali Patwary, "GraphMat: high

performance graph analytics made productive," [Online]. Available:

https://dl.acm.org/doi/10.14778/2809974.2809983.

[28] "fastutil: Fast & compact type-specific collections for Java™," [Online]. Available:

https://fastutil.di.unimi.it/.

[29] M. Seto, "Graphing Applications in Spark and MASS Java," University of Washington,

Bothell, [Online]. Available:

http://depts.washington.edu/dslab/MASS/reports/MaxSeto_su21.pdf.

[30] B. Naveh, "JGraphT," [Online]. Available: https://jgrapht.org/.

[31] SNAP, "Ringo: In-Memory Graph Exploration System," Stanford Network Analysis

Platform (SNAP), [Online]. Available: http://snap.stanford.edu/ringo/.

 49

APPENDIX

Appendix shows the command lines to execute the applications in VS Code terminal.

0. Before running Spark applications

Download fastuti-7.2.0.jar from http://www.java2s.com/example/jar/f/download-

fastutil720jar-file.html, and put it in this directory.

/home/NETID/<YOUR_NETID>/jars/fastutil-7.2.0.jar

1.1 Compile and run the MASS Java version of Graph Bridge

1) Compile

$ cd mass_java_appl/Graphs/GraphBridge/GraphBridge_MASS

$ mvn clean install package

2) Add fastutil dependency in maven pom.xml

<!-- https://mvnrepository.com/artifact/it.unimi.dsi/fastutil -->

<dependency>

 <groupId>it.unimi.dsi</groupId>

 <artifactId>fastutil</artifactId>

 <version>8.5.2</version>

</dependency>

3) Add run.sh file

cd target

java -jar GraphBridge-1.0-SNAPSHOT.jar

/home/NETID/<YOUR_NETID>/mass_java_appl/Graphs/GraphBridge/GraphBridge_

MASS/InputGraphs/UndirectedGraphs/$1.dsl $2 $3

4) Run

 50

$./run.sh <graph_dsl_file_name> <print_Places> <print_results_bridges>

* The default value for both Boolean values are false.

5) Example:

$./run.sh dataset true true

1.2 Compile and run the Spark version of Graph Bridge

1) Add compile.sh file

/usr/lib/jvm/java-1.8.0/bin/javac -cp /home/NETID/<YOUR_NETID>/spark-

2.3.1-bin-hadoop2.7/jars/spark-core_2.11-

2.3.1.jar:/home/NETID/<YOUR_NETID>/spark-2.3.1-bin-

hadoop2.7/jars/spark-sql_2.11-2.3.1.jar:/home/NETID/<YOUR_NETID>/spark-

2.3.1-bin-hadoop2.7/jars/scala-library-

2.11.8.jar:/home/NETID/<YOUR_NETID>/spark-2.3.1-bin-

hadoop2.7/jars/spark-graphx_2.11-2.3.1.jar:google-collections-

1.0.jar:/home/NETID/<YOUR_NETID>/jars/fastutil-7.2.0.jar $1.java

$2.java

/usr/lib/jvm/java-1.8.0/bin/jar -cvf $1.jar $1*.class $2*.class

2) Compile

./compile.sh GB Vertex

3) Add run.sh file

Run local

spark-submit --class GB --master local --jars

/home/NETID/<YOUR_NETID>/jars/fastutil-7.2.0.jar GB.jar

/home/NETID/<YOUR_NETID>/mass_java_appl/Graphs/GraphBridge/GraphBridge_

Spark/UndirectedGraphs/$1.txt $2 $3 $4

Run on clutser

spark-submit --class GB --master spark://cssmpi6h.uwb.edu:<YOUR_PORT>

--driver-memory 14G --executor-memory 14G --executor-cores 4 --jars

/home/NETID/<YOUR_NETID>/jars/fastutil-7.2.0.jar GB.jar

 51

/home/NETID/<YOUR_NETID>/mass_java_appl/Graphs/GraphBridge/GraphBridge_

Spark/UndirectedGraphs/$1.txt $2 $3 $4

4) Run

./run.sh <graph_txt_file_name> <print_results_bridges>

<print_generated_graphRDD> <print_each_graphRDD>

* The default value for all Boolean values are false. The last Boolean is mostly useful for

debugging.

5) Example:

./run.sh dataset true true true

2.1 Compile and run the MASS Java version of Minimum Spanning Tree

1) Compile

$ cd mass_java_appl/Graphs/MinimumSpanningTree/MinimumSpanningTree_MASS

$ mvn clean install package

2) Add fastutil dependency in maven pom.xml

<!-- https://mvnrepository.com/artifact/it.unimi.dsi/fastutil -->

<dependency>

 <groupId>it.unimi.dsi</groupId>

 <artifactId>fastutil</artifactId>

 <version>8.5.2</version>

</dependency>

3) Add run.sh file

cd target

java -jar MinimumSpanningTree-1.0-SNAPSHOT.jar

/home/NETID/<YOUR_NETID>/mass_java_appl/Graphs/MinimumSpanningTree/Mini

mumSpanningTree_MASS/InputGraphs/UndirectedGraphs/$1.dsl $2 $3 $4

 52

4) Run

./run.sh <graph_dsl_file_name> <#_of_agents> <print_Places>

<print_results_mst>

* The default value for both Boolean values are false.

5) Example:

./run.sh dataset 8 true true

2.2 Compile and run the Spark version of Minimum Spanning Tree

1) Add compile.sh file

/usr/lib/jvm/java-1.8.0/bin/javac -cp /home/NETID/<YOUR_NETID>/spark-

2.3.1-bin-hadoop2.7/jars/spark-core_2.11-

2.3.1.jar:/home/NETID/<YOUR_NETID>/spark-2.3.1-bin-

hadoop2.7/jars/spark-sql_2.11-2.3.1.jar:/home/NETID/<YOUR_NETID>/spark-

2.3.1-bin-hadoop2.7/jars/scala-library-

2.11.8.jar:/home/NETID/<YOUR_NETID>/spark-2.3.1-bin-

hadoop2.7/jars/spark-graphx_2.11-2.3.1.jar:google-collections-

1.0.jar:/home/NETID/<YOUR_NETID>/jars/fastutil-7.2.0.jar $1.java

$2.java $3.java

/usr/lib/jvm/java-1.8.0/bin/jar -cvf $1.jar $1*.class $2*.class

$3*.class

2) Compile

./compile.sh MST Vertex Edge

3) Add run.sh file

Run local

spark-submit --class MST --master local --driver-memory 14G --executor-

memory 14G --executor-cores 4 --jars

/home/NETID/<YOUR_NETID>/jars/fastutil-7.2.0.jar MST.jar

/home/NETID/<YOUR_NETID>/mass_java_appl/Graphs/MinimumSpanningTree/Mini

mumSpanningTree_Spark/InputGraphs/UndirectedGraphs/$1.txt $2 $3 $4

Run on clutser

 53

spark-submit --class MST --master

spark://cssmpi6h.uwb.edu:<YOUR_PORT> --driver-memory 14G --executor-

memory 14G --executor-cores 4 --jars

/home/NETID/<YOUR_NETID>/jars/fastutil-7.2.0.jar MST.jar

/home/NETID/<YOUR_NETID>/mass_java_appl/Graphs/MinimumSpanningTree/Mini

mumSpanningTree_Spark/InputGraphs/UndirectedGraphs/$1.txt $2 $3 $4

4) Run

./run.sh <graph_txt_file_name> <print_results_mst>

<print_generated_graphRDD> <print_each_graphRDD>

* The default value for all Boolean values are false. The last Boolean is mostly useful for

debugging.

5) Example:

./run.sh dataset true true true

3.1 Compile and run the MASS Java version of Strongly Connected Components

1) Compile

$ cd

mass_java_appl/Graphs/StronglyConnectedComponents/StronglyConnectedComp

onents_MASS

$ mvn clean install package

2) Add fastutil dependency in maven pom.xml

<!-- https://mvnrepository.com/artifact/it.unimi.dsi/fastutil -->

<dependency>

 <groupId>it.unimi.dsi</groupId>

 <artifactId>fastutil</artifactId>

 <version>8.5.2</version>

</dependency>

3) Add run.sh file

cd target

 54

java -jar StronglyConnectedComponents-1.0-SNAPSHOT.jar

/home/NETID/<YOUR_NETID>/mass_java_appl/Graphs/StronglyConnectedCompone

nts/StronglyConnectedComponents_MASS/InputGraphs/DirectedGraphs/$1.dsl

$2 $3

4) Run

$./run.sh <graph_dsl_file_name> <print_Places> <print_results_scc>

* The default value for both Boolean values are false.

5) Example:

$./run.sh dataset true true

3.2 Compile and run the Spark version of Strongly Connected Components

1) Add compile.sh file

/usr/lib/jvm/java-1.8.0/bin/javac -cp /home/NETID/<YOUR_NETID>/spark-

2.3.1-bin-hadoop2.7/jars/spark-core_2.11-

2.3.1.jar:/home/NETID/<YOUR_NETID>/spark-2.3.1-bin-

hadoop2.7/jars/spark-sql_2.11-2.3.1.jar:/home/NETID/<YOUR_NETID>/spark-

2.3.1-bin-hadoop2.7/jars/scala-library-

2.11.8.jar:/home/NETID/<YOUR_NETID>/spark-2.3.1-bin-

hadoop2.7/jars/spark-graphx_2.11-2.3.1.jar:google-collections-

1.0.jar:/home/NETID/<YOUR_NETID>/jars/fastutil-7.2.0.jar $1.java

$2.java

/usr/lib/jvm/java-1.8.0/bin/jar -cvf $1.jar $1*.class $2*.class

2) Compile

./compile.sh SCC Vertex

3) Add run.sh file

Run local

spark-submit --class SCC --master local --driver-memory 14G --

executor-memory 14G --executor-cores 4 --jars

/home/NETID/<YOUR_NETID>/jars/fastutil-7.2.0.jar SCC.jar

 55

/home/NETID/<YOUR_NETID>/mass_java_appl/Graphs/StronglyConnectedCompone

nts/StronglyConnectedComponents_Spark/InputGraphs/DirectedGraphs/$1.txt

$2 $3 $4

Run on clutser

spark-submit --class SCC --master spark://cssmpi6h.uwb.edu:
<YOUR_PORT>--driver-memory 14G --executor-memory 14G --executor-cores 4

--jars /home/NETID/<YOUR_NETID>/jars/fastutil-7.2.0.jar SCC.jar

/home/NETID/<YOUR_NETID>/mass_java_appl/Graphs/StronglyConnectedCompone

nts/StronglyConnectedComponents_Spark/InputGraphs/DirectedGraphs/$1.txt

$2 $3 $4

4) Run

./run.sh <graph_txt_file_name> <print_results_scc>

<print_generated_graphRDD> <print_each_graphRDD>

* The default value for all Boolean values are false. The last Boolean is mostly useful for

debugging.

5) Example:

./run.sh dataset true true true

	Chapter 1. Introduction
	1.1 Parallel Frameworks
	1.1.1 MASS
	1.1.2 Spark

	1.2 Motivation
	1.3 Project Goals

	Chapter 2. Background
	2.1 Parallel Libraries
	2.1.1 Graph in MASS Java
	2.1.1.1 GraphPlaces and VertexPlace
	2.1.1.2 GraphAgent

	2.1.2 Spark, GraphX and Pregel

	2.2 Graph Applications
	2.2.1 Graph Bridge
	2.2.2 Minimum Spanning Tree
	2.2.3 Strongly Connected Components

	Chapter 3. Related Works
	3.1 GraphLab
	3.2 GraphMat
	3.3 Summary

	Chapter 4. Parallelization Graph Applications
	4.1 Graph Bridge
	4.1.1 MASS Java Design and Implementation
	4.1.2 Spark Design and Implementation

	4.2 Minimum Spanning Tree
	4.2.1 MASS Java Design and Implementation
	4.2.2 Spark Design and Implementation

	4.3 Strongly Connected Components
	4.3.1 MASS Java Design and Implementation
	4.3.2 Spark Design and Implementation

	Chapter 5. Parallel Performance and Programmability Evaluation
	5.1 Graph Bridge
	5.1.1 Performance Comparison
	5.1.2 Programmability Comparison

	5.2 Minimum Spanning Tree
	5.2.1 Performance Comparison
	5.2.2 Programmability Comparison

	5.3 Strongly Connected Components
	5.3.1 Performance Comparison
	5.3.2 Programmability Comparison

	Chapter 6. Conclusion & Future Work
	Bibliography
	Appendix

