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Project Overview 

Multi-Agent Spatial Simulations Library (MASS) is a parallel-computing 

library for multi-agent and spatial simulation over a cluster of computing 

nodes. MASS mainly contains two classes: Agents and Places. The former 

represents a collection of mobile objects in a simulation, each named agent. 

The latter represents a multi-dimensional array space of entities, each named 

place. Agents can migrate between places, regardless of the specific node or 

thread they are associated with [1]. 

 

Most big-data computing handles text data with data-streaming tools such as 

MapReduce [2], Spark [3], and Storm [4]. However, for distributed data 

structures such as distributed graph, these data-streaming tools need to 

disassemble the data into texts that cannot remain in their original shape over 

distributed memory before processing the data. On the other hand, many 

graph applications including graph database such as Neo4j [5] requires 

maintaining the original structure of the graph over distributed memory to 

function. Therefore, it’s reasonable to introduce agent-based graph computing 

in which we deploy agents to graphs without modifying the original shape of 

the data structure [6]. 

 

Currently, agent-based modeling (ABM) libraries including MASS focus on 

parallelization of ABM simulation programs. However, database systems need 

to accept, handle, and protect many queries from different users, and ABM 

libraries do not have this capability. Therefore, in order to apply ABM libraries 

to database systems, in particular to graph database, the underlying graph 

must be accessible and modifiable by multiple users simultaneously. Given the 

above motivation, this project aims at investigating multi-user distributed 

shared graph (DSG) and trying to add this new feature to the MASS library. 

 

Project Goals 

1. The project will get started with surveys on several platforms that facilitate 

shared space: Unix Shared Memory, Hazelcast [7], Redis [8], Oracle 

Coherence [9], and AWS SimSpace Weaver [10]. Particularly, we will check 

whether they can be used to create a distributed shared graph and compare 

their speed of running the same graph algorithm.  

2. Based on the survey and prototyping, we will propose and implement a 

high-performance multi-user DSG. 

3. Our implementation will replace MASS Places or MASS GraphPlaces and 

furthermore facilitate relevant methods. 

4. After integrating DSG with MASS, we will complete verification and 

performance measurement for DSG-integrated MASS. 

 



Progress 

According to the project plan proposed, my first quarter should focus on 

implementing distributed shared graph using chosen platforms. Since we 

want to implement a high performance distributed shared graph without 

dependency on other platforms, we chose Unix Shared Memory as a basis for 

our own implementation. Because that we would like to use adjacency lists to 

represent graphs, we chose Hazelcast which offers high-performance 

key-value storage for comparison. 

 

Our initial implementation based on Unix Shared Memory is shown in Fig.1 

and Fig. 2. According to our definition of a distributed shared graph, the graph 

should be stored across a cluster in a distributed fashion and can be accessed 

by multiple users. For each graph vertex, when it is inserted, we pass its 

unique identifier (ID) to a hash function, and the output of the function 

indicates which node to store it. Each node will maintain a map that stores all 

pairs of vertex and corresponding adjacency list. As for accessing a vertex, we 

need to have the ID, and we pass it to the same hash function then we can 

know which node stores that vertex. 

 

Fig. 1 Distributed Graph Storage 

 

Unix Shared Memory is mainly used for the multi-user feature, and the details 

are shown in Fig.2. As I mentioned, each node maintains a map that stores 

vertices and adjacency lists, and we would like to store it in a file under the 

directory “/dev/shm”. The reason is that “/dev/shm” in Linux is an 

implementation of the shared memory concept, and it is in the virtual memory 

which guarantees good computing performance. I tested that a file stored 

under “/dev/shm” can be accessed by multiple users using a 

MappedByteBuffer [11] in Java programming. 



Overall, we have two scenarios. If a user is using the same computing node as 

the vertex he wants to access or insert, then just directly use 

MappedByteBuffer IO to access the map stored in “/dev/shm”. If a user wants 

to access a vertex and after using hash function for computing we find it’s in 

another node, then we initially planned to use either TCP or UDP to pass the 

data from or to the shared file in another node. This second scenario will 

contain two operations, one is the shared file access, and another is 

inter-process communication between processes running on different 

computing nodes. 

 

Fig.2 Initial Distributed Shared Graph Implementation 

 

Since we really want to have a high-performance implementation, we need to 

make sure that the most basic operations in graphs: inserting vertex and 

accessing vertex are quick and reliable. Therefore, after I verified that Unix 

Shared Memory has the feasibility to build a distributed shared graph, I 

compared the performance with Hazelcast, the results are shown in Table.1 

and Table.2. 

 

Table.1 Initial Vertex Insertion vs. Hazelcast 

#insert 

operations 

MappedByteBuffer  MappedByteBuffer+TCP Hazelcast 

1000 165 185 300 

10000 800 840 750 

100000 4000 4230 3500 



Table.2 Initial Vertex Access vs. Hazelcast 

#access 

operations 

MappedByteBuffer  MappedByteBuffer+TCP Hazelcast 

1000 300 320 100 

10000 1400 1440 350 

100000 6900 7130 2400 

 

As I mentioned, the “MappedByteBuffer” column corresponds to the user and 

vertex on the same computing node scenario, while “MappedByteBuffer+TCP” 

corresponds to the second scenario in which I tested using TCP to send data 

between different computing nodes. As we can see from Table.1 and Table.2, 

the insertion operation is of nearly equal performance with Hazelcast, but the 

access operations are nearly 3-4 times slower. 

 

According to the comparison results, we need to come up with a new design of 

the system in order to make our performance competitive. Therefore, I spent 

the rest of the quarter exploring ways to improve performance and refine the 

overall design of the system. I will present the results in the next section. 

 

Solution & Results 

Although the initial results are disappointing, but we find out that actually 

inter-process communications are quicker than shared memory operations, 

because we can see that the TCP communication time is minimal comparing 

to MappedByteBuffer operations. This is probably because that IO operations 

usually invokes the operating system so they are limited. I tried to use Java 

Native Interface (JNI) [12] to call the “shm_open()” [13] function in C/C++ to 

see if the shared memory operations performance can be better, but the 

improvement is minimal. 

 

Therefore, to improve access operation performance, we come up with a new 

design based on the previous observations. We simply cache the adjacency 

lists in the process memory. In this way, vertex access becomes much quicker 

directly using process memory. 

 

However, this new setting introduces another problem: when multiple users 

are present, how to access or insert vertex to the shared graph? The problem is 

now the most up-to-date data is stored in each user’s process memory, but not 

in shared memory, so an insert operation in one process needs to invalidate or 

update the data in other processes running on the same computing node as 

well.  

 

Since shared memory operations are slow, we tried to address this problem 

using inter-process communication. In the previous test I used TCP, it has 



good performance and offers good reliability for communication between 

different computing nodes. Originally, we planned to form a cluster of TCP 

connection between each pair of nodes in the cluster, and this is already 

resource costing because each process needs a thread to listen to each 

connection it maintains to receive messages. Not to mention that after adding 

the cache mechanism, multiple users in the same node also need to be 

connected which needs more threads listening on TCP connections. Therefore, 

we started to explore group communication protocols and frameworks in 

which one process only needs to listen on one broadcast address. We explored 

and compared the performance and implementation difficulty, and the results 

are shown in Table.3. Here one operation typically represents data send from 

one computing node and received by another computing node. 

 

Table.3 Inter-Process Communication Performance Comparison 

#operations TCP UDP Group JGroups Aeron 

1000 20 110 210 12 

10000 40 850 2100 37 

100000 230 3600 9400 116 

 

UDP Group Communication is achieved by UDP broadcast operations. Since 

UDP does not guarantee reliability, during my tests only about 22% the 

packets can be delivered with a single send and receive. JGroups [14] is a 

toolkit for reliable messaging. It can be used to create clusters whose nodes 

can send or broadcast messages to each other. However, from the testing 

results we can see it is very slow. Lastly, we tried Aeron [15], which is a 

framework originally included in MASS for messaging between different 

computing nodes. In Aeron, publishers can send message to specific channels 

and subscribers can subscribe to the channel so that they receive those 

messages, this can be seen as a group communication. Given its good 

performance compared to TCP and its nature of group communication, we 

finally decided to proceed with Aeron. 

 

After all the exploration and tests, we finalize the overall system design, and it 

is shown in Fig.3. For a vertex insertion or update operation, a process writes 

this modified vertex information through to the shared file in “/dev/shm” and 

at the same time broadcast this vertex information to all other processes 

running on same computing node through Aeron. As for vertex access, simply 

read from the cache in process memory. The above procedure is for the 

scenario that the vertex we want to access/insert is in the same node as the 

user’s process. If the vertex is stored in another node, we use Aeron again for 

messaging between different computing nodes and let the remote node 

perform local operations and send back the results. 



 
Fig.3 Finalized Distributed Shared Graph System Design 

 

I compared again the performance of this system with Hazelcast, still focusing 

on the two basic operations, and the results are shown in Table.4 and Table.5. 

The four scenarios are defined as follows: 

Local Insert: a process inserts/updates a vertex in its computing node, 

achieved by a write through to “/dev/shm” and a broadcast through Aeron. 

Remote Insert: a process inserts/updates a vertex in other computing node, 

achieved by a message send to the remote node through Aeron, then the 

remote node performs Local Insert. 

Local Access: a process accesses a vertex stored in its computing node, 

achieved by directly reading from the cache its process memory. 

Remote Access: a process accesses a vertex stored in another computing node, 

achieved by a message sent to the remote node through Aeron, then the 

remote node performs Local Access and sends back the result through Aeron 

again. 

 

Table.4 Vertex Insertion vs. Hazelcast 

#insert operations Local Insert  Remote Insert Hazelcast 

1000 177 189 300 

10000 837 874 750 

100000 4116 4232 3500 

 



Table.5 Vertex Access vs. Hazelcast 

#access 

operations 

Local Access Remote Access Hazelcast 

1000 0 24 100 

10000 1 75 350 

100000 9 241 2400 

 

From the results, we can see that the insert operations are of similar 

performance with Hazelcast while access operations are much quicker. It 

should be noted that Hazelcast is a distributed key-value storage and the data 

here is recorded when only one Hazelcast instance is running, so it can be 

slower when multiple nodes running Hazelcast and the data is distributed. 

Also, this insertion operation can be further optimized by writing only to the 

process memory and use another thread to periodically write back to the 

shared memory. 

 

Winter Quarter Plan 

Based on the current progress of the project, I proposed the winter quarter 

plan as shown in Table.6. 

 

Table.6 Winter Quarter Plan 

Quarter Week Plan Deliverables 

Winter 

2024 

1-2 Implement the proposed 

DSG design 

The proposed DSG 

implementation. 

3-4 Implement DSG using 

Hazelcast, functionality 

and performance tests of 

both implementations 

A DSG implementation in 

Hazelcast, comparison of our 

implementation with 

Hazelcast. 

5-6 Preliminary MASS Places 

and GraphPlaces 

implementation on top of 

our DSG implementation 

A preliminary version of 

MASS Places and 

GraphPlaces. 

7-8 Incremental 

implementation of MASS 

Places and GraphPlaces 

and performance tune-up. 

An incremental version of 

MASS Places and 

GraphPlaces. 

9-10 Merging new MASS Places 

and GraphPlaces to the 

entire MASS library. 

A new version of MASS with 

new implementation 

integrated. 

11 Write term report. A term report submission to 

the committee. 

 



Summary 

Overall, during this quarter we encountered performance problems when 

comparing the initial version of DSG with Hazelcast but we managed to solve 

the problem and proposed a better designed system. Also, since for the first 

two weeks I read through the code base of MASS and I helped with the final 

project of CSS 534, I became more familiar with the MASS Java library. 

Although according to the original project plan I’m a little behind the schedule, 

I’m still confident that the goals can be met by devoting more effort to the 

project in the coming two quarters. 
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Appendix 

Since I haven’t started working on the actual system, all my code this quarter 

are mainly testing the feasibility and performance. That’s the reason I don’t 

provide explanation on my code here. I uploaded all my testing code to 

mass_java_core bitbucket repository, under the branch “chrisma/develop”. 

For code under directory “hazelcast”, they can be compiled using the shell 

scripts. For code under directory “unixshm”, they can be simply compiled by 

“javac *.java”. As for the code under “unixshm/JNI”, I created a README file 

in that directory which contains the step-by-step command to compile and 

run the code. 

Link: 

https://bitbucket.org/mass_library_developers/mass_java_core/src/ae13e61

71709ca12bd2349438eeef14252756819/ 

https://bitbucket.org/mass_library_developers/mass_java_core/src/ae13e6171709ca12bd2349438eeef14252756819/
https://bitbucket.org/mass_library_developers/mass_java_core/src/ae13e6171709ca12bd2349438eeef14252756819/

