

An Implementation of Multi-User

Distributed Shared Graph
Yuan Ma

Term Report

submitted in partial fulfillment of the

requirements of the degree of

Master of Science in Computer Science & Software Engineering

University of Washington

December 13, 2023

Project Committee:

Professor Munehiro Fukuda, Committee Chair

Professor Kelvin Sung, Committee Member

Professor Robert Dimpsey, Committee Member

Project Overview

Multi-Agent Spatial Simulations Library (MASS) is a parallel-computing

library for multi-agent and spatial simulation over a cluster of computing

nodes. MASS mainly contains two classes: Agents and Places. The former

represents a collection of mobile objects in a simulation, each named agent.

The latter represents a multi-dimensional array space of entities, each named

place. Agents can migrate between places, regardless of the specific node or

thread they are associated with [1].

Most big-data computing handles text data with data-streaming tools such as

MapReduce [2], Spark [3], and Storm [4]. However, for distributed data

structures such as distributed graph, these data-streaming tools need to

disassemble the data into texts that cannot remain in their original shape over

distributed memory before processing the data. On the other hand, many

graph applications including graph database such as Neo4j [5] requires

maintaining the original structure of the graph over distributed memory to

function. Therefore, it’s reasonable to introduce agent-based graph computing

in which we deploy agents to graphs without modifying the original shape of

the data structure [6].

Currently, agent-based modeling (ABM) libraries including MASS focus on

parallelization of ABM simulation programs. However, database systems need

to accept, handle, and protect many queries from different users, and ABM

libraries do not have this capability. Therefore, in order to apply ABM libraries

to database systems, in particular to graph database, the underlying graph

must be accessible and modifiable by multiple users simultaneously. Given the

above motivation, this project aims at investigating multi-user distributed

shared graph (DSG) and trying to add this new feature to the MASS library.

Project Goals

1. The project will get started with surveys on several platforms that facilitate

shared space: Unix Shared Memory, Hazelcast [7], Redis [8], Oracle

Coherence [9], and AWS SimSpace Weaver [10]. Particularly, we will check

whether they can be used to create a distributed shared graph and compare

their speed of running the same graph algorithm.

2. Based on the survey and prototyping, we will propose and implement a

high-performance multi-user DSG.

3. Our implementation will replace MASS Places or MASS GraphPlaces and

furthermore facilitate relevant methods.

4. After integrating DSG with MASS, we will complete verification and

performance measurement for DSG-integrated MASS.

Progress

According to the project plan proposed, my first quarter should focus on

implementing distributed shared graph using chosen platforms. Since we

want to implement a high performance distributed shared graph without

dependency on other platforms, we chose Unix Shared Memory as a basis for

our own implementation. Because that we would like to use adjacency lists to

represent graphs, we chose Hazelcast which offers high-performance

key-value storage for comparison.

Our initial implementation based on Unix Shared Memory is shown in Fig.1

and Fig. 2. According to our definition of a distributed shared graph, the graph

should be stored across a cluster in a distributed fashion and can be accessed

by multiple users. For each graph vertex, when it is inserted, we pass its

unique identifier (ID) to a hash function, and the output of the function

indicates which node to store it. Each node will maintain a map that stores all

pairs of vertex and corresponding adjacency list. As for accessing a vertex, we

need to have the ID, and we pass it to the same hash function then we can

know which node stores that vertex.

Fig. 1 Distributed Graph Storage

Unix Shared Memory is mainly used for the multi-user feature, and the details

are shown in Fig.2. As I mentioned, each node maintains a map that stores

vertices and adjacency lists, and we would like to store it in a file under the

directory “/dev/shm”. The reason is that “/dev/shm” in Linux is an

implementation of the shared memory concept, and it is in the virtual memory

which guarantees good computing performance. I tested that a file stored

under “/dev/shm” can be accessed by multiple users using a

MappedByteBuffer [11] in Java programming.

Overall, we have two scenarios. If a user is using the same computing node as

the vertex he wants to access or insert, then just directly use

MappedByteBuffer IO to access the map stored in “/dev/shm”. If a user wants

to access a vertex and after using hash function for computing we find it’s in

another node, then we initially planned to use either TCP or UDP to pass the

data from or to the shared file in another node. This second scenario will

contain two operations, one is the shared file access, and another is

inter-process communication between processes running on different

computing nodes.

Fig.2 Initial Distributed Shared Graph Implementation

Since we really want to have a high-performance implementation, we need to

make sure that the most basic operations in graphs: inserting vertex and

accessing vertex are quick and reliable. Therefore, after I verified that Unix

Shared Memory has the feasibility to build a distributed shared graph, I

compared the performance with Hazelcast, the results are shown in Table.1

and Table.2.

Table.1 Initial Vertex Insertion vs. Hazelcast

#insert

operations

MappedByteBuffer MappedByteBuffer+TCP Hazelcast

1000 165 185 300

10000 800 840 750

100000 4000 4230 3500

Table.2 Initial Vertex Access vs. Hazelcast

#access

operations

MappedByteBuffer MappedByteBuffer+TCP Hazelcast

1000 300 320 100

10000 1400 1440 350

100000 6900 7130 2400

As I mentioned, the “MappedByteBuffer” column corresponds to the user and

vertex on the same computing node scenario, while “MappedByteBuffer+TCP”

corresponds to the second scenario in which I tested using TCP to send data

between different computing nodes. As we can see from Table.1 and Table.2,

the insertion operation is of nearly equal performance with Hazelcast, but the

access operations are nearly 3-4 times slower.

According to the comparison results, we need to come up with a new design of

the system in order to make our performance competitive. Therefore, I spent

the rest of the quarter exploring ways to improve performance and refine the

overall design of the system. I will present the results in the next section.

Solution & Results

Although the initial results are disappointing, but we find out that actually

inter-process communications are quicker than shared memory operations,

because we can see that the TCP communication time is minimal comparing

to MappedByteBuffer operations. This is probably because that IO operations

usually invokes the operating system so they are limited. I tried to use Java

Native Interface (JNI) [12] to call the “shm_open()” [13] function in C/C++ to

see if the shared memory operations performance can be better, but the

improvement is minimal.

Therefore, to improve access operation performance, we come up with a new

design based on the previous observations. We simply cache the adjacency

lists in the process memory. In this way, vertex access becomes much quicker

directly using process memory.

However, this new setting introduces another problem: when multiple users

are present, how to access or insert vertex to the shared graph? The problem is

now the most up-to-date data is stored in each user’s process memory, but not

in shared memory, so an insert operation in one process needs to invalidate or

update the data in other processes running on the same computing node as

well.

Since shared memory operations are slow, we tried to address this problem

using inter-process communication. In the previous test I used TCP, it has

good performance and offers good reliability for communication between

different computing nodes. Originally, we planned to form a cluster of TCP

connection between each pair of nodes in the cluster, and this is already

resource costing because each process needs a thread to listen to each

connection it maintains to receive messages. Not to mention that after adding

the cache mechanism, multiple users in the same node also need to be

connected which needs more threads listening on TCP connections. Therefore,

we started to explore group communication protocols and frameworks in

which one process only needs to listen on one broadcast address. We explored

and compared the performance and implementation difficulty, and the results

are shown in Table.3. Here one operation typically represents data send from

one computing node and received by another computing node.

Table.3 Inter-Process Communication Performance Comparison

#operations TCP UDP Group JGroups Aeron

1000 20 110 210 12

10000 40 850 2100 37

100000 230 3600 9400 116

UDP Group Communication is achieved by UDP broadcast operations. Since

UDP does not guarantee reliability, during my tests only about 22% the

packets can be delivered with a single send and receive. JGroups [14] is a

toolkit for reliable messaging. It can be used to create clusters whose nodes

can send or broadcast messages to each other. However, from the testing

results we can see it is very slow. Lastly, we tried Aeron [15], which is a

framework originally included in MASS for messaging between different

computing nodes. In Aeron, publishers can send message to specific channels

and subscribers can subscribe to the channel so that they receive those

messages, this can be seen as a group communication. Given its good

performance compared to TCP and its nature of group communication, we

finally decided to proceed with Aeron.

After all the exploration and tests, we finalize the overall system design, and it

is shown in Fig.3. For a vertex insertion or update operation, a process writes

this modified vertex information through to the shared file in “/dev/shm” and

at the same time broadcast this vertex information to all other processes

running on same computing node through Aeron. As for vertex access, simply

read from the cache in process memory. The above procedure is for the

scenario that the vertex we want to access/insert is in the same node as the

user’s process. If the vertex is stored in another node, we use Aeron again for

messaging between different computing nodes and let the remote node

perform local operations and send back the results.

Fig.3 Finalized Distributed Shared Graph System Design

I compared again the performance of this system with Hazelcast, still focusing

on the two basic operations, and the results are shown in Table.4 and Table.5.

The four scenarios are defined as follows:

Local Insert: a process inserts/updates a vertex in its computing node,

achieved by a write through to “/dev/shm” and a broadcast through Aeron.

Remote Insert: a process inserts/updates a vertex in other computing node,

achieved by a message send to the remote node through Aeron, then the

remote node performs Local Insert.

Local Access: a process accesses a vertex stored in its computing node,

achieved by directly reading from the cache its process memory.

Remote Access: a process accesses a vertex stored in another computing node,

achieved by a message sent to the remote node through Aeron, then the

remote node performs Local Access and sends back the result through Aeron

again.

Table.4 Vertex Insertion vs. Hazelcast

#insert operations Local Insert Remote Insert Hazelcast

1000 177 189 300

10000 837 874 750

100000 4116 4232 3500

Table.5 Vertex Access vs. Hazelcast

#access

operations

Local Access Remote Access Hazelcast

1000 0 24 100

10000 1 75 350

100000 9 241 2400

From the results, we can see that the insert operations are of similar

performance with Hazelcast while access operations are much quicker. It

should be noted that Hazelcast is a distributed key-value storage and the data

here is recorded when only one Hazelcast instance is running, so it can be

slower when multiple nodes running Hazelcast and the data is distributed.

Also, this insertion operation can be further optimized by writing only to the

process memory and use another thread to periodically write back to the

shared memory.

Winter Quarter Plan

Based on the current progress of the project, I proposed the winter quarter

plan as shown in Table.6.

Table.6 Winter Quarter Plan

Quarter Week Plan Deliverables

Winter

2024

1-2 Implement the proposed

DSG design

The proposed DSG

implementation.

3-4 Implement DSG using

Hazelcast, functionality

and performance tests of

both implementations

A DSG implementation in

Hazelcast, comparison of our

implementation with

Hazelcast.

5-6 Preliminary MASS Places

and GraphPlaces

implementation on top of

our DSG implementation

A preliminary version of

MASS Places and

GraphPlaces.

7-8 Incremental

implementation of MASS

Places and GraphPlaces

and performance tune-up.

An incremental version of

MASS Places and

GraphPlaces.

9-10 Merging new MASS Places

and GraphPlaces to the

entire MASS library.

A new version of MASS with

new implementation

integrated.

11 Write term report. A term report submission to

the committee.

Summary

Overall, during this quarter we encountered performance problems when

comparing the initial version of DSG with Hazelcast but we managed to solve

the problem and proposed a better designed system. Also, since for the first

two weeks I read through the code base of MASS and I helped with the final

project of CSS 534, I became more familiar with the MASS Java library.

Although according to the original project plan I’m a little behind the schedule,

I’m still confident that the goals can be met by devoting more effort to the

project in the coming two quarters.

References

[1] “Agent-Navigable Dynamic Graph Construction and Visualization over

Distributed Memory”, Accessed on: July 13, 2023. Available at:

http://faculty.washington.edu/mfukuda/papers/biggraphs20.pdf

[2] “MapReduce”, Accessed on: July 18, 2023. Available at:

https://hadoop.apache.org/

[3] “Spark”, Accessed on: July 18, 2023. Available at:

https://spark.apache.org/

[4] “Storm”, Accessed on: July 18, 2023. Available at:

https://storm.apache.org/

[5] “Neo4j”, Accessed on: July 18, 2023. Available at: https://neo4j.com/

[6] “Pipelining Graph Construction and Agent-based Computation over

Distributed Memory”, Accessed on: July 13, 2023. Available at:

http://faculty.washington.edu/mfukuda/papers/biggraphs22.pdf

[7] “Hazelcast”, Accessed on: July 18, 2023. Available at:

https://hazelcast.com/

[8] “Redis”, Accessed on: July 18, 2023. Available at: https://redis.com/

[9] “Oracle Coherence”, Accessed on: July 18, 2023. Available at:

https://www.oracle.com/java/coherence/

[10] “AWS SimSpace Weaver”, Accessed on: July 18, 2023. Available at:

https://aws.amazon.com/simspaceweaver/

[11] “Class MappedByteBuffer”, Accessed on: July 18, 2023. Available at:

https://docs.oracle.com/javase/8/docs/api/java/nio/MappedByteBuffer.html

[12] “Java Native Interface”, Accessed on: December 11, 2023. Available at:

https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/intro.html

[13] SHM_OPEN - Linux manual page. Accessed on: December 11, 2023.

Available at: https://man7.org/linux/man-pages/man3/shm_open.3.html

[14] JGroups. Accessed on: December 11, 2023. Available at:

http://www.jgroups.org/

[15] Aeron. Accessed on: December 11, 2023. Available at: https://aeron.io/

http://faculty.washington.edu/mfukuda/papers/biggraphs20.pdf
https://hadoop.apache.org/
https://spark.apache.org/
https://storm.apache.org/
https://neo4j.com/
http://faculty.washington.edu/mfukuda/papers/biggraphs22.pdf
https://hazelcast.com/
https://redis.com/
https://www.oracle.com/java/coherence/
https://aws.amazon.com/simspaceweaver/
https://docs.oracle.com/javase/8/docs/api/java/nio/MappedByteBuffer.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/intro.html
https://man7.org/linux/man-pages/man3/shm_open.3.html
http://www.jgroups.org/
https://aeron.io/

Appendix

Since I haven’t started working on the actual system, all my code this quarter

are mainly testing the feasibility and performance. That’s the reason I don’t

provide explanation on my code here. I uploaded all my testing code to

mass_java_core bitbucket repository, under the branch “chrisma/develop”.

For code under directory “hazelcast”, they can be compiled using the shell

scripts. For code under directory “unixshm”, they can be simply compiled by

“javac *.java”. As for the code under “unixshm/JNI”, I created a README file

in that directory which contains the step-by-step command to compile and

run the code.

Link:

https://bitbucket.org/mass_library_developers/mass_java_core/src/ae13e61

71709ca12bd2349438eeef14252756819/

https://bitbucket.org/mass_library_developers/mass_java_core/src/ae13e6171709ca12bd2349438eeef14252756819/
https://bitbucket.org/mass_library_developers/mass_java_core/src/ae13e6171709ca12bd2349438eeef14252756819/

