

An Implementation of Multi-User

Distributed Shared Graph
Yuan Ma

Term Report

submitted in partial fulfillment of the

requirements of the degree of

Master of Science in Computer Science & Software Engineering

University of Washington

March 12, 2024

Project Committee:

Professor Munehiro Fukuda, Committee Chair

Professor Kelvin Sung, Committee Member

Professor Robert Dimpsey, Committee Member

Project Overview

Multi-Agent Spatial Simulations Library (MASS) is a parallel-computing

library for multi-agent and spatial simulation over a cluster of computing

nodes. MASS mainly contains two classes: Agents and Places. The former

represents a collection of mobile objects in a simulation, each named agent.

The latter represents a multi-dimensional array space of entities, each named

place. Agents can migrate between places, regardless of the specific node or

thread they are associated with [1].

Most big-data computing handles text data with data-streaming tools such as

MapReduce [2], Spark [3], and Storm [4]. However, for distributed data

structures such as distributed graph, these data-streaming tools need to

disassemble the data into texts that cannot remain in their original shape over

distributed memory before processing the data. On the other hand, many

graph applications including graph database such as Neo4j [5] requires

maintaining the original structure of the graph over distributed memory to

function. Therefore, it’s reasonable to introduce agent-based graph computing

in which we deploy agents to graphs without modifying the original shape of

the data structure [6].

Currently, agent-based modeling (ABM) libraries including MASS focus on

parallelization of ABM simulation programs. However, database systems need

to accept, handle, and protect many queries from different users, and ABM

libraries do not have this capability. Therefore, in order to apply ABM libraries

to database systems, in particular to graph database, the underlying graph

must be accessible and modifiable by multiple users simultaneously. Given the

above motivation, this project aims at investigating multi-user distributed

shared graph (DSG) and trying to add this new feature to the MASS library.

Project Goals

1. The project will get started with surveys on several platforms that facilitate

shared space: Unix Shared Memory, Hazelcast [7], Redis [8], Oracle

Coherence [9], and AWS SimSpace Weaver [10]. Particularly, we will check

whether they can be used to create a distributed shared graph and compare

their speed of running the same graph algorithm.

2. Based on the survey and prototyping, we will propose and implement a

high-performance multi-user DSG.

3. Our implementation will replace MASS GraphPlaces and furthermore

facilitate relevant methods.

4. After integrating DSG with MASS, we will complete verification and

performance measurement for DSG-integrated MASS.

Progress

During the autumn quarter we encountered many performance problems, but

we managed to solve them and proposed a high-performance distributed

shared graph system. Therefore, during this quarter, my first work is to

implement the whole system.

Before explaining the whole system, I first need to introduce the tools that I

used in my implementation.

To make the graph distributed, we use JSCH [11]. JSCH is a java utility for

establishing remote connections using SSH2, this allows users to execute

commands in remote machines, so we can use it to launch remote processes.

After launching remote processes, the channel between the current java

program and the remote java program will be established and we can also use

it to send or receive messages.

As for the shared feature, mainly two tools are used. The first is Unix Shared

Memory, which has been introduced in the term report of autumn quarter.

Shared Memory is a memory shared between 2 or more processes, it’s a way of

inter-process communication. In order for the graph to be shared among

different user’s processes, we want the graph to be stored in shared memory.

To be more specific, in Linux, the directory “/dev/shm” is an implementation

of the shared memory concept, and it is in the virtual memory which

guarantees good performance. We can create a file under this directory so that

it can be accessed by multiple users. The shared memory access operations

can be achieved by the class MappedByteBuffer [12] in Java programming.

Another tool is called Aeron [13]. Aeron offers a low-latency message

transport system that guarantees performance and reliability. During the

autumn quarter I was testing the speed of those common communication

protocols such as TCP, UDP and Aeron, and I came into the conclusion that

Aeron is the best solution for implementing the shared feature. Aeron uses

publication and subscription mechanisms; publishers can send messages to

specific channels and subscribers can subscribe to the channel so that they

receive those messages. A channel is specified by an IP address, a port, and a

stream ID, which means even if we only use one IP and one port, we can

create multiple independent streams by changing the stream ID. The detailed

technique of Aeron can be found in Fig.1. We can see that all subscribers of a

channel will receive messages from publishers of the same channel. If there’s a

subscriber who joined the channel late, then he will only receive the messages

sent later than his join time. This model is suitable for our shared feature

because all the users in the same node only needs to join the same channel to

get the latest updates from other users.

Fig.1 Aeron Mechanism Explanation

Now, I would like to explain our implementation strategy with the system

design shown in Fig.2. First, from the main node, we can use JSCH to launch

remote processes in other computing nodes. We backup our graph in the files

stored in shared memory, so that multiple users can access the same shared

graph, and each node only stores a portion of the graph, so as a result the

graph is distributed and shared. For a fast performance, we introduce a cache

in the process that reads the local graph data from the shared memory when

the program started. Although the cache and the shared memory both contain

the most up-to-date data, Aeron operations are in general quicker than shared

memory operations so when one user modified the data the update will be

sent to all other users working on the same graph using Aeron.

The two basic operations for a graph are vertex insertion and vertex access.

For a vertex insertion or update operation, a process writes this modified

vertex information through to the shared file in “/dev/shm” and at the same

time send this vertex information to all other processes running on same

computing node through Aeron. This caching scheme is a software

implementation of write-through write-update policy, most found in snoop

cache. As for vertex access, simply read from the cache in process memory.

The procedure just mentioned is for the scenario that the vertex we want to

access, or insert is in the same node as the user’s process. If the vertex is

stored in another node, we use the TCP connection between master node and

other nodes to inform and let the remote node perform local operations and

send back the results.

Fig.2 Distributed Shared Graph System Design from Autumn Quarter

Early this winter quarter, I implemented the whole system and compared the

performance with the Hazelcast implementation (which serves as a baseline

competitor) by Michael Robinson, an undergraduate student of our lab. When

the graph size is small, the performance of DSG is quite good. However, when

we start to test the program with graph of over 3000 vertices, the performance

dropped significantly, and we found that both graph insertion and access

operations are much slower than Hazelcast. Therefore, I started to test and

analyze our implementation again and try to find solutions.

For graph insertion operation, as I mentioned before we used write through

mechanism which guarantees both the cache and the shared memory contains

the most up-to-date data. The shared memory operation is achieved by

MappedByteBuffer in Java, and for the write operation we are only allowed to

serialize an object and then write it to the shared memory. In each node, we

are maintaining a collection of key-value-pairs where key is the vertex ID and

value is the list of neighbors of that vertex. With the limitation of

MappedByteBuffer, each time when we insert or update the vertex, we need to

serialize and write the whole collection, this makes the performance poor

when graph size increases. After realizing the bottleneck of shared memory

operations in Java, we decided to switch to write-back write-update policy,

which means we only write back all data to shared memory when the program

terminates. However, this introduces another problem, which is the data

stored in shared memory is no longer up to date.

Previously, when each user starts the program, the program will first read the

shared memory to get the data, and that data is guaranteed to be the same as

data stored in other user’s processes. After switching to write-back policy, if a

running program from a user has modified the shared graph data but at the

same time another user joined the same shared graph, the second user can

only get the updated data from the first user. Therefore, I spent another two

weeks to design and implement the graph initialization using Aeron. The

detailed implementation can be found in Fig.3. When the program starts, it

will first read the shared memory, but the initialized flag is set to false. Then

an initialization request will be sent to the Aeron channel, and it will be

received by all other users currently working on the same shared graph. They

will reply with the most up-to-date data, and the new process will update its

data correspondingly and set the initialized flag to be true. Once the initialized

flag is set, later response messages will be ignored which avoided waste of

resources to deal with all response messages. The above procedure happens in

all related computing nodes.

Fig.3 Graph Initialization Mechanism

As for graph access operation, I found that local access operations are quick

while remote access operations become slow as graph size increases. To be

more specific, when the vertex is stored in a remote node, the main program

sends a message to remote node asking for the data and the remote node will

reply by sending the list of neighbors of that vertex. When graph size is large,

the number of neighbors of the vertices will also increase, so as a result the

response message from the remote node is quite large. However, I during the

last quarter when I was testing the performance of the communication

protocols, TCP performed very well when dealing with large messages. After

reviewing the test data, I realized that the connection established by JSCH

may be different from a customized TCP connection established by Sockets.

Therefore, I tested and confirmed that we need to establish a network of TCP

connections between different computing nodes to achieve good performance.

Based on the observation, I implemented the TCP network, and the graph

access operation is optimized by using the customized TCP connections.

I finalized the DSG system in week 9. The finalized design is shown in Fig.4.

The detailed performance analysis will be presented in the next section.

Fig.4 Finalized Distributed Shared Graph Implementation

For the last two weeks of the quarter, I carefully examined the MASS Java

Core library and discussed how to add my implementation into our library.

Initially, I tried to modify PlacesBase.java by changing the distributed array

into a distributed HashMap. However, according to the inheritance structure

shown in Fig.5, there are too many dependencies on PlacesBase so considering

the time left I decided to only work on GraphPlaces.java. Currently

GraphPlaces store vertices in a Vector data structure, and I’m planning to

change it to HashMap and further facilitate relevant functions.

Fig.5 PlacesBase Dependencies

Results

After finalizing the DSG implementation, I tested and compared the

performance of vertex insertion and access operations with Hazelcast

implementation with Michael Robinson, and the results are shown in Table.1

and Table.2.

Table.1 Vertex Insertion Total Time DSG vs. Hazelcast

Vertex Insertion Total Time (ms) Graph Size 3000 Graph Size 5000

DSG – 1 node 1870 3796

Hazelcast – 1 node 809 1779

DSG – 4 nodes 2809 7448

Hazelcast – 4 nodes 7228 13722

Table.2 Vertex Access Total Time DSG vs. Hazelcast

Vertex Access Total Time (ms) Graph Size 3000 Graph Size 5000

DSG – 1 node 4 9

Hazelcast – 1 node 540 1400

DSG – 4 nodes 2390 5274

Hazelcast – 4 nodes 3942 7800

From the results, we can see for vertex insertion DSG performs much better

when we use multiple computing nodes, while for vertex access DSG

outperformed Hazelcast in both single-node and multi-node scenarios.

After I implemented the DSG, Michael Robinson helped implementing many

graph queries based on DSG and Hazelcast. The graph queries include getting

neighbors of a vertex, getting parents of a vertex, getting grandparents of a

vertex, getting vertex with minimum edges and getting highest degree vertex.

Table.3 shows a complete performance comparison of DSG and Hazelcast

when executing the same graph queries. The data is measured by Michael

Robinson, and he is using a big graph with 100000 vertices and 3999366

edges.

Table.3 Graph Queries Performance Comparison DSG vs. Hazelcast

Avg Time (ms) # Computing

Nodes

DSG Hazelcast

Get Neighbors 1 0.02 0.23

 4 1.03 0.94

 8 0.71 1.09

Get Parents 1 9.83 31.53

 4 6.39 29.65

 8 5.48 16.41

Get GrandParents 1 78.2 118.14

 4 28.49 101.73

 8 19.15 57.71

Get Min Edges 1 2.84 24.9

 4 2.03 22.96

 8 1.82 11.01

Get Highest Degree 1 5.7 54.05

 4 3.88 49.47

 8 3.42 24.6

From Table.3, we can see that DSG performs better than Hazelcast in general.

The above results show that we have successfully developed a

high-performance distributed shared graph system.

Spring Quarter Plan

Based on the current progress of the project, I proposed the spring quarter

plan as shown in Table.4.

Table.4 Spring Quarter Plan

Quarter Week Plan Deliverables

Spring

2024

1-2 Preliminary MASS

GraphPlaces

implementation on top of

our DSG implementation.

A preliminary version of

MASS GraphPlaces.

3-4 Final version of MASS

GraphPlaces with all

specifications achieved.

Final version of MASS with

DSG integrated.

5-6 Write white paper,

co-author an IEEE Cluser

2024 conference paper

Draft white paper

7-8 Write white paper, prepare

for final defense.

Draft presentation for final

defense.

9-10 Prepare for final defense. Presentation for final defense.

11 Complete white paper Finalized white paper.

Summary

Overall, during this quarter we encountered performance problems when

comparing the initial version of DSG with Hazelcast but we managed to solve

the problem and proposed a better designed system. According to the

performance comparison with Hazelcast, we have successfully developed a

high-performance distributed shared graph. Also, I started to add my

implementation into MASS, and I decided to only focus on GraphPlaces in the

remaining time. Although according to the original project plan, I’m a little

behind the schedule, I’m still confident that the goals can be met by devoting

more effort to the project.

References

[1] “Agent-Navigable Dynamic Graph Construction and Visualization over

Distributed Memory”, Accessed on: July 13, 2023. Available at:

http://faculty.washington.edu/mfukuda/papers/biggraphs20.pdf

[2] “MapReduce”, Accessed on: July 18, 2023. Available at:

https://hadoop.apache.org/

[3] “Spark”, Accessed on: July 18, 2023. Available at:

https://spark.apache.org/

[4] “Storm”, Accessed on: July 18, 2023. Available at:

https://storm.apache.org/

[5] “Neo4j”, Accessed on: July 18, 2023. Available at: https://neo4j.com/

[6] “Pipelining Graph Construction and Agent-based Computation over

Distributed Memory”, Accessed on: July 13, 2023. Available at:

http://faculty.washington.edu/mfukuda/papers/biggraphs20.pdf
https://hadoop.apache.org/
https://spark.apache.org/
https://storm.apache.org/
https://neo4j.com/

http://faculty.washington.edu/mfukuda/papers/biggraphs22.pdf

[7] “Hazelcast”, Accessed on: July 18, 2023. Available at:

https://hazelcast.com/

[8] “Redis”, Accessed on: July 18, 2023. Available at: https://redis.com/

[9] “Oracle Coherence”, Accessed on: July 18, 2023. Available at:

https://www.oracle.com/java/coherence/

[10] “AWS SimSpace Weaver”, Accessed on: July 18, 2023. Available at:

https://aws.amazon.com/simspaceweaver/

[11] “JCraft JSch - Java Secure Channel”, Accessed on: 10 March 2024.

Available at: http://www.jcraft.com/jsch/

[12] “Class MappedByteBuffer”, Accessed on: July 18, 2023. Available at:

https://docs.oracle.com/javase/8/docs/api/java/nio/MappedByteBuffer.html

[13] “Aeron”, Accessed on: December 11, 2023. Available at: https://aeron.io/

Appendix

I uploaded all my DSG code to mass_java_core bitbucket repository, under

the branch “chrisma/develop”. The DSG core library and two testing programs

are located under the directory “dsg”. I created a guide to compile and run

DSG, and the link is provided below.

DSG Guide Link:

https://docs.google.com/document/d/1HeCqWunFmAAbIXNma9goPufWY8

wdtwWd/edit?usp=sharing&ouid=116473289907246068929&rtpof=true&sd

=true

Link to DSG Code:

https://bitbucket.org/mass_library_developers/mass_java_core/src/9586b4

d0b7f9bdcaa59d620cdb48876382132cf5/dsg/?at=chrisma%2Fdevelop

http://faculty.washington.edu/mfukuda/papers/biggraphs22.pdf
https://hazelcast.com/
https://redis.com/
https://www.oracle.com/java/coherence/
https://aws.amazon.com/simspaceweaver/
http://www.jcraft.com/jsch/
https://docs.oracle.com/javase/8/docs/api/java/nio/MappedByteBuffer.html
https://aeron.io/
https://docs.google.com/document/d/1HeCqWunFmAAbIXNma9goPufWY8wdtwWd/edit?usp=sharing&ouid=116473289907246068929&rtpof=true&sd=true
https://docs.google.com/document/d/1HeCqWunFmAAbIXNma9goPufWY8wdtwWd/edit?usp=sharing&ouid=116473289907246068929&rtpof=true&sd=true
https://docs.google.com/document/d/1HeCqWunFmAAbIXNma9goPufWY8wdtwWd/edit?usp=sharing&ouid=116473289907246068929&rtpof=true&sd=true
https://bitbucket.org/mass_library_developers/mass_java_core/src/9586b4d0b7f9bdcaa59d620cdb48876382132cf5/dsg/?at=chrisma%2Fdevelop
https://bitbucket.org/mass_library_developers/mass_java_core/src/9586b4d0b7f9bdcaa59d620cdb48876382132cf5/dsg/?at=chrisma%2Fdevelop

