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Project Overview 

Multi-Agent Spatial Simulations Library (MASS) is a parallel-computing 

library for multi-agent and spatial simulation over a cluster of computing 

nodes. MASS mainly contains two classes: Agents and Places. The former 

represents a collection of mobile objects in a simulation, each named agent. 

The latter represents a multi-dimensional array space of entities, each named 

place. Agents can migrate between places, regardless of the specific node or 

thread they are associated with [1]. 

 

Most big-data computing handles text data with data-streaming tools such as 

MapReduce [2], Spark [3], and Storm [4]. However, for distributed data 

structures such as distributed graph, these data-streaming tools need to 

disassemble the data into texts that cannot remain in their original shape over 

distributed memory before processing the data. On the other hand, many 

graph applications including graph database such as Neo4j [5] requires 

maintaining the original structure of the graph over distributed memory to 

function. Therefore, it’s reasonable to introduce agent-based graph computing 

in which we deploy agents to graphs without modifying the original shape of 

the data structure [6]. 

 

Currently, agent-based modeling (ABM) libraries including MASS focus on 

parallelization of ABM simulation programs. However, database systems need 

to accept, handle, and protect many queries from different users, and ABM 

libraries do not have this capability. Therefore, in order to apply ABM libraries 

to database systems, in particular to graph database, the underlying graph 

must be accessible and modifiable by multiple users simultaneously. Given the 

above motivation, this project aims at investigating multi-user distributed 

shared graph (DSG) and trying to add this new feature to the MASS library. 

 

Project Goals 

1. The project will get started with surveys on several platforms that facilitate 

shared space: Unix Shared Memory, Hazelcast [7], Redis [8], Oracle 

Coherence [9], and AWS SimSpace Weaver [10]. Particularly, we will check 

whether they can be used to create a distributed shared graph and compare 

their speed of running the same graph algorithm.  

2. Based on the survey and prototyping, we will propose and implement a 

high-performance multi-user DSG. 

3. Our implementation will replace MASS GraphPlaces and furthermore 

facilitate relevant methods. 

4. After integrating DSG with MASS, we will complete verification and 

performance measurement for DSG-integrated MASS. 

 



Progress 

During the autumn quarter we encountered many performance problems, but 

we managed to solve them and proposed a high-performance distributed 

shared graph system. Therefore, during this quarter, my first work is to 

implement the whole system. 

 

Before explaining the whole system, I first need to introduce the tools that I 

used in my implementation. 

 

To make the graph distributed, we use JSCH [11]. JSCH is a java utility for 

establishing remote connections using SSH2, this allows users to execute 

commands in remote machines, so we can use it to launch remote processes. 

After launching remote processes, the channel between the current java 

program and the remote java program will be established and we can also use 

it to send or receive messages. 

 

As for the shared feature, mainly two tools are used. The first is Unix Shared 

Memory, which has been introduced in the term report of autumn quarter. 

Shared Memory is a memory shared between 2 or more processes, it’s a way of 

inter-process communication. In order for the graph to be shared among 

different user’s processes, we want the graph to be stored in shared memory. 

To be more specific, in Linux, the directory “/dev/shm” is an implementation 

of the shared memory concept, and it is in the virtual memory which 

guarantees good performance. We can create a file under this directory so that 

it can be accessed by multiple users. The shared memory access operations 

can be achieved by the class MappedByteBuffer [12] in Java programming. 

 

Another tool is called Aeron [13]. Aeron offers a low-latency message 

transport system that guarantees performance and reliability. During the 

autumn quarter I was testing the speed of those common communication 

protocols such as TCP, UDP and Aeron, and I came into the conclusion that 

Aeron is the best solution for implementing the shared feature. Aeron uses 

publication and subscription mechanisms; publishers can send messages to 

specific channels and subscribers can subscribe to the channel so that they 

receive those messages. A channel is specified by an IP address, a port, and a 

stream ID, which means even if we only use one IP and one port, we can 

create multiple independent streams by changing the stream ID. The detailed 

technique of Aeron can be found in Fig.1. We can see that all subscribers of a 

channel will receive messages from publishers of the same channel. If there’s a 

subscriber who joined the channel late, then he will only receive the messages 

sent later than his join time. This model is suitable for our shared feature 

because all the users in the same node only needs to join the same channel to 

get the latest updates from other users. 



 

Fig.1 Aeron Mechanism Explanation 

 

Now, I would like to explain our implementation strategy with the system 

design shown in Fig.2. First, from the main node, we can use JSCH to launch 

remote processes in other computing nodes. We backup our graph in the files 

stored in shared memory, so that multiple users can access the same shared 

graph, and each node only stores a portion of the graph, so as a result the 

graph is distributed and shared. For a fast performance, we introduce a cache 

in the process that reads the local graph data from the shared memory when 

the program started. Although the cache and the shared memory both contain 

the most up-to-date data, Aeron operations are in general quicker than shared 

memory operations so when one user modified the data the update will be 

sent to all other users working on the same graph using Aeron.  

 

The two basic operations for a graph are vertex insertion and vertex access. 

For a vertex insertion or update operation, a process writes this modified 

vertex information through to the shared file in “/dev/shm” and at the same 

time send this vertex information to all other processes running on same 

computing node through Aeron. This caching scheme is a software 

implementation of write-through write-update policy, most found in snoop 

cache. As for vertex access, simply read from the cache in process memory. 

The procedure just mentioned is for the scenario that the vertex we want to 

access, or insert is in the same node as the user’s process. If the vertex is 

stored in another node, we use the TCP connection between master node and 

other nodes to inform and let the remote node perform local operations and 

send back the results. 

 



 

Fig.2 Distributed Shared Graph System Design from Autumn Quarter 

 

Early this winter quarter, I implemented the whole system and compared the 

performance with the Hazelcast implementation (which serves as a baseline 

competitor) by Michael Robinson, an undergraduate student of our lab. When 

the graph size is small, the performance of DSG is quite good. However, when 

we start to test the program with graph of over 3000 vertices, the performance 

dropped significantly, and we found that both graph insertion and access 

operations are much slower than Hazelcast. Therefore, I started to test and 

analyze our implementation again and try to find solutions. 

 

For graph insertion operation, as I mentioned before we used write through 

mechanism which guarantees both the cache and the shared memory contains 

the most up-to-date data. The shared memory operation is achieved by 

MappedByteBuffer in Java, and for the write operation we are only allowed to 

serialize an object and then write it to the shared memory. In each node, we 

are maintaining a collection of key-value-pairs where key is the vertex ID and 

value is the list of neighbors of that vertex. With the limitation of 

MappedByteBuffer, each time when we insert or update the vertex, we need to 

serialize and write the whole collection, this makes the performance poor 

when graph size increases. After realizing the bottleneck of shared memory 



operations in Java, we decided to switch to write-back write-update policy, 

which means we only write back all data to shared memory when the program 

terminates. However, this introduces another problem, which is the data 

stored in shared memory is no longer up to date. 

 

Previously, when each user starts the program, the program will first read the 

shared memory to get the data, and that data is guaranteed to be the same as 

data stored in other user’s processes. After switching to write-back policy, if a 

running program from a user has modified the shared graph data but at the 

same time another user joined the same shared graph, the second user can 

only get the updated data from the first user. Therefore, I spent another two 

weeks to design and implement the graph initialization using Aeron. The 

detailed implementation can be found in Fig.3. When the program starts, it 

will first read the shared memory, but the initialized flag is set to false. Then 

an initialization request will be sent to the Aeron channel, and it will be 

received by all other users currently working on the same shared graph. They 

will reply with the most up-to-date data, and the new process will update its 

data correspondingly and set the initialized flag to be true. Once the initialized 

flag is set, later response messages will be ignored which avoided waste of 

resources to deal with all response messages. The above procedure happens in 

all related computing nodes. 

 

Fig.3 Graph Initialization Mechanism 



As for graph access operation, I found that local access operations are quick 

while remote access operations become slow as graph size increases. To be 

more specific, when the vertex is stored in a remote node, the main program 

sends a message to remote node asking for the data and the remote node will 

reply by sending the list of neighbors of that vertex. When graph size is large, 

the number of neighbors of the vertices will also increase, so as a result the 

response message from the remote node is quite large. However, I during the 

last quarter when I was testing the performance of the communication 

protocols, TCP performed very well when dealing with large messages. After 

reviewing the test data, I realized that the connection established by JSCH 

may be different from a customized TCP connection established by Sockets. 

Therefore, I tested and confirmed that we need to establish a network of TCP 

connections between different computing nodes to achieve good performance. 

Based on the observation, I implemented the TCP network, and the graph 

access operation is optimized by using the customized TCP connections. 

 

I finalized the DSG system in week 9. The finalized design is shown in Fig.4. 

The detailed performance analysis will be presented in the next section. 

 

Fig.4 Finalized Distributed Shared Graph Implementation 



For the last two weeks of the quarter, I carefully examined the MASS Java 

Core library and discussed how to add my implementation into our library. 

Initially, I tried to modify PlacesBase.java by changing the distributed array 

into a distributed HashMap. However, according to the inheritance structure 

shown in Fig.5, there are too many dependencies on PlacesBase so considering 

the time left I decided to only work on GraphPlaces.java. Currently 

GraphPlaces store vertices in a Vector data structure, and I’m planning to 

change it to HashMap and further facilitate relevant functions. 

 

Fig.5 PlacesBase Dependencies 

 

Results 

After finalizing the DSG implementation, I tested and compared the 

performance of vertex insertion and access operations with Hazelcast 

implementation with Michael Robinson, and the results are shown in Table.1 

and Table.2. 

 

Table.1 Vertex Insertion Total Time DSG vs. Hazelcast 

Vertex Insertion Total Time (ms) Graph Size 3000 Graph Size 5000 

DSG – 1 node 1870 3796 

Hazelcast – 1 node 809 1779 

DSG – 4 nodes 2809 7448 

Hazelcast – 4 nodes 7228 13722 

 

Table.2 Vertex Access Total Time DSG vs. Hazelcast 

Vertex Access Total Time (ms) Graph Size 3000 Graph Size 5000 

DSG – 1 node 4 9 

Hazelcast – 1 node 540 1400 

DSG – 4 nodes 2390 5274 

Hazelcast – 4 nodes 3942 7800 

 



From the results, we can see for vertex insertion DSG performs much better 

when we use multiple computing nodes, while for vertex access DSG 

outperformed Hazelcast in both single-node and multi-node scenarios. 

 

After I implemented the DSG, Michael Robinson helped implementing many 

graph queries based on DSG and Hazelcast. The graph queries include getting 

neighbors of a vertex, getting parents of a vertex, getting grandparents of a 

vertex, getting vertex with minimum edges and getting highest degree vertex. 

Table.3 shows a complete performance comparison of DSG and Hazelcast 

when executing the same graph queries. The data is measured by Michael 

Robinson, and he is using a big graph with 100000 vertices and 3999366 

edges. 

 

Table.3 Graph Queries Performance Comparison DSG vs. Hazelcast 

Avg Time (ms) # Computing 

Nodes 

DSG Hazelcast 

Get Neighbors 1 0.02 0.23 

 4 1.03 0.94 

 8 0.71 1.09 

Get Parents 1 9.83 31.53 

 4 6.39 29.65 

 8 5.48 16.41 

Get GrandParents 1 78.2 118.14 

 4 28.49 101.73 

 8 19.15 57.71 

Get Min Edges 1 2.84 24.9 

 4 2.03 22.96 

 8 1.82 11.01 

Get Highest Degree 1 5.7 54.05 

 4 3.88 49.47 

 8 3.42 24.6 

 

From Table.3, we can see that DSG performs better than Hazelcast in general. 

The above results show that we have successfully developed a 

high-performance distributed shared graph system. 

 

Spring Quarter Plan 

Based on the current progress of the project, I proposed the spring quarter 

plan as shown in Table.4. 

 

 

 

 



Table.4 Spring Quarter Plan 

Quarter Week Plan Deliverables 

Spring 

2024 

1-2 Preliminary MASS 

GraphPlaces 

implementation on top of 

our DSG implementation. 

A preliminary version of 

MASS GraphPlaces. 

3-4 Final version of MASS 

GraphPlaces with all 

specifications achieved. 

Final version of MASS with 

DSG integrated. 

5-6 Write white paper, 

co-author an IEEE Cluser 

2024 conference paper 

Draft white paper 

7-8 Write white paper, prepare 

for final defense. 

Draft presentation for final 

defense. 

9-10 Prepare for final defense. Presentation for final defense. 

11 Complete white paper Finalized white paper. 

 

Summary 

Overall, during this quarter we encountered performance problems when 

comparing the initial version of DSG with Hazelcast but we managed to solve 

the problem and proposed a better designed system. According to the 

performance comparison with Hazelcast, we have successfully developed a 

high-performance distributed shared graph. Also, I started to add my 

implementation into MASS, and I decided to only focus on GraphPlaces in the 

remaining time. Although according to the original project plan, I’m a little 

behind the schedule, I’m still confident that the goals can be met by devoting 

more effort to the project. 
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Appendix 

I uploaded all my DSG code to mass_java_core bitbucket repository, under 

the branch “chrisma/develop”. The DSG core library and two testing programs 

are located under the directory “dsg”. I created a guide to compile and run 

DSG, and the link is provided below. 

 

DSG Guide Link:  

https://docs.google.com/document/d/1HeCqWunFmAAbIXNma9goPufWY8

wdtwWd/edit?usp=sharing&ouid=116473289907246068929&rtpof=true&sd

=true 

 

Link to DSG Code: 

https://bitbucket.org/mass_library_developers/mass_java_core/src/9586b4

d0b7f9bdcaa59d620cdb48876382132cf5/dsg/?at=chrisma%2Fdevelop 
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