
CSS	600	Summary	Report	
Collin	Gordon	June	9,	2017	

	

1. Introduction	
The	goal	for	my	CSS	600	was	to	program	three	machine	learning	algorithms	using	the	MASS	library,	
assess	their	programmability,	and	devise	new	features	to	add	to	MASS	to	improve	programmability	and	
assess	performance	of	the	machine	learning	algorithms	compared	to	their	implementations	using	other	
parallelization	techniques	such	as	MapReduce.	These	additions	and	their	improvements	to	the	machine	
learning	algorithms	presented	below	will	be	the	subject	of	my	CSS	595	Capstone	Project.	

2. Machine	Learning	Algorithms	
2.1 K	Means	Clustering	
Algorithm	Description	
K	Means	Clustering	is	a	method	of	clustering	unlabeled	data.	It	works	taking	each	data	point	and	sorting	
it	into	one	of	k	number	of	clusters.	Each	cluster	has	a	centroid	which	is	an	arbitrary	point	based	on	the	
mean	of	all	the	numerical	elements	of	each	data	point	in	the	cluster.	The	general	outline	is	as	follows:	

• Position	k	number	of	centroids	at	arbitrary	points	among	the	data	points.	
• Each	data	point	near	the	centroid	becomes	part	of	that	centroid’s	cluster.	
• The	centroids	are	recomputed	based	on	the	resulting	mean	of	all	points	in	the	cluster.	
• Repeat	steps	2	and	3	until	either	the	centroids	no	longer	move	or	the	amount	of	specified	

iterations	has	been	reached.	

Occasionally	the	clusters	made	by	the	algorithm	are	very	close	together.	In	this	case,	post	processing	is	
applied	to	the	clusters	to	determine	whether	clusters	can	be	merged	or	not.	MASS	has	potential	to	
speed	up	several	parts	of	the	algorithm	including	the	movement	of	the	centroids	and	the	post	
processing.	However,	the	most	advantageous	part	of	MASS	is	the	sheer	number	of	data	points	that	can	
be	potentially	compared	by	using	places	on	multiple	nodes	and	numerous	agents	moving	between	
them.	

MASS	Implementation	
The	MASS	implementation	of	K	Means	Clustering	uses	Agents	as	data	points	and	Places	as	centroids	of	
clusters.	Each	iteration	of	the	algorithm	starts	with	Agents	checking	their	respective	Places	and	deciding	
whether	they	stay	with	their	current	cluster	or	move	to	a	new	cluster.	Once	they	decide	whether	they	
stay	or	go,	each	agent	prepares	to	move	to	a	random	centroid.	The	next	step	is	to	move	the	Agents	to	
their	new	place.	Finally,	the	Places	recalculate	their	mean	based	on	the	Agents	that	surround	them.	At	
the	end	of	the	algorithm	agents	report	whether	they	found	a	cluster	and	each	place	reports	its	mean.	
Both	elements	log	their	data	using	the	J42Logger.	

This	algorithm	was	first	implemented	in	CSS	534	on	the	MASS	C++	version	where	it	was	revealed	to	have	
several	issues	with	Agents	moving	smoothly	to	each	place.	I	ported	it	to	the	Java	version	upon	learning	

that	the	goal	for	MASS	Java	is	to	excel	at	big	data	analysis	which	will	include	machine	learning	methods	
eventually.	The	code	for	the	algorithm	is	below.	

Centroid.java	

package edu.uw.bothell.css.dsl.MASS.MassKmeans;
import edu.uw.bothell.css.dsl.MASS.*;
import edu.uw.bothell.css.dsl.MASS.logging.Log4J2Logger;
import java.util.*;
public class Centroid extends Place {
 public static final int init_ = 0;
 public static final int update_ = 1;
 public static final int findv_ = 2;
 public static final int getNext_ = 3;
 public static final int rept_ = 4;

 private int mean;
 private int csize;
 private int[] nextMove;
 private int arrX, arrY, localX, localY; // array dimensions and local
dimensions
 private Log4J2Logger logger;

 public Centroid() {
 super();
 logger = Log4J2Logger.getInstance();
 nextMove = new int[2];
 Vector<int[]> neighbors = new Vector<>();
 neighbors.add(new int[] {0,-1});
 neighbors.add(new int[] {1,0});
 neighbors.add(new int[] {0,1});
 neighbors.add(new int[] {-1,0});
 setNeighbors(neighbors);
 }

 public Centroid(Object obj) {
 super();
 logger = Log4J2Logger.getInstance();
 nextMove = new int[2];
 Vector<int[]> neighbors = new Vector<>();
 neighbors.add(new int[] {0,-1});
 neighbors.add(new int[] {1,0});
 neighbors.add(new int[] {0,1});
 neighbors.add(new int[] {-1,0});
 setNeighbors(neighbors);
 }

 public Object callMethod(int functionId, Object args) {
 switch(functionId) {
 case init_:
 return init();
 case update_:
 return update();
 case findv_:

 return findValid();
 case getNext_:
 return sendNextMove();
 }
 return null;
 }

 // initializes essential data for the Centroid
 private Object init() {
 arrX = getSize()[0];
 arrY = getSize()[1]; // places array size
 localX = getIndex()[0];
 localY = getIndex()[1]; // my coordinates
 mean = (int)Math.random() % 20 + 1;
 csize = 0;
 return null;
 }

 //returns mean to point
 public int getMean() {
 return mean;
 }

 // randomly selects a neighbor to move unlocked agents to
 private Object findValid() {
 nextMove[0] = (int)Math.random() % arrX;
 nextMove[1] = (int)Math.random() % arrY;
 return null;
 }
 public Object report() {
 logger.debug("I have " + getAgents().size() + " points around
me");
 logger.debug("My mean is " + mean + '.');
 return null;
 }
 //sends next move to unlocked points
 public int[] sendNextMove() {
 return nextMove;
 }

 // updates mean of centroids
 private Object update() {
 int sum = 0;
 int total = getAgents().size();

 // loop logic to sum up weights of agents and compute new mean
 if(total != 0) {
 Set<Agent> points = getAgents();
 Iterator iter = points.iterator();
 while(iter.hasNext()) {
 sum += ((Point)iter.next()).getWeight();
 }
 mean = sum / total;
 }

 return null;
 }

}
	

Point.java	

package edu.uw.bothell.css.dsl.MASS.MassKmeans;
import edu.uw.bothell.css.dsl.MASS.*;
import edu.uw.bothell.css.dsl.MASS.logging.Log4J2Logger;
import java.util.*;
public class Point extends Agent {
 public static final int set_ = 0;
 public static final int move_ = 1;
 public static final int weight_ = 2;
 public static final int dist_ = 3;
 public static final int rept_ = 4;

 private Vector<int[]> neighbors = new Vector<>();
 private int weight;
 private boolean lock;
 private int[] movement;
 private Log4J2Logger logger;

 public Point() {
 super();
 logger = Log4J2Logger.getInstance();
 }

 public Point(Object obj) {
 super();
 logger = Log4J2Logger.getInstance();
 movement = new int[2];
 neighbors.add(new int[] {0, -1});
 neighbors.add(new int[] {1, 0});
 neighbors.add(new int[] {0, 1});
 neighbors.add(new int[] {-1, 0});
 }
 public Object callMethod(int functionId, Object args) {
 switch(functionId) {
 case set_:
 return setWeight();
 case move_:
 return move();
 case weight_:
 return getWeight();
 case dist_:
 return distance();
 case rept_:
 return report();
 }
 return null;
 }

 private Object setWeight() {
 weight = (int)Math.random() % 20 + 1;
 return null;
 }

 public int getWeight() {
 return weight;
 }

 private Object distance() {
 int m = ((Centroid)getPlace()).getMean();
 int dist = (int)Math.abs(weight - m);
 if(dist <= m) {
 lock = true;
 } else {
 lock = false;
 }
 return null;
 }

 private Object move() {
 if(!lock) {
 movement = ((Centroid)getPlace()).sendNextMove();
 migrate(movement[0], movement[1]);
 }
 return null;
 }

 private Object report() {
 String locked = lock? "locked" : "unlocked";
 logger.debug("I am " + locked);
 return null;
 }
}
	

KMeans.java	

package edu.uw.bothell.css.dsl.MASS.MassKmeans;
import edu.uw.bothell.css.dsl.MASS.*;
import edu.uw.bothell.css.dsl.MASS.logging.*;
import java.util.*;
public class KMeans {
 public static void main(String args[]) {
 if(args.length < 3) {
 System.err.println("usage: java -jar <appname> sizeX sizeY
nIter");
 System.exit(-1);
 }

 int sizeX = Integer.parseInt(args[0]);
 int sizeY = Integer.parseInt(args[1]);
 int nIter = Integer.parseInt(args[2]);

 int nAgents = 8; // arbitrary number for now

 MASS.init();
 MASS.getLogger().setLogLevel(LogLevel.DEBUG);
 Places clusters = new Places(1, Centroid.class.getName(), null,
sizeX, sizeY);
 Agents points = new Agents(2, Point.class.getName(), null,
clusters, nAgents);
 Vector<int[]> neighbors = new Vector<>();
 int[] north = { 0, -1 };
 neighbors.add(north);
 int[] east = { 1, 0 };
 neighbors.add(east);
 int[] south = { 0, 1 };
 neighbors.add(south);
 int[] west = { -1, 0 };
 neighbors.add(west);

 points.callAll(Point.set_);
 clusters.callAll(Centroid.init_);
 points.callAll(Point.rept_);
 clusters.callAll(Centroid.rept_);
 for(int i = 0; i < nIter; i++) {
 points.callAll(Point.dist_);
 clusters.callAll(Centroid.update_);
 clusters.exchangeAll(1, Centroid.update_, neighbors);
 clusters.callAll(Centroid.findv_);
 points.callAll(Point.move_);
 points.manageAll();
 points.callAll(Point.rept_);
 clusters.callAll(Centroid.rept_);
 }
 MASS.finish();
 }
}
	

Results	
The	Java	version	of	this	algorithm	runs	much	like	the	first	C++	version.	If	the	number	of	Agents	exceeds	
the	number	of	Places,	then	the	Agents	deadlock.	This	deadlock	occurs	because	the	current	
implementation	of	MASS	runs	under	the	assumption	that	each	place	will	only	have	one	agent	try	to	
access	it	at	a	time.	While	many	of	the	simulations	adapted	to	MASS	have	fit	this	model,	K	Means	
Clustering	does	not.	When	there	are	more	agents	than	places,	agents	attempt	to	access	the	same	place	
at	the	same	time.	The	solution	for	this	problem	is	to	implement	Collision	Free	Migration	as	it	is	
implemented	in	MASS	C++.		

The	Collision	Free	Migration	implementation	uses	each	Place’s	in	and	out	message	structure	to	
communicate	whether	it	is	available	to	receive	agents	or	not.	This	creates	pseudo	scheduler	that	helps	
Agents	determine	the	order	in	which	they	can	access	a	Place.	Bringing	this	feature	to	MASS	Java	will	be	
one	of	the	focus	areas	of	my	CSS	595	work.	My	work	on	collision	free	migration	will	have	to	extend	

beyond	the	implementation	used	in	MASS	C++.	When	working	with	a	large	number	of	Agents,	this	
algorithm	could	become	very	inefficient.	This	is	because	the	scheduler	still	only	moves	one	Agent	at	a	
time.	Thousands	of	Agents	would	greatly	decrease	the	performance	of	the	simulation	as	well	as	
potentially	trigger	the	Java	Garbage	Collector.		

If	a	clustering	involved	several	data	points,	a	wise	solution	would	be	to	take	advantage	of	Utku’s	Agent	
Population	Control	research.	His	research	led	to	the	creation	of	a	limit	to	how	many	agents	can	be	active	
in	the	Places-space	at	once.	It	also	serialized	and	stored	Agents	that	were	not	being	used	in	order	to	
maximize	performance.	Agents	could	be	created	for	each	data	point	and	clustered	in	stages.	When	an	
Agent	becomes	locked	it	can	be	serialized	and	the	next	Agents	could	be	de-serialized	and	move	as	
needed	until	locked.	The	algorithm	would	continue	alternating	the	Agents	in	stages	until	no	Agents	
moved.	Determining	the	new	mean	for	each	cluster	would	be	a	simple	matter	of	passing	the	data	points	
from	the	Agents	to	their	respective	Places.	After	the	last	set	of	Agents	is	clustered,	the	Places	would	
read	from	all	the	data	points	that	checked	in	and	recalculate	their	mean.	As	each	set	of	Agents	is	de-
serialized,	they	would	re-evaluate	based	on	the	new	mean.	Once	none	of	the	Agents	changed,	the	
algorithm	would	end.		

Overall,	this	K	Means	implementation	does	not	take	full	advantage	of	the	utilities	of	MASS	and	therefore	
will	likely	not	produce	a	performance	improvement	over	another	parallelization	method	such	as	
MapReduce.	A	more	efficient,	less	complex	algorithm	will	be	developed	alongside	Agent	to	Agent	direct	
communication	in	my	CSS	595	work.		

2.2 K	Nearest	Neighbor	Classification	
Algorithm	Description	
K	Nearest	Neighbor	is	a	classifying	algorithm	where	training	data	is	used	to	classify	unclassified	testing	
data	by	comparing	the	testing	data	to	a	k	number	of	training	points.	This	algorithm	normally	must	be	
run	multiple	times	to	generate	an	accurate	classification.	When	it	comes	to	running	the	algorithm	
multiple	times,	programmers	often	employ	a	majority	vote	rule	or	an	averaging	equation	to	determine	
the	most	accurate	classification.	

MASS	Implementation	
Places	represent	the	training	data	that	will	be	used	for	classification	and	the	Agents	represent	data	
points	to	be	classified.	The	program	performs	one	pass	where	Agents	are	distributed	randomly	among	
the	Places.	Each	Place	calls	exchangeAll	twice	to	store	and	exchange	classifications	from	far	away	
neighbors.	The	Agents	then	request	the	vector	of	classifications	from	its	current	place	and	assigns	a	label	
to	itself.	Currently,	the	labels	are	Boolean	values	of	true	and	false.	The	last	step	is	that	each	agent	logs	
its	classification	using	the	J42Logger.	

Training.java	

package edu.uw.bothell.css.dsl.MASS.MassKnn;
import edu.uw.bothell.css.dsl.MASS.*;
import java.util.*;

public class Training extends Place {
 public static final int gather_ = 0;
 public static final int broadcast_ = 1;
 //public static final int report_ = 2;

 public static final int nLabels_ = 3;

 private Vector<Boolean> labels;
 private Boolean label;

 public Training() {
 super();
 labels = new Vector<>();
 label = (Math.random() % 2) == 0? true : false;
 Vector<int[]> neighbors = new Vector<>();
 neighbors.add(new int[] {0,-1});
 neighbors.add(new int[] {1,0});
 neighbors.add(new int[] {0,1});
 neighbors.add(new int[] {-1,0});
 setNeighbors(neighbors);
 }
 public Training(Object args) {
 super();
 labels = new Vector<>();
 label = (Math.random() % 2) == 0? true : false;
 Vector<int[]> neighbors = new Vector<>();
 neighbors.add(new int[] {0,-1});
 neighbors.add(new int[] {1,0});
 neighbors.add(new int[] {0,1});
 neighbors.add(new int[] {-1,0});
 setNeighbors(neighbors);
 }

 public Object callMethod(int functionId, Object args) {
 switch(functionId) {
 case gather_ :
 return gather();
 case broadcast_:
 return (Object) broadcast();
 //case report_: return report();
 case nLabels_:
 return (Object) nLabels();
 }
 return null;
 }

 public Object gather() {
 if(getInMessages() != null) {
 // getting the labels out of inMessages
 for(int i = 0; i < 4; i++) {
 labels.add((Boolean)getInMessages()[i]);
 }
 }
 return null;
 }

 public Vector<Boolean> nLabels() {
 return labels;
 }

 public Boolean broadcast() {
 return label;
 }
}
	

Test.java	

package edu.uw.bothell.css.dsl.MASS.MassKnn;
import edu.uw.bothell.css.dsl.MASS.*;
import edu.uw.bothell.css.dsl.MASS.logging.Log4J2Logger;
import java.util.*;

public class Test extends Agent {
 public static final int nNeighbors_ = 0;
 public static final int classify_ = 1;
 public static final int report_ = 2;
 public static final int gather_ = 3;
 private Vector<Boolean> nearest;
 private boolean label;
 private int k; // representing the k nearest neighbors we want to
check
 private Log4J2Logger logger;

 public Test() {
 super();
 nearest = new Vector<>();
 logger = Log4J2Logger.getInstance();
 k = 3;
 }

 public Test(Object args) {
 super();
 nearest = new Vector<>();
 logger = Log4J2Logger.getInstance();
 k = 3;
 }

 public Object callMethod(int functionId, Object args) {
 switch(functionId) {
 case nNeighbors_ :
 return kNeighbors(args);
 case classify_:
 return classify();
 case report_:
 return report();
 case gather_:
 return gather();
 }
 return null;
 }

 // overload map method

 // public int map(int initPopulation, int[] size, int[] index){

 // }
 public int map(int maxAgents, int[] size, int[] coordinates) {
 int sizeX = size[0], sizeY = size[1];
 int populationPerCell = (int)Math.ceil(maxAgents / (sizeX *
sizeY * 0.6));
 int currX = coordinates[0], currY = coordinates[1];
 if (sizeX * 0.4 < currX && currX < sizeX * 0.6 && sizeY * 0.4 <
currY && currY < sizeY * 0.6) {
 //System.err.println("mapping max agents " + maxAgents + "
size: " + size[0] + " population per cell: " + populationPerCell);
 return populationPerCell;
 } else
 return 0;
 }

 // This function will allow the user to change the number of training
data compared
 public Object kNeighbors(Object num) {
 k = ((Integer)num).intValue();
 return null;
 }

 public Object classify() {
 int typeA = 0;
 int typeB = 0;
 if(k != 0) {
 for(int i = 0; i < k; i++) {
 boolean l = nearest.elementAt(i).booleanValue();
 if(l) {
 typeA++;
 } else {
 typeB++;
 }
 }
 }
 if(typeA == typeB) {
 logger.error("There's a tie between classifications!!");

 } else if(typeA > typeB) {
 label = true;
 } else {
 label = false;
 }
 return null;
 }

 public Object report() {
 logger.debug("I am Testing and I am" + label);
 return null;
 }

 public Object gather() {

 nearest = ((Training)getPlace()).nLabels();
 return null;
 }
}
	

KNN.java	

package edu.uw.bothell.css.dsl.MASS.MassKnn;
import edu.uw.bothell.css.dsl.MASS.*;
import edu.uw.bothell.css.dsl.MASS.logging.*;
import java.util.*;

public class Knn
{
 public static void main(String[] args)
 {
 if(args.length < 2) {
 System.err.println("usage java -jar <appname> size nAgents");
 System.exit(-1);
 }

 int boundaryWidth = 2;
 int size = Integer.parseInt(args[0]);
 int nAgents = Integer.parseInt(args[1]);

 MASS.init();
 MASS.getLogger().setLogLevel(LogLevel.DEBUG);
 Places training = new Places(1, Training.class.getName(),
boundaryWidth, null, size, size);
 Agents testing = new Agents(2, Test.class.getName(), null,
training, nAgents);
 testing.callAll(Test.nNeighbors_, 4);

 Vector<int[]> neighbors = new Vector<>();
 int[] north = { 0, -1 };
 neighbors.add(north);
 int[] east = { 1, 0 };
 neighbors.add(east);
 int[] south = { 0, 1 };
 neighbors.add(south);
 int[] west = { -1, 0 };
 neighbors.add(west);

 // exchanging data between places
 training.exchangeAll(1, Training.broadcast_, neighbors);
 training.exchangeAll(1, Training.broadcast_, neighbors);

 // packaging the labels to send to the testing data
 training.callAll(Training.gather_);

 // gathering the training labels and classifying
 testing.callAll(Test.gather_);
 testing.callAll(Test.classify_);
 testing.callAll(Test.report_);

 MASS.finish();
 }
}

Results	
This	algorithm	works	well	in	MASS	as	is.	Further	work	that	needs	to	be	done	on	it	revolves	around	
brining	in	real	data	for	training	and	testing.	Using	real	data	may	eliminate	agents	as	places	could	read	in	
both	training	and	testing	data	to	classify	and	write	the	results	to	a	file	using	parallel	file	I/O.	However,	
reading	testing	data	into	the	Agents	could	be	as	simple	as	having	an	outer	loop	that	extends	from	the	
Agents	initialization	to	after	the	callAll	for	report.	Each	new	instantiation	of	Agents	would	receive	some	
data	to	parsed	to	the	Agents	as	an	argument	rather	than	the	null	parameter	for	arguments	to	Agents.	
Additionally,	splitting	the	different	data	between	Agents	and	Places	provides	several	advantages.		

First,	having	Places	read,	write,	and	store	both	sets	of	data	would	slow	down	performance	by	forcing	
unnecessary	read	and	write	operations.	As	was	demonstrated	in	CSS	534,	performant	code	typically	
avoids	reads	and	writes	during	the	computation	portion	of	the	program	because	of	the	overhead	behind	
the	function	calls.	Reads	and	writes	are	most	often	done	before	and	after	computation	in	order	to	
reduce	this	overhead.	Another	benefit	is	storage.	Part	of	my	CSS	595	capstone	will	be	generating	a	way	
to	take	a	snapshot	of	the	simulation.	Such	a	snap	shot	could	be	used	to	capture	data	inside	Places	with	
the	intent	to	reuse	the	data	on	later	testing	sets.	Agents	could	then	be	run	over	the	saved	Places	using	
the	different	testing	sets	and	the	data	on	the	Places	could	be	preserved	without	the	concern	for	data	
corruption.	

Also,	as	Utku’s	research	pointed	out,	MASS	Java	has	experienced	problems	with	the	sizing	of	objects.	
Although	he	provided	future	developers	with	a	way	to	control	Agent	population	size,	there	is	still	the	
unknown	of	the	maximal	Place	size.	If	Places	were	used	on	their	own	for	both	the	training	and	testing	
sets,	then	it	is	possible	that	this	size	could	be	reached	and	the	Java	Garbage	Collector	could	destroy	
objects	that	are	needed	for	an	accurate	classification.	

2.3	Gradient	Descent	
Algorithm	Description	
Gradient	Descent	is	an	algorithm	that	attempts	to	find	the	actual	minimum	of	a	dataset.	This	algorithm	
is	important	in	training	neural	networks	and	other	machine	learning	models	because	it	attempts	to	
minimize	the	error	in	the	calculations	the	model	makes.	The	algorithm	works	by	calculating	the	gradient	
of	the	training	function	at	each	data	point	in	the	set	and	moving	through	the	dataset	based	on	that	
gradient	until	it	finds	the	lowest	error	in	the	data	set.	This	lowest	point	is	then	used	as	a	reference	to	
build	the	model	for	the	other	data	points	in	the	set.	Gradient	Descent	can	produce	a	false	minimum	
either	by	using	too	large	of	a	gradient	or	too	small	of	a	gradient.	If	the	gradient	is	too	large,	then	the	
calculation	may	miss	the	actual	minimum	and	if	it	is	too	small,	the	algorithm	may	take	too	long	to	find	
the	actual	minimum.	Many	researchers	currently	employ	Stochastic	Gradient	Descent	to	reduce	the	
chance	of	a	false	minimum.	

Stochastic	Gradient	Descent	takes	the	gradient	descent	from	several	starting	points	in	the	data	and	
hopes	to	find	a	convergence	or	agreement	between	the	different	starting	points.	This	algorithm	relies	on	
using	small	gradients	and	limiting	the	number	of	iterations	in	the	calculation.	Researchers	improve	the	
accuracy	of	this	model	by	adding	in	the	concept	of	momentum	where	as	a	calculation	approaches	the	
minimum	it	gains	speed.	The	calculation	will	eventually	move	away	from	the	minimum,	but	as	it	does	so,	
it	will	lose	momentum	and	settle	on	the	lowest	point.	This	addition	is	necessary	because	parts	of	the	
calculation	will	settle	in	false	minimums	and	hinder	the	chance	of	converging	on	the	actual	minimum.	
The	negative	of	Stochastic	Gradient	Descent	is	that	it	is	slow	leading	to	it	commonly	being	run	in	
parallel.		

MASS	provides	the	opportunity	to	process	potentially	hundreds	or	thousands	of	data	points	in	a	variety	
of	ways.	This	is	achieved	by	the	manipulation	of	the	map	function	in	the	Agent	class.	This	algorithm	run	
multiple	times	can	accurately	and	quickly	determine	the	absolute	minimum	of	a	dataset.	

MASS	Implementation	
Agents	traverse	places	that	are	given	an	arbitrary	weight.	As	the	agents	encounter	places	they	adjust	
their	weight	mimicking	the	minimum	calculation	in	the	actual	algorithm.	The	agents	only	move	to	places	
that	have	a	weight	less	than	the	agent	and	meaning	that	an	agent	has	completed	its	run	when	all	
weights	around	the	agent	are	greater	than	the	weight	of	the	agent.	Once	the	agent	stops	moving,	it	logs	
its	minimum	using	the	J42Logger.	

Grid.java	

package edu.uw.bothell.css.dsl.mass.apps.gradientDescent;
import edu.uw.bothell.css.dsl.MASS.*;
import edu.uw.bothell.css.dsl.MASS.logging.Log4J2Logger;
import java.util.*;

public class Grid extends Place {
 private int minimum;
 private Log4J2Logger logger;
 private Vector<int[]> neighbors;
 public static final int init_ = 0;
 public static final int getM_ = 1;
 public static final int getMove_ = 2;
 public static final int rept_ = 3;
 public Grid() {
 super();
 logger = Log4J2Logger.getInstance();
 neighbors = new Vector<>();
 neighbors.add(new int[] {0,-1});
 neighbors.add(new int[] {1,0});
 neighbors.add(new int[] {0,1});
 neighbors.add(new int[] {-1,0});
 setNeighbors(neighbors);
 }

 public Grid(Object args) {
 super();
 logger = Log4J2Logger.getInstance();
 Vector<int[]> neighbors = new Vector<>();

 neighbors.add(new int[] {0,-1});
 neighbors.add(new int[] {1,0});
 neighbors.add(new int[] {0,1});
 neighbors.add(new int[] {-1,0});
 setNeighbors(neighbors);
 }

 public Object callMethod(Object args, int funcId) {
 switch(funcId) {
 case init_:
 return init();
 case getM_:
 return getMinimum();
 case getMove_ :
 return getNextMove();
 case rept_:
 return report();
 }
 return null;
 }

 public Object init() {
 minimum = (int)(Math.random() % 20) + 1;
 if(Math.random() % 2 == 1) {
 minimum *= -1;
 }
 return null;
 }

 public int getMinimum() {
 return minimum;
 }
 public int[] getNextMove() {
 int index = -1;
 int returnVal[] = new int[2];
 returnVal[0] = -999;
 returnVal[1] = -999;
 if(getInMessages() != null){
 for(int i = 0; i < 4; i++){
 int comp = ((Integer)getInMessages()[i]);
 if(comp < minimum){
 index = i;
 }
 }
 }
 if(index >= 0){
 returnVal = neighbors.get(index);
 }
 return returnVal;
 }
 public Object report() {
 logger.debug("I am a place and my minimum is: " + minimum);
 return null;
 }

}
	

Seeker.java	

package edu.uw.bothell.css.dsl.mass.apps.gradientDescent;
import edu.uw.bothell.css.dsl.MASS.*;
import edu.uw.bothell.css.dsl.MASS.logging.Log4J2Logger;
import java.util.*;

public class Seeker extends Agent {
 public static final int min_ = 0;
 public static final int move_ = 1;
 public static final int rept_ = 2;
 private Log4J2Logger logger;
 private int min; // holds the previous place minimum
 private boolean minSet; // marks the first read of a place

 public Seeker() {
 super();
 logger = Log4J2Logger.getInstance();
 minSet = false;
 }

 public Seeker(Object args) {
 super();
 logger = Log4J2Logger.getInstance();
 minSet = false;
 }

 public Object callMethod(Object args, int funcId) {
 switch(funcId) {
 case min_ :
 return minimum();
 case move_:
 return move();
 case rept_:
 return report();
 }
 return null;
 }
 // overload map method
 // public int map(int initPopulation, int[] size, int[] index){

 // }
 public int map(int maxAgents, int[] size, int[] coordinates) {
 int sizeX = size[0], sizeY = size[1];
 int populationPerCell = (int)Math.ceil(maxAgents / (sizeX *
sizeY * 0.6));
 int currX = coordinates[0], currY = coordinates[1];
 if (sizeX * 0.4 < currX && currX < sizeX * 0.6 && sizeY * 0.4 <
currY && currY < sizeY * 0.6) {

 //System.err.println("mapping max agents " + maxAgents + "
size: " + size[0] + " population per cell: " + populationPerCell);
 return populationPerCell;
 } else
 return 0;
 }

 public Object minimum() {
 int placeMin = ((Grid)getPlace()).getMinimum();
 if(minSet) {
 if(placeMin < min) {
 min = placeMin;
 logger.debug("New minimum: " + min);
 }
 } else {
 min = placeMin;
 logger.debug("Starting minimum" + min);
 minSet = true;
 }
 return null;
 }

 public Object move() {
 int moveSet[] = new int[2];
 moveSet = ((Grid)getPlace()).getNextMove();
 if(moveSet[0] != -999 && moveSet[1] != -999){ //checks if there is
a next move
 migrate(moveSet[0], moveSet[1]); //move the agent
 } else {
 logger.debug("Absolute Minimum Found:" + min); //if no next
move, we found an absolute minimum candidate
 }
 return null;
 }
 public Object report() {
 logger.debug("I am an agent with a min of: " + min);
 return null;
 }
}
	

GradientDescent.java	

package edu.uw.bothell.css.dsl.mass.apps.gradientDescent;
import edu.uw.bothell.css.dsl.MASS.*;
import edu.uw.bothell.css.dsl.MASS.logging.*;
import java.util.*;
public class GradientDescent
{
 public static void main(String[] args)
 {

 if(args.length < 2) {

 System.err.println("Wrong number of arguments...will elaborate
later");
 System.exit(-1);
 }

 int size = Integer.parseInt(args[0]);
 int nIter = Integer.parseInt(args[1]);
 int nAgents = 8;
 MASS.init();
 MASS.getLogger().setLogLevel(LogLevel.DEBUG);
 Places grid = new Places(1, "Grid", null, size, size);
 Agents seekers = new Agents(2, "Seeker", null, grid, nAgents);

 Vector<int[]> neighbors = new Vector<>();
 int[] north = { 0, -1 };
 neighbors.add(north);
 int[] east = { 1, 0 };
 neighbors.add(east);
 int[] south = { 0, 1 };
 neighbors.add(south);
 int[] west = { -1, 0 };
 neighbors.add(west);

 // Initialize minimums and exchange boundary information
 grid.callAll(Grid.init_, null);
 grid.exchangeAll(1, Grid.getM_, neighbors);

 // move the seekers until a minimum is found
 for(int i = 0; i < nIter; i++) {
 seekers.callAll(Seeker.min_, null);
 seekers.callAll(Seeker.move_, null);
 }

 //final report
 seekers.callAll(Seeker.rept_, null);
 grid.callAll(Grid.rept_, null);

 MASS.finish();
 }
}
	

Results	
Currently	the	difficult	programmability	of	the	map	function	limits	Gradient	Descent.	Currently	this	
program	borrows	the	mapping	from	the	RandomWalk	application	which	distributes	agents	randomly	
throughout	the	data	set.	This	is	problematic	due	to	the	increased	likelihood	of	two	agents	trying	to	
access	the	same	place	at	once	resulting	in	a	deadlock.	Collision	Free	Migration	will	aid	in	solving	this	
problem.	

The	programmability	problem	with	the	map	function	will	be	addressed	in	my	CSS	595	work	in	the	form	
of	overloaded	or	multiple	map	functions.	The	two	kinds	of	functionality	that	will	improve	the	accuracy	of	

Gradient	Descent	are	edge	mapping	and	normalized	distribution	mapping.	Edge	mapping	is	closely	
aligned	with	the	method	used	to	determine	the	minimum	in	the	original	algorithm.	Agents	would	spawn	
on	the	edge	of	the	dataset	and	move	inwards	toward	the	minimum.	Normalized	distribution	mapping	
would	provide	a	boost	as	agents	would	be	positioned	towards	the	center	of	the	data	set.	This	might	
result	in	an	agent	landing	directly	on	the	absolute	minimum.	In	the	event	of	a	multiple	map	function,	the	
MASS	algorithm	could	be	run	several	times	testing	and	recording	the	results	of	different	maps	on	each	
pass.	The	results	could	then	be	aggregated	to	find	the	absolute	minimum	outside	of	MASS	or	with	the	
MASS	Node	Cache.	

3. Proposed	MASS	Additions	
3.1	Collision	Free	Migration	
As	of	January	2016,	the	C++	version	of	the	MASS	library	has	been	outfitted	with	collision	free	agent	
migration	thanks	to	the	diligent	work	of	Chris	Bowzer.	Collision	free	migration	is	necessary	for	many	
aspects	of	MASS	including	programs	such	as	Sugarscape,	Bail	in/	Bail	out,	and	the	K	Means	and	Gradient	
Descent	programs	discussed	in	section	3.		

Bowzer’s	collision	free	model	works	by	using	the	existing	place	to	place	communication	structure	to	
signal	to	agents	when	places	are	ready	to	receive	them.	When	agents	receive	the	go	ahead	from	the	
places,	they	move	one	at	a	time	to	the	new	place.	This	algorithm	is	good	for	MASS	because	it	uses	the	
existing	structure	and	does	not	disrupt	the	mechanics	of	the	multithreaded	communication	used	in	the	
library.	

The	first	aspect	of	my	CSS595	project	is	to	implement	the	C++	method	of	collision	free	migration	into	the	
MASS	Java	version.	The	benefits	of	having	Bowzer’s	algorithm	in	the	Java	version	are	the	success	of	the	
KMeans	program	and	the	Gradient	Descent	program.	The	successful	run	of	these	models	will	determine	
the	feasibility	of	future	agent	intensive	simulations.	However,	the	implementation	of	the	Bowzer	
algorithm	is	not	the	stopping	point	for	my	planned	work	on	collision	free	migration.	

The	second	phase	of	the	collision	free	migration	work	will	involve	stress	testing	both	Bowzer’s	algorithm	
and	Utku	Mert’s	agent	recycling	work.	The	object	of	this	research	is	to	understand	the	efficacy	of	the	
current	methods	of	handling	agent	movement	and	spawning	and	identify	limitations	and	areas	of	
improvement	for	future	research.	If	time	permits,	I	will	examine	the	use	of	Java	8’s	concurrent	methods	
and	structures	to	see	if	any	immediate	improvements	can	be	made	to	the	collision	free	migration	
algorithm.		

3.2	Multiple	Maps	
Agent	mapping	in	the	current	implementation	of	MASS	comes	in	two	forms:	A	map	where	agents	are	
added	row	by	row	to	places	or	a	user	overridden	map	with	different	behavior.	One	of	the	current	pain	
points	in	MASS	programmability	is	the	overriding	of	the	map	method.	Such	an	override	requires	users	to	
understand	how	MASS	behaves	under	the	hood	and	complicates	programming	rather	than	simplifying	it.	
Additionally,	many	simulations	and	data	science	applications	share	the	same	mapping	pattern.	For	
instance,	K	Nearest	Neighbor	and	Random	Walk	need	to	use	a	random	distribution	of	agents	to	be	
effective.	The	need	to	simplify	programming	for	the	user,	abstract	away	the	MASS	code	base,	and	the	
sharing	of	similar	mapping	patterns	are	all	good	reasons	to	implement	a	standard	set	of	map	functions	
in	the	MASS	library.		

My	proposition	is	to	write	map	functions	that	provide	the	following	distributions	of	agents	to	the	user:	

• Standard	–	This	is	the	current	default	mapping	of	MASS	agents.	This	mapping	is	useful	for	
simulations	with	stationary	agents	such	as	Bail	in/Bail	out	and	Social	Network	

• Random	–	This	distribution	is	currently	implemented	as	an	overridden	map	in	the	Random	Walk	
application.	It	distributes	agents	in	random	spots	throughout	the	places-space.	It	is	useful	for	
several	agent-based	applications	such	as	K	Means,	K	Nearest	Neighbor,	Sugarscape,	and	
Gradient	Descent	

• Normalized	–	This	will	map	agents	in	a	normalized	distribution	with	an	emphasis	on	grouping	
agents	towards	the	center	of	the	places-space	with	movement	outward	towards	the	edge	of	the	
space.	

• Edge	–	This	distribution	is	effective	for	applications	such	as	Gradient	Descent	where	agents	need	
to	be	distributed	around	the	edge	of	the	places-space	and	move	inward.		

Each	of	these	agent	distributions	will	be	accessible	via	an	enumerated	set	of	keywords	that	are	passed	
as	an	argument	to	a	wrapper	map	function.	The	goal	of	redesigning	the	map	function	in	this	way	is	to	
make	it	easy	for	users	to	have	a	wide	variety	of	common	map	functions	while	providing	a	way	for	those	
who	wish	to	hack	the	library	to	add	a	keyword	and	map	function	of	their	own.	

3.3	Communication	
An	ongoing	problem	in	MASS	is	the	need	for	agent	to	agent	direct	communication.	This	communication	
can	help	improve	the	K	Means	algorithm	and	simulations	such	as	Bail	in	/	Bail	out.	In	Professor	Fukuda’s	
previous	work	on	UWAgent,	agent	communication	is	achieved	through	a	treelike	implementation	where	
agents	are	spawned	from	parent	agents	and	communicate	information	back	along	the	tree	structure	to	
their	parent.	This	implementation	is	very	complex	and	would	require	a	rework	of	the	way	agents	are	
structured	currently	within	MASS.	Additionally,	the	calls	needed	to	communicate	information	and	track	
where	agents	are	in	relation	to	their	parents	would	greatly	decrease	MASS’s	current	performance.	An	
alternate	form	of	communication	would	be	possible	using	messenger	agents.	These	agents	would	pass	
data	back	and	forth	between	nodes	and	update	the	agents	and	places	on	that	node.	Such	a	behavior	can	
be	further	augmented	using	a	system	such	as	MASS	Node	Cache.	

A	portion	of	my	CSS595	project	will	include	attempts	at	implementing	this	communication	so	that	
agents	can	communicate	better	with	themselves	as	well	as	places.	This	feature	is	of	elevated	importance	
in	the	scope	of	this	project	as	Bowzer’s	collision	free	algorithm	relies	on	using	the	current	
communication	structure	making	it	so	that	the	user	must	choose	between	place	and	agent	
communication	and	collision	free	migration.	

3.4	MASS	Node	Cache	
When	I	first	came	to	UW	Bothell,	I	observed	research	work	done	by	Dr.	Michael	Stiber	on	the	BrainGrid	
neuron	growth	simulator.	In	this	project,	GPUs	are	used	to	simulate	the	growth	of	cortical	tissue	in	
accordance	to	several	neuroscience-based	models	for	brain	development.	Some	of	the	observations	I	
made	while	on	that	project	have	influenced	my	thinking	on	MASS.	The	first	observation	was	that	
obtaining	data	on	the	stages	of	the	simulations	from	beginning	to	end	was	very	difficult	and	the	other	
observation	was	that	simulations	required	considerable	planning	beforehand	due	to	their	long	runtime	
and	if	anything	disrupted	the	simulation	in	progress,	it	would	have	to	be	restarted	from	the	beginning.	If	

MASS	is	to	eventually	become	a	robust,	go	to	framework	for	data	science,	it	needs	to	have	fault	
tolerance	for	large	simulations.	My	solution	to	this	problem	is	the	MASS	Node	Cache.		

3.4.2	Implementation	
A	version	of	the	MASS	Node	Cache	exists	on	the	collin_develop	branch	of	the	mass_java_core	repository	
on	bitbucket.	Since	this	initial	attempt	crossed	somewhat	into	my	CSS	595	work	I	decided	to	direct	my	
focus	to	other	tasks	such	as	writing	my	capstone	proposal	and	running	my	machine	learning	algorithms.	

The	MASS	Node	Cache	is	implemented	using	a	ConcurrentHashMap	internally	to	store	system	
information	on	each	computing	node	involved	in	the	MASS	application.	The	decision	to	base	the	system	
off	a	ConcurrentHashMap	comes	from	the	examination	of	various	distributed	caching	systems	for	
clusters	based	on	a	map	structure.	The	keys	for	information	storage	into	the	map	are	divided	in	to	mode	
and	operation	keywords.	Mode	keywords	call	the	functions	to	either	read	from	the	cache,	write	to	the	
cache,	or	take	a	snapshot	with	the	cache.	The	operation	keywords	represent	different	types	of	
information	stored	by	the	cache.	Source	code	for	the	MASS	Node	Cache	and	enumerated	keywords	is	
below.	

MASSNodeCache.java	

/*	MASSNodeCache	CLASS	*/	
//	This	class	caches	system	information	and	takes	snapshots	of	simulations	
package	edu.uw.bothell.css.dsl.MASS.Cache;	
import	edu.uw.bothell.css.dsl.MASS.logging.Log4J2Logger;	
import	java.util.*;	
import	java.util.concurrent.ConcurrentHashMap;	
	
public	class	MASSNodeCache	{	
	
		private	ConcurrentHashMap<CacheOpKeys,	Object>	cacheMap;	
		private	Log4J2Logger	logger;	
				public	MASSNodeCache(){	
								cacheMap	=	new	ConcurrentHashMap<>();	
								logger	=	Log4J2Logger.getInstance();	
				}	
	
				public	Object	write(CacheOpKeys	key,	Object	value){	
						System.out.println("Operation	"	+	key	+	"	performed	in	write.");	
							cacheMap.put(key,	value);	
							return	null;	
				}	
	
				public	Object	retrieve(CacheOpKeys	key){	
						System.out.println("Operation	"	+	key	+	"	performed	in	retrieve.");	
						return	cacheMap.get(key);	
				}	
}	
	

CacheModeKeys.java	

package	edu.uw.bothell.css.dsl.MASS.Cache;	
public	enum	CacheModeKeys{	
		WRITE,	
		RETRIEVE,	
		SNAPSHOT	
}	

	

CacheOpKeys.java	

package	edu.uw.bothell.css.dsl.MASS.Cache;	
	
public	enum	CacheOpKeys	{	
				PLACES_BOUNDARY,	
				AGENTS_BOUNDARY,	
				RANK,	
				NUM_NODES,	
				AGENT_SIZE,	
				PLACE_SIZE,	
				LOCAL_IP	
}	
	

CSS	595	
My	work	on	the	MASS	Node	Cache	for	CSS	595	will	be	to	implement	a	snapshot	function	that	saves	
simulation	data.	If	time	allows,	I	will	write	a	method	to	load	snapshot	information	and	spin	up	the	
simulation	where	it	left	off.	Over	the	summer	I	plan	to	test	the	functionality	excluding	the	snapshot	
mode.	

4. Where	to	find	and	run	programs	
The	three	machine	learning	algorithms	mentioned	in	this	paper	can	be	found	in	the	dslab	account	under	
the	directory	Collin_Workspace.	They	can	be	run	using	the	following	command:	

 java -jar <app name> arguments

Any	issues	with	the	programs	or	questions	regarding	my	work	can	be	directed	to	colntrev@gmail.com.	
As	of	this	writing	the	uw1-320	cluster	is	experiencing	intermittent	issues	with	the	UDrive.	This	has	
prevented	extensive	testing	of	the	above	code.	Over	this	summer	Matthew	Sell	will	be	putting	together	
a	special	cluster	exclusively	for	dslab	students.	This	will	hopefully	circumvent	many	of	the	issues	
encountered	this	quarter.		

