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Abstract 
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Munehiro Fukuda, Ph.D. 

Computing & Software Systems 
 
 
MASS is an Agent-Based Modeling (ABM) library that allows for parallelized simulation over a 
distributed computing cluster. In these simulations, Place objects act as the environment for 
Agents to interact with and may be internally organized as multi-dimensional arrays, graphs, or 
trees. Graph-based simulations are best suited for systems where Places’ relationship to one 
another may dynamically change or where Places have an indefinite number of neighbors, such 
as in social networks. However, these graphs are often very complex and present increased 
difficulty of debugging and verification for the programmer. To address this problem, the goal 
of this project is to extend the MASS Java library to include a development environment which 
allows the programmer to step through a graph-based ABM and visually inspect associated 
Places and Agents. To accomplish this successfully, we have incorporated Java’s JShell for line-
by-line execution, checkpointing, and rollback of a simulation; expanded MASS-Cytoscape 
integration with a full control panel, Agent visualizations, and choice to view subgraphs from 
MASS; and added Agent Tracking functions to the MASS API. These additions result in a 
development environment which allows programmers the flexibility to rapidly explore and 
iterate graph-based ABMs, free to focus on the logic of their simulations and not the 
infrastructure needed to validate their output. Further, although the functionality discussed in 
this project was designed for graph-based ABMs, their implementation benefits many other non-
graph applications and provides a solid foundation for further expansion of the MASS Java 
library, such as with real-time cluster monitoring and visualization of other simulation data 
structures. 
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Chapter 1:  

Introduction 
 
 
 
 
1.1 Problem Definition 
 

Agent-Based Modeling (ABM) simulation is a powerful tool for researchers of any discipline 

exploring a scenario in which the problem can be modeled using autonomous entities, called 

“agents”, that operate under a predetermined set of rules to interact with the simulation 

environment and other agents. Particularly, designers of ABMs often seek to observe and 

analyze high-level shifts to the simulation environment based on the many low-level actions of 

individual agents, such as in social sciences, economics, and physics domains. 

The Multi-Agent Spatial Simulation (MASS) Java library has been developed by the 

Distributed Systems Lab (DSLab) group at the University of Washington with the goal of making 

ABMs accessible to researchers with any level of computing experience. To do this, the MASS 

Java library provides an intuitive programming framework that abstracts away the 

communication and agent coordination complexities of designing ABMs in distributed 

computing environments. In MASS Java, simulations may consist of two entities, Agents and 

Places. These Places represent the simulation environment with which Agents may interact 

and are stored in multi-dimensional arrays allocated over the distributed system. 

Storing Places in a multi-dimensional array is ideal for simulations where the space is 

continuous, such as in strategic battle games in which the environment might resemble a 

checkerboard. However, not all systems can be easily modeled in continuous space. For 

example, imagine each Place represents an individual user in a social network: in this scenario, 

there will be some users with many connected friends and others with very few. Further, the 

number of friends for any individual user may be constantly changing as new friends are added 

and removed from the network. For simulations like this, a graph structure is much more 
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intuitive to our understanding of the system in the real world. Unfortunately, the variable nature 

of these graph structures also makes them very difficult to debug and validate, and MASS 

currently lacks graphical inspection tools to assist. 

1.2 Research Objective and Contribution 
 

The aim of this research is to create an interactive environment which allows the user to 

easily code, debug, and validate graph-based simulations in MASS. The user needs to be able to 

visually inspect the graph structure and then scrutinize Agent movement over the graph 

incrementally during simulation execution. Further, since MASS Java runs in a distributed 

environment capable of handling graphs much larger than can fit on the resources of a single 

machine, the visualization solution needs to be able to show only a subsection of the overall 

graph from MASS based on the user’s selection. Toward this vision, there are three high-level 

goals for this project: 

1. MASS Agent Tracking API must be implemented to allow for visualization of Agent 

movement in the developed environment. This ensures proper formatting of the Agent 

data, can be optimized for performance, and will be a valuable tool for any application 

developers that rely on Agent movement patterns for evaluating their simulation.  

2. Enhanced Simulation Controls which will enable the user to step through their 

simulation to determine correctness and impact of each statement in the application 

incrementally. This project will be expanding on the work of a previous graduate student 

that used Java’s JShell1 to provide this functionality [3]. 

3. Expand MASS-Cytoscape integration to include agent data transfer and visualization 

options which allow the user to investigate simulation state at any point in execution. 

Actions toward achieving these goals are completed in three phases. First, we add support 

for Agent tracking by (a) creating classes for managing and representing the Agent history 

 
1 JShell is a Read-Evaluate-Print-Loop (REPL) tool originally shipped with the Java 9 JDK. JShell is often used as a 
learning tool for those new to Java, or a particular library in Java, because it offers immediate feedback to the user if 
a line is logically or syntactically incorrect.  
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information and (b) making required changes to the MASS library to utilize these new classes 

during execution. Second, we reimplement core JShell functionality with specific focus on (a) 

simulation state capture for checkpoint and rollback features and (b) support for dynamically 

created classes in a distributed environment. Third, we expand MASS-Cytoscape integration by 

(a) creating import-agent plugin to retrieve and store Agent history information, (b) creating a 

control panel for visualization control and managing interactions with MASS, and (c) modifying 

import-graph plugin to support retrieval of a partial graph from MASS. 

1.3 Report Structure 
 

The remainder of this paper is divided into six chapters. Chapter 2 includes a summary of 

the work from previous students who have enabled this project’s extension to the MASS Java 

library. Chapter 3 presents the technologies that are key to understanding this implementation 

and includes a discussion of competing ABM simulation software Repast Simphony. Chapter 4 

discusses the implementation and architecture details of this project and how each deliverable 

fits into the final solution. Chapter 5 covers some typical use cases for this interactive solution. 

Chapter 6 presents the result of this research and discusses evaluation of this work in both 

quantifiable and qualitative measures. Finally, Chapter 7 contains our closing thoughts and 

recommendations for future work. 
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Chapter 2:  

Previous Work 
 
 
 
 

The work presented in this document would not be possible without the collective, 

compounding effort of the many students and faculty members who have built MASS into what 

it is today. Of note for this work, specifically, are the contributions of previous graduate students 

Justin Gilroy and Nasser Alghamdi who each developed foundational blocks on which this 

project is based. 

2.1 MASS with Graphs 
 
The infrastructure for graph support in MASS Java was originally added by previous graduate 

student Justin Gilroy. His contributions to the library include: the addition of the GraphPlaces 

class, which contains the bulk of graph construction and maintenance functionality; support for 

importing graphs of HIPPIE [7] and MATSim [6] file types; and integration of third-party 

bioinformatics software, Cytoscape, for visualization of graph structures through addition of two 

Cytoscape extensions: import-network and export-network [2]. These additions to MASS Java offer 

the foundation for this research by adding support for execution and simple visualization of 

graph-based simulations in MASS without requiring custom graph code from the MASS Java 

user. 

Justin’s work was limited, however, to visualization of only the graph structure in Cytoscape 

and does not include support for Agents. Additionally, his implementation assumes the full 

graph from MASS can be shown in Cytoscape, which is untrue for simulations fully utilizing the 

resources available in the distributed environment. Finally, the current visualization layer does 

not synchronize with the MASS simulation and only provides visibility of the graph structure 

after the simulation has completed. 
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2.2 Interactive MASS 
 

Interactive MASS (InMASS) in MASS Java is the work of Nasser Alghamdi whose contribution 

enables MASS simulations to be written from the command-line interface and executed line-by-

line, as if being written in Python. To accomplish this, Nasser created a wrapper around Java’s 

JShell interface and then added supporting classes to ensure JShell would function properly in 

MASS’ distributed environment. Further, Nasser’s implementation leveraged this JShell 

functionality to enable MASS to checkpoint an in-process simulation and later rollback core 

simulation data to those previously checkpointed states. Importantly, all this can be done 

without having to stop the active simulation and then recompile, distribute, and reinitialize the 

program on the cluster [3]. 

In addition to the JShell implementation, Nasser’s work incorporated various other potential 

additions to the MASS Java library including, but not limited to, (a) a monitoring system that 

allowed for MASS simulation state to be viewed from a web browser, (b) Agent and Place builder 

classes that simplified their instantiation in the user program, (c) additional parallelization of 

MASS startup and shutdown processes, and (d) improvements to inter-process communication 

through simplified function calls. Unfortunately, these improvements are beyond the scope of 

research for this project and were not included in the implementation for the sake of simplicity 

and compatibility with existing MASS Java simulations. 

  



6 
 

 

Chapter 3:  

Related Work 
 
 
 
 

This section provides an overview of related work to provide context to this project. 

Specifically, we discuss the software utilized to visualize our data, competitor ABM simulation 

library Repast Simphony, and previous Agent Tracking implementations. 

3.1 Cytoscape 
 
Cytoscape is an open-source network visualization tool, originally developed for use in 

analysis of biomolecular interaction networks, that has grown to be widely used by various 

disciplines for general graph support [4]. Three reasons for Cytoscape’s wide adoption, all 

compelling factors in DSLabs’ decision to integrate with MASS Java [2], are that it: (1) has 

extensive file support for importing graphs into Cytoscape; (2) has native functionality for 

dynamic manipulation of existing graph structures; and (3) is based on the OSGi framework 

making its components modular and easily extensible. These features suggest potential for 

Cytoscape to provide a visualization interface for MASS Java, but careful consideration still needs 

to be made during implementation. Specifically, Cytoscape is a desktop application while MASS 

supports distributed computation which means that the amount of data MASS supports is much 

greater than the amount of data Cytoscape can process for visualization. 

3.1.1 Open Service Gateway Initiative (OSGi) 

OSGi is a specification for a Java-based component framework in which a collection of 

independent components, known as “bundles”, can be deployed independently inside an OSGi 

container [8]. Each bundle must be completely self-contained allowing it to be started, stopped, 

or removed from the OSGi container without affecting the functionality of other bundles. This 

modularity is core to OSGi as it enables new bundles to be created without worrying about 
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impacting existing components. To facilitate coordination between components, each bundle 

can register its services with the OSGi service API, allowing it to be invoked by other bundles 

which would like to subscribe to that service. Thinking about Cytoscape specifically, the 

Cytoscape application is the OSGi container, and all functionality is implemented or extended 

through the addition of new bundles. 

Although the inherent modularity of the OSGi makes it appealing for this work, the need for 

complete bundle self-containment does create some problems. Namely, to create a seamless 

user experience in our visualization GUI, we must establish a mode of inter-bundle 

communication which allows our extensions to share information indirectly while still adhering 

to OSGi specifications. 

3.2 Repast Simphony 
 

REcursive Porous Agent Simulation Toolkit (Repast) Simphony [10] is a widely used, open-

source ABM platform designed to interface with the Eclipse integrated development 

environment (IDE). Repast Simphony is designed to be modular and allow extension of core 

functionality through the development and incorporation of plug-ins at runtime for things such 

as simulation visualization and monitoring. This flexibility makes Repast Simphony a very 

strong competitor in the ABM space and, therefore, makes it the best candidate for feature 

comparison of this project’s work. 

Repast Simphony is an excellent tool for ABMs and offers many features, like its modularity, 

native GUI interface in Eclipse, and menu-based execution, which make it an appealing choice 

for researchers. However, the Repast Simphony toolkit falls short when compared to the 

objectives of this work. Specifically, Repast Simphony can simulate graph-based ABMs but 

forces the programmer to code the graph logic into a two-dimensional simulation space which 

leads to the same issues we are trying to solve with this work. That is, programming graphs into 

a continuous space is an unnecessarily complicated and error prone endeavor. Additionally, 

Repast Simphony requires that all graph and agent information be set prior to execution of the 

simulation and does not support incremental backtracking or manipulation of a running 
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simulation. Finally, Repast Simphony runs on a single CPU and, therefore, cannot support the 

same volume of data as MASS operating on a cluster of computing nodes.  

3.3 Alternatives in Agent Tracking 
 

Data Provenance in MASS, also known as “ProvMASS,” provided a novel approach for 

tracking data provenance in a distributed setting [9]. This data provenance included Agent data 

in addition to Place and cluster information and was captured to file at run-time. In the end, 

these data provenance features proved to be useful in analyzing Agent behavior but had a 

significant impact on simulation performance which made the implementation undesirable for 

this project’s goals. Specifically, our Agent Tracking implementation must be lightweight 

enough to keep in memory during simulation and its use should not significantly impact system 

performance. 

Repast Simphony, on the other hand, has a lightweight implementation for tracking Agent 

data, but settings must be pre-configured before running the simulation and recorded Agent 

data can only be written to console or file [11]. This is useful for review of Agent information but 

does not facilitate programmatic use of this data in a running simulation. This work seeks to 

create an API in MASS which returns Agent data either to the visualization layer or directly to a 

running application so the programmer can utilize its output in the simulation. 

3.4 Summary 
 

Each of the technologies and approaches discussed in this section provide functionality like 

the goals set out in this project, but each falls short of our desired outcomes in one aspect or 

another. (a) Cytoscape provides a flexible and feature rich foundation for visualization but lacks 

the ability to support large-scale graphs that can be processed using distributed resources. To 

address this, we will implement functionality to retrieve partial graphs from MASS into 

Cytoscape for visualization. (b) Repast Simphony provides an IDE-based ABM solution with 

extensive plug-in support, but lacks desired graph structure, forces users to pre-configure 

visualizations, and lacks the mid-simulation control features targeted by this work. To improve 

upon this, we seek to extend MASS’ graph-based simulation support to provide the users with 
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greater ability to control a running simulation. Further, this project seeks to add visualization 

support which users can call upon as needed in their applications, asynchronous of simulation 

execution. Finally, (c) related Agent Tracking implementations are either too computationally 

expensive for general use or have been limited in their output capabilities. This project aims for 

a general-purpose Agent Tracking feature that is lightweight and flexible enough to use in the 

visualization layer or as a replacement for conventional data management techniques in ABM 

simulations. 
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Chapter 4:  

MASS GUI Support for Graphs and Agents 
 
 
 
 

This chapter introduces some technical aspects of the MASS Library. It then goes on to 

describe the key considerations and implementation details of each major deliverable of this 

project: (1) MASS Agent Tracking API, (2) enhanced simulation controls, and (3) expanded MASS-

Cytoscape integration for visualization. 

4.1 MASS Library 
 

Figure 4.1 provides an overview of the MASS Library Model. In this model, ABMs can be 

represented using the two available modeling objects: Places and Agents. The Places 

represent the simulation space, while the Agents are the actors within the simulation. As shown 

in the application layer of Figure 4.1, Places are distributed among the computing nodes on the 

cluster, and each is mapped using a globally known set of coordinates which are used to 

reference or locate the Place. Exactly how Places are mapped depends on the type of Place 

structure being used. Figure 4.1 illustrates a two-dimensional mapping of Places with x and y 

coordinates. Regardless of mapping structure, all Places are mapped to processes and may 

exchange data amongst themselves or with visiting Agents. Agents are then stored in bags on 

each process and may traverse the cluster to visit Places throughout program execution. When 

traversing, Agent data is serialized and passed between cluster nodes via TCP communication. 

Not all simulations utilize both Agents and Places; a simulation may use only Places, if that is 

all that is needed for computation. 

The MASS library functions using a master-worker pattern to control the simulation. In 

Figure 4.1, Computing Node 0 represents the master node, also referred to as the host node, and 

the other nodes represent the worker, or remote, nodes. User applications interact with the 
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MASS host node and then MASS controls all supporting communication with the worker nodes 

internally. 

 
Figure 4.1: MASS Library Model [1] 

 
4.2 MASS Agent Tracking API 
 

To facilitate Agent visualization in our new development environment, we must first add 

functionality to MASS that will capture the Agent visitation data to be visualized. Toward this 

objective, a set of Agent Tracking calls have been added to the MASS API. 

4.2.1  Key Considerations 

When evaluating possible implementations for this feature, the following considerations 

influenced our design decisions: 



12 
 

• Performance. Use of Agent Tracking functionality will introduce extra overhead to 

simulation execution, due to additional network communications, but the impact to 

performance must be minimal enough to make Agent Tracking API functionality a viable 

replacement to user-defined methods. 

• Consistency. Output of Agent Tracking should be unambiguous and free of errors. Each 

Agent must be shown only once, and history must be verifiable and consistent with 

output of user-defined methods. 

• Usability / Ease of Use. Solution must be straightforward for regular MASS users and 

output must be easily consumable for general use cases, such as finding all Agents alive 

at a particular time or determining the number of visits an Agent made. 

4.2.2 Overview 

The implementation of Agent Tracking functionality in MASS has resulted in the addition of 

three new classes to the MASS Java library: AgentHistoryManager, AgentHistoryModel, and 

AgentHistoryCollection. Figure 4.2 shows a class diagram of these new classes as well as all 

associated new or updated methods and variables on existing classes.  

First, as shown in Figure 4.2, if Agent Tracking features are being used in a simulation, then 

each Place will initialize a local AgentHistoryManager. This class is responsible for managing 

which Agents or classes of Agents are being tracked and then recording history each time a 

tracked Agent visits that Place. Importantly, this means Agent history data is stored on the 

Places and not the Agents; this maintains simulation performance by ensuring Agents remain 

lightweight for serialization and transfer between computing nodes. The tradeoff is that Agent 

history is distributed amongst the cluster nodes during execution which introduces some 

complications when extracting the data, especially when child Agents are involved (see section 

4.2.4 for more discussion on this issue). 
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Figure 4.2: Agent Tracking Class Diagram 

Due to the complexity of the MASS library, this diagram only shows the classes affected by the addition of Agent 
Tracking APIs. Methods in italics are existing methods which were modified to support the implementation. 
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Internally, AgentHistoryManagers maintain history in a hash table of AgentHistoryModel 

objects using the Agent’s name2 as the hash key. Each model object represents a single Agent 

and maintains basic information as well as a list of Visits for that Agent. The Visit is a simple 

data storage class which resides inside the AgentHistoryModel and consists of two values: Time 

and Linear Index of the Place. Managing simulation Time is itself a challenge and is discussed 

in detail in section 4.2.3. 

Lastly, AgentHistoryCollection objects are simple containers utilized to facilitate 

movement of AgentHistoryModels in a form that can be verified by the JVM and easily 

consumed by the user. These objects are only used when serving Agent data to Cytoscape or 

returning data directly to the user. 

4.2.3 Managing Simulation “Time” for History Tracking 

Maintaining Time for Agent Tracking purposes is done with a set of new variables which are 

managed by the AgentsBase class. These variables are iteration, which is the time value, and 

shouldIncrement, which is a helper Boolean used to ensure the iteration counter does not 

increment more often than it should. Specifically, the iteration counter should only increment 

once per manageAll() invocation and only if there is at least one Agent migrating. An Agent 

must be migrating because, in simulations where Agents are spawning child Agents, there may 

be multiple manageAll() invocations per logical cycle, e.g., one call for parent Agents to 

migrate and then a second call for child Agents to spawn. In these instances, we ensure history 

for both calls is captured using the same iteration value. 

Figures 4.3 and 4.4 show sequence diagrams for AgentsBase Constructor and manageAll() 

methods, respectively. Modifications to logic to support Agent Tracking functionality are 

highlighted in each diagram. In Figure 4.3, each time an Agent is initialized on a Place, we use 

the Place’s manageAgentTrace() method to signal the arrival of the new Agent. During 

AgentsBase construction, the time recorded will always be zero, and the shouldIncrement 

variable will end as True, ensuring iteration will increment the next time an Agent migrates. 

 
2 An Agent’s name is defined as the Agent’s class name and ID separated by an underscore. (Ex. 
“SimpleAgentClass_1”) 
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In Figure 4.4, we see a similar procedure for manageAll(): every time an Agent migrates or 

spawns, a signal is sent to the receiving Place, and the process always ends by setting 

shouldIncrement to True. This process differs, however, the first time an Agent migrates: the 

iteration counter first increments, to advance the simulation one tick, and then 

shouldIncrement is set to False, to avoid incrementing for each migrating Agent. 

 

 
Figure 4.3: AgentsBase Constructor Sequence Diagram 

Another option considered for resolving the Time issue was to use the GlobalLogicalClock 

class which supports annotated events functionality in MASS. This option was eventually 

rejected because it increments with each call of manageAll() and would show spawning and 

migration events occurring at different times. 
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Figure 4.4: AgentsBase manageAll() Sequence Diagram 

 
4.2.4 Parent-Child Data Propagation Problem 

In many simulations, Agents will come to decision points at which their instructions indicate 

they need to travel to multiple Places at once. In these instances, the parent Agent will move to 

one Place, and then a child Agent will be spawned for each of the other available Places. At 

this point, if the Agents are being tracked by class name, then the Places will begin gathering 

data on the newly spawned child Agents. This pattern may continue throughout the simulation, 

causing multiple waves of child Agents to spawn at various times in the simulation. The issue 

that arises from this process is that the child Agents will have an incomplete history, because 

they did not exist at the beginning of execution.  
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To help illustrate this problem, consider the Triangle Counting benchmark application 

running on a sample graph shown in Figure 4.5. The Triangle Counting benchmark is solved in 

four simulation cycles: (Time 0) one Agent is spawned on each available Place; (Time 1-2) each 

Agent travels to all Places with a lessor index value than current the Place and spawn child 

Agents if more than one Place fits this criterion; and (Time 3) all remaining Agents attempt to 

return to Place of Time 0. Each Agent which can return home at Time 3 represents a discovered 

triangle. Figure 4.6 shows the history captured for each Agent as this benchmark application 

plays out; note that child Agents are missing data from before they were spawned from the 

parent Agents. This missing data is needed for the user application to correctly determine the 

path the Agents traveled along, i.e., the edges of the triangles. 

 
Figure 4.5: Sample Graph 

 
Figure 4.6: Agent History data before parent propagation  

Legend: [Time, Place Index] and “?” indicates missing segments of Agent history. 
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As shown in Figure 4.6, Agent 7 is the only Agent that completed its path at Time 3, but its 

complete path is unknown because Agent 7 is a child and did not spawn until Time 2. Further, 

Agent 7 is the child of Agent 5 and Agent 5 is also a child Agent of Agent 4. So, even if we retrieve 

information from Agent 5, the data will remain incomplete unless we also pull information from 

Agent 4. Thus, illustrating the need to solve this problem depth-first recursively at the time the 

data is extracted to the user program. 

Figure 4.7 illustrates the result of propagating data from parent Agents, with the red arrows 

indicating the flow of information from parent to child. In the case of Agent 7, we see that it 

retrieved results directly from parent Agent 5, after Agent 5 retrieved its own history from parent 

Agent 4. Now, from Agent 7’s movement history, we can correctly conclude the triangle found 

from this simulation is between Place nodes 4, 2, and 0. 

Figure 4.7: Agent History data after parent propagation 

An alternative to this implementation would be to populate missing history information at 

the time each child Agent is spawned. This implementation was considered but rejected based 

on our design decision to capture Agent information on each distributed Place. To populate 

each child with parent data upon initialization would require either (a) additional networking 

calls to collect and redistribute parent information with the distributed Places, which would 

occur during the simulation and have significant impact on performance, or (b) move Agent 

history information onto the Agents themselves, which would add overhead to serialization and 

transmission when migrating, adversely affecting performance. In contrast, the chosen 
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implementation in this work results in minimal additional overhead during the simulation and 

only significantly impacts performance when the data is finally retrieved. 

4.2.5 Interacting with Agent Tracking API 

Figure 4.8 shows the process flow for Agent Tracking API calls. In the top of the diagram, we 

illustrate the five steps associated with registering an Agent class to be tracked in this simulation: 

(1) user application utilizes existing MASS API callAll() function and provides function Id of  

AGENT_TRACE_REGISTER_CLASS3; (2) MASS host node relays this request to remote nodes; (3) all 

Places then update their local AgentHistoryManager with the new request; (4) host node waits 

for confirmation from remote nodes that the task is complete; and (5) control returns to the user 

application. Note that, although the diagram depicts this process for registering a class of 

Agents, the process is the same for registering or delisting a single Agent or group of Agents. 

Once an Agent class is registered for tracking, the user program may continue execution 

without worrying about tracking data. Each time the manageAll() function is invoked, the MASS 

library will keep track of all associated Agent movements. 

The bottom half of Figure 4.8 depicts the process for retrieving Agent data out of the system. 

The first four steps of the process are generally the same, but with a different function Id: 

AGENT_TRACE_GET1. However, once all processes have returned their local history to the MASS 

host node, there is an extra step (5) that consolidates all returned models into a single, cleaned, 

and sorted model. It is at this step that parent-data propagation occurs. Finally, (6) the output is 

returned to the user in the form of a single AgentHistoryCollection object at position 0 of the 

return array. From here, the user may retrieve all AgentHistoryModels using the 

AgentHistoryCollection getModels() method. 

 
3 To avoid collision with user-defined functions, the Agent Tracking functions utilize the previously unused negative 
integer space (-1 through -4). 
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Figure 4.8: Agent Tracking API Process Flow Diagram 
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4.3 Enhanced Simulation Controls (InMASS) 
 

To provide incremental execution and the ability to checkpoint and rollback a simulation, 

we have leveraged Nasser Alghamdi’s work on InMASS but included only the features necessary 

to meet this project’s objectives. 

4.3.1  Key Considerations 

• Performance. Although the functionality included in InMASS brings many possibilities 

for user interaction with MASS, not all users will want to make use of this functionality; 

those users should not receive a penalty to system performance. 

• Minimize Impact to Codebase. Nasser’s original implementation of InMASS satisfied 

primary objectives of this work by enabling line-by-line execution of MASS simulations 

and including features for checkpointing and rollback but did so in a way that modified 

more of the MASS library than could be easily incorporated into production versions. For 

this reason, this work aims to include the same features with less impact on the basic 

functionality of the MASS Java library. 

4.3.2  Overview 

At the highest level, InMASS is simply a wrapper class that initializes a JShell window, injects 

MASS startup code into that JShell instance, and then provides hooks for various MASS execution 

and shutdown functions. This basic functionality alone enables line-by-line execution when 

running on a single node and effectively eliminates boilerplate code in user applications. The 

challenges of InMASS implementation, however, revolve around (1) making JShell function 

properly for all nodes in a distributed environment and (2) deciding how to save and reload 

simulation state for checkpoint and rollback functionality. 

4.3.3  Managing Dynamically Created Classes 

Built-in Java class loaders rely on classes being included in the application classpath, JVM, 

or bootstrap loaders, all of which require the class to be known at compile time. However, a key 
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feature of JShell is that it enables classes to be defined dynamically in a running application. In 

normal situations, JShell’s dynamically created classes would not be a problem, because the 

computer running JShell would also be running the rest of the application. In cases when a class 

is defined through JShell, the local class loaders can be notified of the new class. In distributed 

systems, however, special accommodations must be made for communication of these 

dynamically created classes with the distributed computing nodes (which are not in direct 

communication with the JShell client). 

To address this issue, a custom class loader, InMASSLoader, has been added to keep track of 

any dynamically created classes. Then, InMASSLoaderClient and InMASSLoaderServer have 

been added to facilitate distribution of the classes’ bytecode throughout the distributed system. 

Once all computing nodes are aware of the new classes, they use new MASSObjectInputStream 

and MASSObjectOutputStream functions to assist in serialization and deserialization of these 

dynamic classes. These are variations of Java’s standard ObjectInputStream and 

ObjectOutputStream, respectively, and simply reroute the program through the InMASSLoader 

when an Object cannot be resolved using built-in class loaders. 

4.3.4  State Storage and Recovery 

Figure 4.9 shows a class diagram of all class additions and revisions that went into adding 

support for state checkpointing and rollback. As shown, this implementation consists of four 

major functionality groupings which have been color coded for clarity. 

First, the IInternal interface along with two implementations, AgentsInternal and 

PlacesInternal, (indicated with red in Figure 4.9) have been added to facilitate serialization 

and deserialization of simulation data. These classes now hold all data elements previously in 

the AgentsBase and PlacesBase classes, respectively. When a checkpoint occurs, it is these 

IInternal classes which get serialized and saved. AgentsBase and PlacesBase now extend the 

IRef interface which provides them with a reference to these IInternal classes. This 

architecture allows for a simple update of the IRef reference variable with a new IInternal 

class when rollback is performed: eliminating the need to completely reinitialize the base class. 
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Figure 4.9: Checkpoint / rollback class diagram 

Due to the complexity of the MASS library, this diagram only shows the classes affected by the addition of checkpoint 
and rollback features. API calls in AgentsBase and PlacesBase were also modified to support these MHistory execution 
logging, but those changes are not reflected here for simplicity. 
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Second, the IState interface and corresponding MState implementation (indicated with 

blue in Figure 4.9) are included to provide a more concise way for MASS to reference the 

simulation state internally. These are container classes which hold hash tables containing all 

initialized AgentsBase and PlacesBase instances. Their inclusion provides a single object to be 

saved and updated on checkpoint and rollback. 

Third, (indicated with green in Figure 4.9) we added the IStoreStrategy interface along 

with three corresponding implementations: InMemoryStoreStrategy, InDiskStoreStrategy, 

and TemporaryInDiskStoreStrategy. As their class names imply, these contain the 

procedures for writing and reading IState information to active memory, temporary disk 

location, or a specified file in disk. Inclusion of these IStoreStrategy classes decouples the 

storage process from the data and provides opportunities for future implementations to save 

data to other locations and formats. 

Finally, to facilitate user ability to rollback to states other than the original checkpoint we 

have added the MHistory class (indicated with orange in Figure 4.9). The class keeps a log of all 

API calls to AgentsBase and PlacesBase and stores their bytecode to enable re-execution on 

demand. Consequently, when a user requests rollback to step 5, for example, the original 

checkpoint will be loaded, and then MHistory will execute the next five API calls that follow the 

checkpoint. Note that all API calls, such as callAll(), manageAll(), and exchangeAll(), have 

been modified to support this feature, but, for the sake of simplicity, we have not shown these 

changes in Figure 4.9. 

4.4 MASS-Cytoscape Integration for Visualization 
 

To facilitate visualization and validation of simulation data, we have (1) expanded the 

existing MASS-Cytoscape integration to include transfer of Agent data to Cytoscape, (2) added 

two types of visualizations for viewing this Agent information, and (3) built a control panel to 

improve overall user experience. Additionally, (4) to allow large-scale graphs to be shown in 

Cytoscape we have added the capability to retrieve partial graphs from the MASS library using 

an n-neighbors approach. 
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4.4.1  Key Considerations 

• Usability. The solution developed in this project must be user-friendly and intuitive to 

use. The final implementation should allow the user to focus on building their 

application in MASS and not configuring or managing the visualization solution. 

• Scalability. MASS can run on a distributed system while the Cytoscape client must run 

on a single machine. Therefore, the visualization solution must allow options for 

scenarios where large-scale networks in MASS need to be partially shown due to resource 

constraints. 

• Expandability. A core benefit of using Cytoscape and the underlying OSGi framework is 

the modularity and expandability of the system. This implementation should provide a 

foundation and template for further integration with MASS Java. 

4.4.2  Overview 

Figure 4.10 presents an overview of the MASS-Cytoscape architecture. On the left side of the 

figure is the user space. We have illustrated the user’s two points of interaction, with the JShell 

window for executing their simulation in MASS and with the MASS Control Panel for managing 

their data flow and visualization in Cytoscape.  

The MASS Control Panel serves three main functions. First, it provides a single point of 

interaction for the user by internally managing the data transfer plugins: import-network, export-

network, and import-agents. Second, it provides the ability to manipulate the MASS Configuration 

tables which inform the data transfer plugins of how to find the MASS simulation and what data 

to pull back into Cytoscape. Lastly, it provides the interface and logic for visualizing Agent 

movement through manipulation of the Cytoscape data tables and Network View. 

In MASS, the CytoscapeListener class must be started by the user application to open a 

TCP-based communication port for MASS-Cytoscape communication. This listener will then 

field any requests from Cytoscape by first parsing the request, then obtaining reference to the 

corresponding GraphPlaces method, and finally invoking that method and returning the results 
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to the requesting Cytoscape plugin. Internally, the GraphPlaces methods utilize standard MASS 

internal APIs, such as callAll(), to communicate with the rest of the cluster and set or retrieve 

the appropriate information. 

4.4.3  Synchronizing OSGi Plugins 

OSGi is a flexible specification due to the modularity of each of its component bundles. 

However, because each bundle must be completely self-contained, we must address how to 

coordinate the bundles and provide bundle-to-bundle communication of data. Further, OSGi 

does not guarantee bundles are loaded in a particular order on startup. Therefore, we must also 

consider how to obtain reference to another bundle that may or may not exist at that point in 

time. 

We handle bundle-to-bundle communication using shared tables within the Cytoscape 

environment. Specifically, the “MASS_Configuration” table acts as the central point for all MASS-

related plugins which locate and manipulate this table using a common MASSConfig class. The 

MASS Control Panel uses this class to write new values to the table after taking inputs from the 

UI and the data transfer plugins read in relevant information each time a new data transfer task 

is created. In the current implementation, the “MASS_Configuration” table includes fields for 

the MASS hostname and port as well as other fields used for partial graph streaming. By placing 

all common data in a shared location, we avoid the need for direct bundle-to-bundle 

communication entirely and, therefore, adhere to OSGi’s philosophy regarding clear separation 

of concerns. 
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Figure 4.10: MASS-Cytoscape Integration Architecture Diagram 

Due to the complexity of the MASS library, the MASS side of this architecture has been simplified to only classes in 
use in the MASS-Cytoscape integration. 
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To address the lack of bundle ordering in OSGi, in the MASS Control Panel we have 

implemented a reference to each of the data transfer plugins and the ability to test and reacquire 

the reference if it is lost. This ensures the MASS Control Panel is tolerant to whatever order in 

which the OSGi bundles are started. The panel furthermore maintains performance by only 

reacquiring the reference when it is needed. If the reference is not present and cannot be 

reacquired, then control returns to the user without an error message. 

4.4.4  Visualizing Agent Movement (manipulating the Network View) 

Visualizations in Cytoscape are all controlled by two factors: the layout and the network view. 

The layout defines the spatial orientation of network nodes and edges within the viewer. For this 

implementation, we have utilized the “Circular” layout which is a default layout in Cytoscape 

and appropriate for visualization of networks with large amounts of interconnectivity. Cytoscape 

allows for creation of custom layouts, but this is beyond the scope of this project. The network 

view then defines the visual attributes of each node or edge in the viewer. Customization of the 

network view allows for changes to attributes such as coloring, borders, line weights, and 

tooltips. These settings can be the same for all nodes or edges but can also be linked to individual 

fields in the input tables that contain categorical or numerical values. An example of this in the 

current implementation, we have linked the edge’s line weight attribute with a numerical field 

called plot_edge_weight in the edge table. The network view then parses this field to determine 

how thick each individual line should be. Importantly, this gives the MASS Control Panel a field 

to manipulate to create custom visualizations. 

4.4.5  Partial Graph Streaming with N-Neighbors 

Visualization of a partial graph is important in situations where the MASS cluster is operating 

on a graph too large to be stored in a single machine. To allow the visualization environment to 

support the scale of these graphs, we have implemented an optional “N-Neighbors” approach to 

graph retrieval from MASS. This requires the user to provide a centroid node id as well as 

determine the degrees of separation (DoS) that should be imported. DoS is interpreted as the 

number of neighbor rings that we would like to visualize. Shown in Figure 4.11, if the user selects 
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“1” DoS then the graph retrieval will bring back the centroid node as well as one ring of 

immediate neighbors. Specifying “2” DoS would bring back all the centroid’s neighbors as well 

as the neighbors of those nodes in the first ring, and so on. 

To manage this request on the MASS side of the program, the MASS host node first receives 

the request, saves centroid and DoS information to MASSBase because method references may 

not accept parameters, and then invokes the getGraphNNeighbors() method on GraphPlaces. 

This method then iteratively queries the remote nodes for each DoS requested, passing a list each 

time to ensure only the required graph vertices are sent back. Importantly, this approach results 

in additional overhead from iterative network calls but ensures that the data returned to the host 

node is limited which is critical given that we are solving for situations where the graph is too 

large for a single machine. 

 

Figure 4.11: N-Neighbors Graph Retrieval (Centroid = 0, DoS = 1) 
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4.4 Usage Scenarios 
 
The work presented here can be a useful tool for anyone working on graph-based simulations 

in MASS Java. However, due to the latency of required network communication this will not 

likely be an option for real-time visualization of an in-process simulation. Instead, these tools 

are most useful for those who are either (1) just learning MASS and exploring the functionality 

offered; (2) experienced in MASS and would like to use the tools for rapid prototyping and 

incremental debugging of the new graph simulations; and (3) reviewing the data of a completed 

simulation for accuracy and insights. 

4.5 Contribution Summary 
 
The functionality described in this implementation represents both original code as well as 

reimplementation and extension of the work of other MASS Java contributors. In this section we 

summarize the scope of work completed in this project. 

• MASS Agent Tracking API. This set of features are implemented from scratch in this 

project. This implementation includes three brand new classes (AgentHistoryManager, 

AgentHistoryModel, and AgentHistoryCollection) as well as associated changes to 

internal MASS code to invoke and manage these classes and supporting variables, such 

as “iteration” in AgentsBase for keeping track of simulation time. 

• Enhanced Simulation Controls (InMASS). This set of features is a reimplementation of 

Nasser Alghamdi’s work [3] related to “Interactive MASS.” For incorporation into this 

project, we kept Nasser’s classes for state storage and dynamic class handling relatively 

unchanged from his original work. Instead, this project focused on how these classes are 

incorporated into the existing MASS architecture. Specifically, we have incorporated the 

InMASS features without impacting existing benchmark applications and left behind 

Nasser’s additional features related to monitoring and parallel instantiation. 

• MASS-Cytoscape Integration. For implementation of the visualization layer in 

Cytoscape, this project extended Justin Gilroy’s original work [2] (implementing 
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GraphPlaces and creating the first Cytoscape plugins: import-network and export-

network). Specifically, this project added two new Cytoscape plugins (import-agents and 

agent-panel) for importing and visualizing Agent data in Cytoscape, enhanced existing 

plugins to facilitate indirect component-to-component communication for improved 

user experience, and modified Justin’s import-network plugin to facilitate partial graph 

streaming. Further, this work included several revisions to the MASS side of the 

integration to ensure GraphPlaces could handle new Agent data and partial graph 

requests from Cytoscape. 
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Chapter 5:  

Evaluation 
 
 
 
 

In this chapter we will (1) review performance and programmability of Agent Tracking API, 

(2) qualitatively compare added features with those of Repast Simphony, and (3) survey Agent 

visualizations added to Cytoscape.  

5.1 Results 
 

The following trials were performed using the cssmpi-h computing cluster located at the 

University of Washington Bothell. This cluster consists of 8 machines, each running an Intel 

Xeon Gold 6130 CPU at 2.10GHz and 20 gigabytes of system memory. 

5.2.1 Agent Tracking API 

Figure 6.1 shows the results of performance testing of the Agent Tracking API compared to 

the conventional History Passing technique (i.e., maintaining and passing history from parent 

to child directly through Agent spawn arguments) used by existing MASS applications. We 

utilized the graph-based Triangle Counting benchmark4 application for these tests and the 

execution times shown represent the average of five trials for each combination of input graph 

and data management technique. Finally, all tests were performed using a single computing 

node which removes the impact of network latency from the results. 

These trials were conducted using graph sizes between 100 and 1,500 vertices with the max 

number of neighbor vertices per node scaling up with the size of the graph. As the size of the 

 
4 In the Triangle Counting benchmark the simulation begins with an Agent on each node. All Agents then traverse 
the graph structure by first traveling twice to lower valued Place nodes, spawning child Agents when multiple nodes 
meet this criterion, and then trying to return to their original node. If the Agent is successful, then a triangle has 
been found. 
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graph increases, we also observe a corresponding exponential increase in the total number of 

Agents needed to perform the analysis. Due to variability in complexity from one graph to the 

next, and the management of Agent data being the primary point of interest for these features, 

we will use the total number of Agents to provide context to our results. 

Analyzing the largest graphs tested in these trials (1,000 and 1,500 vertices), we observe 

approximately 1,700ms (~11-18%) slower performance in simulation execution times when 

using the Agent Tracking API. The difference in Agent data extraction times is then even more 

pronounced: in the case of 1,500 vertices, extraction took 5,844ms longer (or ~84% slower) when 

using the Agent Tracking API. For a better representation of these trends, simulation 

performance and Agent data extraction times with respect to the number of Agents are shown 

in Figure 5.2 and Figure 5.3, respectively.  

 
Figure 5.1: Summary of graph-based Triangle Counting performance testing 

In Figure 5.2, we observe a slight decrease in simulation performance when using the Agent 

Tracking API. This increase in processing time is due to the added overhead from data capture 

methods invoked when Agents are spawning and migrating. This gap widens slightly when 

running in multi-node configurations due to added network latency, but the correlation between 

the two techniques remains consistent.  

Conversely, in Figure 5.3, we observe a significant gap in performance between the two 

techniques regarding Agent data extraction time. There are two primary explanations for this 

disparity in performance:  

    Agent History Passing Agent Tracking API 

Vertices 

Max 

Neighbor 

Vertices 

Total # 

Agents 

Total # 

Triangles 

Simulation 

Execution 

Time (ms) 

Agent Data 

Extraction 

Time (ms) 

Simulation 

Execution 

Time (ms) 

Agent Data 

Extraction 

Time (ms) 

100  8 373 8 2,208 709 2,652 1,353 

500 19 7,734 145 2,895 725 3,224 1,625 

750 28 24,818 526 3,944 789 4,616 2,056 

1,000 50 143,486 4,578 7,429 889 9,085 4,830 

1,500 66 342,802 9,124 13,888 1,134 15,613 6,978 
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1. The amount of data being returned to the user is significantly different. Using the Agent 

Tracking API returns all Agent data captured in the simulation while History Passing 

returns only data for Agents that are alive at the time of retrieval. Since this data was 

captured at the end of the simulation, the only Agents alive are those that found 

Triangles. In terms of the 1,500 vertices trial, this means that the History Passing 

technique returned data for 9,124 Agents while the Agent Tracking API approach 

returned results for 342,802 Agents. 

2. The Agent Tracking API takes additional steps to clean, sort, and propagate the data upon 

retrieval. The impact of this extra data processing is somewhat limited in the Triangle 

Counting benchmark, however, because the three-step algorithm limits parent-child 

propagation to at most two levels. Longer simulations with more parent-child 

relationships are likely to see further increase in Agent data extraction times. 

 

Figure 5.2: Simulation performance using History Passing and Agent Tracking API 
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Figure 5.3: Agent data extraction time using History Passing and Agent Tracking API 

With slower simulation performance and longer data extraction times, the discussion must 

then shift to what aspects of the Agent Tracking API make it a valuable addition to the MASS 

library. Figure 5.4 shows a qualitative comparison of the two techniques. First, as touched upon 

earlier, the History Passing method only works for Agents that are alive at the time of data 

extraction; whereas the Agent Tracking API manages history for all registered Agents and makes 

that data available at any point in execution. Second, the Agent Tracking API is arguably more 

intuitive for inexperienced MASS users. The History Passing method requires the user to have 

additional understanding of the MASS library: to understand that they can pass arguments from 

the parent to the child Agents to maintain a log of visits. In contrast, the Agent Tracking API can 

be initiated and then ignored until needed, allowing the user to instead focus on the logic of their 

application. Additionally, the Agent Tracking API will function the same way in all applications 

allowing knowledge of its use to be easily transferred to new projects. Finally, the Agent Tracking 

API shows a small reduction in LOC and, more importantly, a consolidation of those lines to one 

initialization statement and then a single block of code to retrieve and process the data. 
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* Based on Graph-based Triangle Counting benchmark application.  

Figure 5.4: Qualitative comparison of History Passing and Agent Tracking API 

5.2.2 Qualitative Comparison to Repast Simphony 

Figure 5.5 provides a comparison of key features between previous versions of MASS Java, 

this implementation, and competitor software Repast Simphony with regards to graph-based 

simulations. Compared features are then sub-divided into execution and visualization 

categories. 

Repast Simphony provides a GUI for both execution and visualization of simulations through 

their integration with the Eclipse IDE. This integration also provides plugin support for two- and 

three-dimensional visualization of the simulation “Context”, which is like MASS’ Places, and 

Agents. These visualizations, known as “Projections”, are configured through the IDE before 

starting the simulation and are strictly synchronized with simulation execution. Repast 

Simphony does provide statistics and logging features for reviewing historical data, but the 

simulation itself is limited to only stepping forward through execution or running the simulation 

at full speed. 

MASS, this implementation specifically, separates the execution and visualization aspects of 

the system into two windows. Simulation execution is handled through the command-line 

interface, which also enables forward and backward stepping through the inclusion of JShell 

with checkpointing and rollback features. While visualization is then managed separately 

through the Cytoscape GUI and MASS-specific extensions. Adding support for Agent 

visualization in this work brings MASS on par with Repast Simphony as far as what objects can 

be visualized, but our visualizations are still limited to two-dimensional views. Most importantly, 

the separation of view and execution concerns allows for the visualization to be completed 

asynchronously and the visualizations to be adjusted as desired through the Cytoscape GUI 

 Agent History Passing Agent Tracking API 

Completeness Only living Agents All tracked Agents 

Ease of Use Less Intuitive More Intuitive 

Lines of Code * 15 13 
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without the need to pre-configure or restart a simulation. This is particularly useful in long-

running simulations where the need for visualization was not considered ahead of time or when 

exploring which visualizations may best fit the application.  

 
Figure 5.5: Qualitative comparison Repast Simphony versus MASS 

5.2.3 Agent Visualizations in Cytoscape 

To facilitate user exploration and simulation understanding, we have implemented two 

Agent visualizations in Cytoscape: Agent Path and Heat Map. Both visualizations are generated 

using the MASS Control Panel and each can be freely manipulated in the network view. 

Agent Path is shown in Figure 5.6 and provides the user with the ability to review the complete 

path of any individual Agent. The more recent movements are represented with a darker node 

and thicker edge. If an Agent ever traverses an edge that does not exist in the edge table, then a 

dashed line is created to signal the issue to the user. This view is particularly useful in 

simulations, such as Triangle Counting, where the pattern of Agent movement determines the 

success of the application. In Figure 5.6, we see the selected Agent was successful in finding a 

triangle because the Agent was able to return to its origin. 

The Heat Map visualization, shown in Figure 5.7, provides the user a representation of all 

Agents active in the simulation at a point in time with darker nodes representing higher 
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Interface GUI GUI GUI 

Objects Graph Only Graph + Agents Graph + Agents 

Type 2D 2D 2D / 3D 
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Flexibility Set at start As needed, selectable Set at start 
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concentrations of Agents. The user is then able to cycle through the time variable of the 

simulation to observe movement patterns of the entire group. This visualization is best applied 

to use cases such as in the Sugarscape benchmark, in which we seek to observe aggregate 

movement patterns centralized around particular points of interest in the simulation. 

 
Figure 5.6: Agent Path Visualization 
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Figure 5.7: Heat Map Visualization 

5.2 Discussion 
 
The features developed in this work were successful at improving approachability and 

programmability in MASS, particularly when working with graph-based applications. The 

addition of Agent Tracking API provides a simple and intuitive mechanism to track and retrieve 

complete Agent history for all applications. This feature may not be appropriate for performant 

applications, however, due to increased processing time when retrieving history from the 

cluster. JShell integration with checkpointing and rollback functionality allows greater control 

over execution of MASS simulations while Cytoscape visualization tools enable the user to easily 

visualize and explore their results. Together, these features offer prospective MASS users with a 

lower knowledge barrier to entry by providing the ability to rapidly experiment with their 
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simulation and then review results of their experimentation in real-time without needing to 

recompile, redistribute, and restart the simulation with each iterative trial. 

The current implementation has several limitations, we describe three of those limitations 

here and discuss how each of these issues may be mitigated by the user or addressed through 

future work on the MASS library. 

1. Java’s JShell provides a CLI which may be unfamiliar or awkward for users just getting 

started. This difficulty may be particularly acute for users who normally rely heavily on 

their IDE for auto-correction and suggestion support. Although these features exist in 

JShell their use is not as smooth as in most IDEs. These challenges will fade over time, 

however, as users become more familiar with the JShell interface and available features, 

such as the “/open” command which allows the user to open and run a pre-written text 

file. This command is particularly powerful in that it allows the user to continue 

developing in their chosen IDE and then simply run the “/open” command on their file 

when they are ready to test execution. 

2. The Agent Tracking API allows for registration and retrieval of data by calling for 

individual Agents or an entire class of Agent. At this time, however, the Agent History 

propagation from the parent feature is only functional when tracking an entire class and 

then retrieving history for all Agents tracked. The limitation exists because the history 

of Agent visits is distributed amongst the Places and the propagation occurs upon 

retrieval, once all history data has been coalesced on the master node: if the data is not 

present on the master process, then it cannot be propagated. Further, the current MASS-

Cytoscape integration only allows for retrieval of full Agent history. Addressing these 

limitations may lead to improved performance in instances where only a selection of 

Agents, for example “successful” Agents, is required. 

3. Agent visualization in Cytoscape does not allow for much customization by the user and 

has only been optimized for instances where the user would like to track a single class of 

Agents. Further, the color gradient is based on only fifteen shades of the base color 
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which leads to instances where a node may show no Agents present, even when they are, 

because the number of Agents on the Place is not significant enough with respect to the 

most populated Places. 
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Chapter 6:  

Conclusion 
 
 
 
 

In this project we successfully implemented a set of new tools and functionality for MASS 

Java users to enable more rapid development and exploration when building graph-based ABM 

simulations. We accomplished this by introducing new APIs for tracking Agent data, 

incorporating an interface for line-by-line control of a running simulation, and expanding 

integration of Cytoscape for visualization of graph-based Places and associated Agents. 

Verification of this work was done by examining each major deliverable using the graph-based 

Triangle Counting benchmark application which showed that the new functionality provided 

results consistent with previous methods and did so with minimal impact on simulation 

performance, though greater impact on Agent data extraction times.  

6.1 Future Work 
 

In addition to addressing some of the limitations already discussed, there are many other 

opportunities to extend or optimize this work further. Some of these opportunities are: 

 
• Rework MASS-Cytoscape communication to use Aeron or other UDP-based strategy to 

pulse MASS data to Cytoscape plugins. This could include both simulation data, Places 

and Agents, as well as MASS system status including uptime and processing status. This 

will be dependent upon OSGi framework’s ability to maintain a persistent task to hold the 

listener port open. The Cytoscape plugins in the current implementation hold control of 

the system while they are executing, though there may be another component structure 

that would allow the communication task to run concurrently with other plugins. 

• Expansion of Cytoscape visualization capabilities to non-graph-based simulations 

through implementation of custom layouts and modifications to graph import plugins. 
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As an example, two-dimensional places could be represented in Cytoscape utilizing a grid 

layout with edges between local neighbors. 

• Leveraging added ability to checkpoint simulation to file, further extension of this 

feature could be to add functionality to reload complete simulation state from the saved 

file. This complete reinitialization from file would enable users to come back to 

simulations after restarting MASS and to share simulations with other interested users. 

• Additional quality of life improvements to the MASS Control Panel in Cytoscape to refine 

the user experience and improve flexibility of the tool. For example, it would be 

beneficial for users to have the ability to filter the Agent list to only Agents alive at a 

particular time or to only those Agents which have been marked successful. (To that end, 

MASS implementation would also need to be expanded to accept success scenarios or a 

way to mark a particular Agent successful in the user program.) 

• User experience with the MASS Control Panel, as well as the rest of this implementation, 

has not been adequately studied with new or active MASS Java users. Therefore, usability 

studies and subsequent feature iterations are needed to better understand and refine the 

impact of this work. 

• Cytoscape visualizations in this project have been created primarily to show Agent 

movement over a static graph. In real-world situations, however, the most interesting 

aspects of the simulation may be related to the evolving graph itself, as in social networks 

where nodes and edges are constantly being created and removed. To that end, additional 

work could be done to capture graph structure incrementally and then import that data 

to Cytoscape to allow visualization of the evolution of the graphs alongside associated 

Agents.  
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Appendix A:   Developer Guide 
 
A.1:   Cytoscape Installation 
 
The following installation steps are based on Windows 10 OS but should be similar on other 
platforms. 
 

1. Download and install Cytoscape on local machine from Cytoscape.org. (This project 
was completed using Cytoscape version 3.7.2.) 
 

2. Download Cytoscape Plugins from Bitbucket, all Cytoscape extensions can be found in 
the mass_java_utilities repository. Project work completed in develop_dblashaw 
branch but should be merged to master soon. 
(https://bitbucket.org/mass_utility_developers/mass_java_utilities/src/master/) 
 

3. Build and install Cytoscape Plugins. 
From the command line or within chosen IDE (pictured in Figure A.1 using VS Code) 
‘package’ each of the plugins. 

 

 
Figure A.1: Packaging MASS Java Utilities in VS Code 

  
  

https://cytoscape.org/download.html
https://bitbucket.org/mass_utility_developers/mass_java_utilities/src/master/
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Then move the newly packaged .jar files to the Cytoscape apps folder, as shown in Figure 
A.2. 
 

 
Figure A.2: Installing Cytoscape plugins to Apps directory 

All plugins inside Cytoscape apps folder should be automatically started the next time Cytoscape 
desktop application is initialized. (If MASS Control Panel is shown upon Cytoscape initialization, 
then continue to section A.2 Configuring Cytoscape Visualizations.) 
 
If for some reason the plugins do not start automatically, then open the “App Manager” inside 
Cytoscape (Apps → App Manager…) and then “Install from File…” (shown in Figure A.3). 
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Figure A.3: Installing Cytoscape plugins using App Manager 

At this point, the “Currently Installed” tab of the App Manager (see Figure A.4) should show the 
new plugins and the MASS Control Panel should be opened in the main Cytoscape window. 

 
Figure A.4: Output after successful install with Cytoscape App Manager 
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A.2:   Configuring Cytoscape Visualizations 
 
Visualizations inside Cytoscape are governed by two factors: the Network View and the Layout. 
The Network View holds information on the visual representation of the Node and Edge data (e.g., 
color, size, thickness, borders, tooltips) and the Layout provides Cytoscape instructions on how 
to then arrange those Nodes and Edges within the viewer. 
 
 
A.2.1:   Network View    

At the time of this writing, there is no way for the user to directly modify Network View behavior 
in the GUI. Customization of the Network View instead must be done by directly editing plugin 
source code.  
 

(1) To change the mapping of Network/Edge columns to visualization attributes, e.g., line 
width, node color, then modify the createView() method in CreateNetworkTask class 
of import-network plugin. 
 

(2) To update how mapped columns are updated or to add additional visualizations options, 
then modify the updateNodePlotValues() and/or updateEdgePlotValues() methods 
in MASSControlPanel class of mass-agents plugin. 

 
 
A.2.2:   Layouts 

Cytoscape comes with several built-in Layouts and provides users with the ability to create 
customized Layouts, also in the form of plugins. Custom Layouts were outside of scope for this 
project, so the built-in “Circular Layout” was used for demonstration purposes. 
 
Set default layout by…  

(1) Import a graph into memory (tip: enter “test” as MASS Host Name and then click “Import 
Network” button to retrieve a randomly generated graph) 

(2) Select Layout → Settings… from the Menu bar. 
(3) Switch to the Preferred Layout tab and make selection (shown in Figure A.5). 
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Figure A.5: Setting Preferred Layout in Cytoscape 

Apply default layout using the  button in the top ribbon or by pressing F5. 
 
For more information on Layouts see references [12] and [13].  
 
A.3:   Using MASS Control Panel 

A.3.1:   Application Requirements 

For visualization of Graph and Agent data in Cytoscape as shown in this project the following 
conditions must be met: 
 

(1) MASS must be utilizing InMASS to enable paused simulation and incremental execution. 
 
The code snippet in Figure A.6 shows how to compile and run the MASS Java library using 
InMASS. Once complete, use the “/exit” command to shutdown InMASS. 

Figure A.6: Compiling and starting InMASS 

cd ~ 

cd mass_java_core 

mvn clean install 

cp ./target/mass-core.jar . 

java -cp mass-core.jar InMASS 

      

// ...user interaction with InMASS window... 

 

/exit 
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(2) User’s MASS application must create an instance of CytoscapeListener class to field 
requests to/from Cytoscape. This CytoscapeListener receives requests from Cytoscape, 
such as “setGraph” and “getAgentHistory,” and then retrieves and invokes corresponding 
reference methods from the GraphPlaces instance which was provided in its 
constructor. 
 
The code snippet in Figure A.7 shows the initialization and shutdown of the 
CytoscapeListener class. Note that the current implementation will only work in 
conjunction with the GraphPlaces class, support for other Places types may be a goal 
of future related work. (Code snippet taken from CountTrianglesGraphMASS benchmark 
application.) 

Figure A.7: Starting and stopping CytoscapeListener in MASS simulation 

(3) User’s MASS application must use Agent Tracking API to track Agent movement. 
Recommended: use the AGENT_TRACE_REGISTER_CLASS function to ensure all Agent 
movement is captured.  
 
In Figure A.8 code snippet, we show how the user calls the Places.callAll() method 
using the Agent Tracing function IDs to register a class of Agents tracking and then we 
demonstrate the process for retrieving that data at the end of the application. Note 
though, to enable visualization in Cytoscape the user only needs to register the Agents for 
tracking. Extract data to user application only when Agent data is useful for 
programmatic parsing of results. (Code snippet taken from CountTrianglesGraphMASS 
benchmark application.) 
 

Places network = new GraphPlaces(1, NodeGraphMASS.class.getName(), nodes.size()); 

MASSListener listener = new CytoscapeListener((GraphPlaces) network);      

 
// ...user’s MASS application code 

 

if (listener != null) { 

    listener.finish(); 

} 
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Figure A.8: Registering and retrieving Agent data using Agent Tracking API 

 

A.3.2:   MASS Configuration 

To begin visualizing MASS simulation data in Cytoscape, we must first update the MASS Control 
Panel CONFIGURATION section with the location of the running MASS simulation, shown in 
Figure A.9.  
 
To update a field in the control panel simply click into the text box, update that entry, and then 
click or tab out of the field. Upon exiting the field, you should then see the current configuration 
and the STATUS message are updated. 
 
Be default, the MASS Control Panel and CytoscapeListener default to port 8165. The port number 
can be changed in the MASS Control Panel through the associated “Port” field and in the 
CytoscapeListener by adding port number to the constructor parameters.  

Places network = new GraphPlaces(1, NodeGraphMASS.class.getName(), nodes.size()); 

 

// Register Agents for tracking 

network.callAll(network.AGENT_TRACE_REGISTER_CLASS,  

            (Object) CrawlerGraphMASS.class.getName()); 

 
 
// ...user’s MASS application code 

 

 

// Retrieve Agent Trace results 

Object[] agentsCallAllObjs = new Object[vertices.size()]; 

Object[] agentTraceResults =  

            (Object[]) network.callAll(network.AGENT_TRACE_GET, agentsCallAllObjs); 

 

AgentHistoryCollection collection = (AgentHistoryCollection) agentTraceResults[0]; 

         

for (AgentHistoryModel model : collection.getModels()) { 

    // ...do something with the results 

} 
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→  
Figure A.9: Updating MASS Configuration in the MASS Control Panel 

 
A.3.3:   Network (Places) Data 

To import Places data into Cytoscape, the user can use the NETWORK section of the MASS 
Control Panel, shown in Figure A.10. 
 

 
Figure A.10: Import and Export Network features in the MASS Control Panel 

In this section, the user may choose to import a partial graph using the “N-Neighbors Graph” 
checkbox (along with subsequent “Centroid” and “Degree of Separation” fields) or may import 
the entire graph by leaving the checkbox blank and pressing the Import Network button. 
 
After successfully importing graph data into Cytoscape all vertices will be stacked on top of one 
another. At this time, press the F5 key or use the “Apply Preferred Layout” button to organize 
the vertices and edges based on selected default layout. 
 
A.3.4:   Agents Data 

Agent data is imported and manipulated in Cytoscape using the AGENTS section of the MASS 
Control Panel, shown in Figure A.11. 
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To begin, user must press the Refresh Agent History Data button to create an import-agent task 
and retrieve data from MASS. Once complete, the visualization should automatically update to 
the selected visualization type and the list of Agents underneath the “Agent Path” radio button 
will populate with the name of all Agents imported. 
 
Now that Agent data is available in Cytoscape memory, the user may select either Heat Map or 
Agent Path visualization options using the radio buttons. Once visualization type has been 
selected, the time or Agent list becomes selectable for further exploration of the Agent data. 
 

 →  
Figure A.11: Importing and using Agent data in the MASS Control Panel 

 

A.3.5:   Reviewing Raw Data 

Raw data imported into Cytoscape is always available in the “Table Panel” at the bottom of the 
Cytoscape window. (If its not there by default, the Table Panel can be opened by going to the 
menu bar and selecting View → Show Table Panel.) 

Within the Table Panel (shown in Figure A.12), the raw data is partitioned based on the type of 
information: MASS vertices and edge information are in the Node Table and Edge Table, 
respectively; the Network Table maintains the name of the most recently imported graph from 
MASS; and the Unassigned Tables tab has all other tables that do not fit into the Cytoscape default 
tables mentioned above. In this implementation, the Unassigned Tables section has the Agent 
History tables as well as the MASS Configuration table. 
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Figure A.12: Unassigned Tables shown in Cytoscape’s Table Panel 

Note that the “Alive” and “Successful” fields have been created in the Cytoscape panel as placeholders. These fields 
are not currently used by MASS applications and, therefore, do not offer anything meaningful to the visualization 
layer until they are fully implemented in MASS. 


