David Woo CSS 499: Spring 2023 Term report

Porting Agent-Based benchmarks to MASS CUDA

David Woo

CSS 499 Spring 2023 Term report
Professor Munehiro Fukuda

Jun 1, 2023

David Woo

CSS 499: Spring 2023 Term report

1. Introduction
1.1 Motivation
1.2 Project Goal
2. Background
2.1 What is the “software Agents”
2.2 MASS specification and mechanism
2.3 MASS CPP vs MASS JAVA vs MASS CUDA
3. Implementation
3.1 Financial Market Place as Places
3.2 Bank as Agent
3.3 Firm as Agent
3.4 Owner as Agent
3.5 Worker as Agent
4. Verification
4.1 Result/Visualization
5. Conclusion
5.1 Summary

5.2 Future Development

10

11

12

12

12

12

12

David Woo CSS 499: Spring 2023 Term report

1. Introduction

1.1 Motivation

The motivation for this individual research is to explore distribution systems and
parallelizing computing. By studying MASS (Multi-agent spatial simulation), | learned and built
the concrete concept of agent-based parallelization of micro and spatial simulation. An
Agent-based computational framework is crucial in Distribution Data analysis.

MASS is focused on Data discovery for “Big-data computing”. Multi-Agents spatial
simulation(MASS) can analyze data patterns and be features for the distributed data sciences.
Here dslab team has been working on modeling maga-scale social or biological agents and
simulating their emergent collective behavior using parallelization. Therefore, it can increase the
performance of the application. This report will cover more details of it in Section 2. My research
objective is to port the social agent simulation application (Bank Bailln and Bailout) from MASS
CPP to MASS CUDA.

1.2 Project Goal

The work of the research project will be used to compare different library performances.
Each version of the MASS library is composed to overcome parallelization challenges such as
machine unawareness, ghost space management, and cross-processor agent management (
including migration, propagation, and termination). That's why dslab team has developed
MASS, a new parallel-computing library for multi-agent and spatial simulation over a cluster of
computing nodes.

This research application will be used to examine the performance of the MASS CUDA
simulation with other MASS libraries’ comparison. Unlike CPU-based parallelization,
GPU-based parallelization has benefits in the aspect of small cost for thread switching over
thousand cores. With that benefit, the GPU-based Cuda library is suited for all types of
agent-based model applications.

2. Background

2.1 What is the “software Agents”

David Woo CSS 499: Spring 2023 Term report

There are two kinds of software agents in distributed data analysis (cognitive agents and
reactive agents)

- Cognitive agents: “Coarse-grain executable entities that achieve a
network-administrative and computation-intensive task, based on their behavior
intelligence”

- Reactive Agents: “fine-grain entities, each reacting to its environment with
simpler rules.

In the Agent-based computational framework, we focus on reactive agents reacting to
their environment with simpler rules than cognitive agents for clustered systems.

=N
==

Computer 1 Computer 3

~

Clustered System

Multi-Agents’ characteristic

Reactive agents (fine-grain entities)

High-level views (Hawk’s view)

System-level agents management is required(each agent updates their status)
Automated agent migration

Agent collision avoidance

Agent propagation and distributed termination

The more accuracy is required, the more agent (CPU scalability)

It allows spatial data analysis, which can improve programmability.

MASS execution model

David Woo CSS 499: Spring 2023 Term report

A Bag of Agents

Application Layer

Process Rank 2

Process Rank 1

CPU Core 3

CPU Core 1
CPU Core 3
CPU Core 0

MASS Library Layer
CPU Core 0

mnodel.uwb.pdu mnode2.uwb.gdu

5
System Memol

MASS library, Multi-agent-spatial simulation, facilitates this flow-oriented network
parallelization. In the MASS library, they have two main components. Places and Agents. Places
are a multi-dimensional array of elements allocated over a cluster of multi-core computing
nodes. Each element is called a place and is referred to by a network-independent array of
indices capable of exchanging information with others.

Agents are a set of objects that resides in a place. And it migrates to other places and interacts
with other agents from their current place. The interaction and data migration occurs on
underlying shared memory or socket communication.

2.2 MASS specification and mechanism

Public static void main (String[] args) {
MASS.init(args); //Start MASS

Places space = new Places (handle, "MySpace", "params, xSize, ySize);

// Create a array

Agents agents = new Agents(handle, "MyAgents", params, space,
population);

space.callAll(MySpace.funcl, params);

//initialize the simulation space

space.exchangeAll(MySpace.func2, neighbors);

// Update each place with neighbor’s information

agents.exchangeAll (MyAgents.func3);

// it invokes a given function from each array element to its
neighbor

agents.manageAll();

David Woo CSS 499: Spring 2023 Term report

//it allows agent migration, duplication and termination
MASS.finish(); // finish MASS

The MASS program starts with MASS.init() to launch remote processes, each spawning
multi threads. A Places multi-dimensional array is created over these processes and partitioned
into small stripes, each allocated to a different thread. space.callAll() invokes a given function of
each array element in parallel. Likewise, Agents also follow a similar process. For inter-element
communication, exchangeAll() invokes a given function(func2, func3) from each array element
to its neighbors. Agents.manageAll() allows agent migration, duplication, and termination.
Finally, MASS .finish() terminates all the places and agents and consolidates all computation
data into the main thread.

2.3 MASS CPP vs MASS JAVA vs MASS CUDA

MASS CPP
e Agent-based microsimulation
e Demonstrate its practicability of parallelizing ABM microsimulation

MASS JAVA
e |t cannot outperform native execution and may not be the best option for parallel

computing

David Woo CSS 499: Spring 2023 Term report

e Despite that limitation, it facilitates a large global memory space distributed over
a cluster system.
MASS CUDA
e |t has massive parallel computing capabilities of GPU

3.Implementation

3.1 Financial Market Place as Places

Financial Market
1. The Financial Market is initialized as a one-dimensional array equal in size to the
number of Firms in the simulation.

2. The Agents in the simulation use the financial Market which they can reside on as a
shared memory space, relying on it to communicate with other agents and send
messages to other Financial Market places.

3. Financial Marketplace keeps a local copy of the bank's information in the "bank
registry" allowing firms to look up each bank's interest rates and liquidates when they
need to take out a loan. Then Firm adds a negative value to their Financial Market's
outgoing transactions total to be sent to the bank a subsequent call to exhcangeAll.

Crommstnmanngz

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

X ; ' —

Financial Market Function

init():

initializing marketplace FinancialMarket is a one-dimensional array where is equal size to firm
* bank is populated the lower indexed entries in the array

* worker is evenly distributed across this array.

prepBankinfoExchange(): Added bank agents to neighbor place

*ExchangeBankiInfo(): Returns a BankInfo object containing all information for the residing bank.

David Woo CSS 499: Spring 2023 Term report

[Simulation loop]
prepForincomingTransactions(): Added Firm agent to neighbor place

ExchangeOutGoingTransactions(): receive current agent bankld and return total amount of all
outgoing transactions which is accumulated in given bank

ManagelncomingTransactions(): calculate all incoming transactions that are coming from other
elements.

prepBankinfoExchange(): Added bank agents to neighbor place

ExchangeBankinfo(): exchange bank info object containing all transaction information for
neighbor agents.

resetRoundValues(): resets the round values to prepare for the next simulation round

3.2 Bank as Agent

Bank State

Bank populates the lower-indexed entries in the array.
1. Banks receive payments, pay back loans, and seek from other banks when they
run out of liquidity to their expense to product and worker wages.
2. If a bank cannot secure the loan and has run out of liquidity, it goes bankrupt and
the simulation ends.

David Woo CSS 499: Spring 2023 Term report

BankAgent

[Simulation Loop]

,
I

I

{ } Loop

I

I

I

I

|

Initialize bank object to placguns bank's sequence of actions in the simulations;
> * payLoan()
*accumulatelnterest()
“getLoan()

retrieve all payment made and loans given during this round from Financial Market Places

— e

|
| Message
v

Wiite the bankid, interest rate, liquidity, and locations in the place malrix to the financial market
*FinancialMarket::updateBankinfo

Bank Function

init(): initialize bank object to place

[Simulation loop]

Act(): runs bank’s sequence of actions in the simulation
e paylLoan()
e accumulatelnterest()

e getLoan()

ReadRoundTransactions(): retrieve all payments made and loans given during this round from
current place (*FinancialMarket::gettinglncomingTransactionAmt)

reportRoundValues(): write the bankld, interest rate, liquidity, and locations in the place matrix to
the financial market(*FinancialMarket::updateBankInfo)

3.3 Firm as Agent

Firm

David Woo CSS 499: Spring 2023 Term report

Firm calculate their operation costs and profits, and provide worker wage and pay back loan to
bank.
1. If operation costs exceed the firm’s liquidity and owner assets, they seek a loan from the
bank.
2. If the firm has negative liquidity, it resets to the initial condition and goes back to
simulation.

Init calculateWorkforceCost
N
/
FirmAgent |
Loop]

[Simulation Loop]

calculateWorkforceCost based on worker wages

Performs all rounds for the firm
{—create Firm agent—- * accumulatelnterest()
*calcualteProductionCosts()
initialize firm with initialProductionCosts and initialL iquidity’ *calculateProfits()
*payWrokforce()
*calculateL iquidity()
*payBank()
*getOwnerLoan()
*requestBankLoan()
*resetFirm()
"

Firm Function

init(): initialize firm with initial production costs and initial liquidity
calculateWorkforceCost(): calculate workforce cost based on worker wages
[Simulation loop]

Act(): perform all rounds for the firm
accumulatelnterest()
calculate production costs ()
calculate profits ()
payWorkforce()

calculate liquidity ()
payBank()

getOwnerLoan()
requestBankLoan()
resetFirm()

David Woo CSS 499: Spring 2023 Term report

3.4 Owner as Agent

Owner
Owner agent owns a single firm
e If firm liquidity is positive, the owner gets paid.
e Ifitis negative, the owner lends the owner’s assets to the firm.

Owner Function

getCapital() : set owner’s paid
setCapital() : retrieve owner’s assets

3.5 Worker as Agent

Worker

Worker receives wages from their employing firms, spend a certain percentage of their
wage in every round, and deposit the rest of their wage at the bank.

David Woo CSS 499: Spring 2023 Term report

>
=

WorkerAgent

| Loop

[Simulation Loop]

initialize firm with initialProductionCosts and initialLiquidity

Performs all rounds for the firm
*receive\Wages()
*consume()
*depositFunds()

1
\
|
\
\
\
\
\
\
\
’—create Firm agent—p
|
\
|
\
|
\
\
\
\
\
\
\
\
|
\
|
\
|

- J

Worker Function

init(): initialize worker agent with wage, capital, consumptionBudget, workerCost,
[Simulation loop]
Act(): perform all around for the firm

e receiveWages()

e consume()
e depositFunds()

4 \/erification

4.1 Result/Visualization

planned visualization result

David Woo CSS 499: Spring 2023 Term report

7

Worker Firm

Worker Firm

A

iqudi ’

o Worker Firm
]

Worker Firm

5.Conclusion

5.1 Summary

Over the development quarter, | studied and implemented bankbailinbailout. | could learn
parallel computing and how it can be used in spatial data analysis. | couldn’t complete the
implementation for various reasons (first project for parallelization, limited resources). | left
unsolved issues here for further development.

5.2 Future Development

1. InMessage and outMessage

MASS C++: Each commuting node (in each server like csslab 1 ~ 12) has a place and
all agents reside in each place. To interact with other nodes, they use a message
method.

InMessage-> incoming data from another node.

OutMessage-> outgoing data from the current node.

MASS CUDA: “CUDA” is Unified Device Architecture. Unlike C++, they don’t use the
message method because there are no other servers to communicate with.

David Woo CSS 499: Spring 2023 Term report

-> Current implementation, it has a Financial marketplace, four bank agents, four worker
agents, and four owners. They exchange their liquidity using outgoingTransaction and
incomingTransaction between agents in a place.

2. Adding neighbors to places

MASS C++:

functionId

5::exchangeAll(dest_handle, functionId) {

Message #m = new Message(Me ge: :PLACES _EXCHANGE_ALL, =>handle,
dest_handle, functionld, @, ==gdimension)

e::destinationPlaces, functionId, @);

David Woo CSS 499: Spring 2023 Term report

Places_base::exchangeAll({Flaces_bas dstPlaces, functionId, tid} {
range [2];

getlLocalRange(range, tid);
ostringstream convert;

if (printQutput ==) {
convert <= "thread[" =< tid

<< "] exchangeAll functionId = " =< functionId

‘', range[@] = " =< range[@] =<
MASS_base::log(convert.str()

<< range [1] = " <= range([1];

Dl1Class #src_dllclass = MASS_base::d11Map[handle];
Dl1Class *dst_dlcha5E MASS_base::d11Map [dstPlaces—=handle] ;

if (range(@] >= @ && range[l] >= @)
for i = range[@]; i <= rangel[l]; i++

Place #srcPlace = (Place %) (src_dllclass->places[i]]);

inMsglndex = -1;

" (vectors #>::iterator it = srcPlace-=neighbors.begin();
it != srcPlace->neighbors.end(}; ++it) {
inMsgIlndex++;

#0TTset = #it;
neighborCoord [dstPlaces->dimension];

getGlobalNeighborArrayIndex |
srcPlace->index, offset, dstPlaces->size,
dstPlaces->dimension, neighborCoord);
(printOutput == Yy {
convert.str(™");
convert << "tid[" << tid =< "]: calls from"
"[" <= srcPlace-sindex[B] << "]["

Ll
<= srcPlace-=index[1] =<
<< " (neighborCord[" << neighborCoord[@] <<
<< neighborCoord[1] =< "]"

<< " dstPlaces->size[" <= dstPlaces->5ize[@
<< dstPlaces-»size[1] <= "]";

(neighborCoord[@] != -1} {

globalLinearIndex

MASS CUDA:

David Woo CSS 499: Spring 2023 Term report

#ifndef
#define

#include

Place ®neighbors
index;
size

[*agents
agentPop;

nt* potentialNextAgents

exchangeAll(s ctor<intse> *destinations) {
dispatcher-=exchangeAllPlaces (handle, destinations);

rexchangeAll(std:: or<intx> *destinations, functionId, argument, argSize)
dispatcher-=exchangeAllPlaces (handle, destinations, functionId, argument, argSize);

-> We stored agents in a place’s neighbors(one-dimensional array) as we mentioned earlier.
ExchangeAll() is for exchanging data with their neighbors in place. In MASS CUDA,
exchangeAll() only can take vector<int *> which is a specific coordinate. This feature hasn’t
been implemented yet.

3. nvLinks warning

David Woo CSS 499: Spring 2023 Term report

Jusr/include/c++/B/bits/unique ptr.h:53:25: note: declared here
template<typename= cla ptr;

nvlink warning : size for entry function '_ZNdmass23exchangeAllPlacesKernelEPPNS_5PlaceEiiiPv' cannot be statically determined
nvlink warning : S size for entry function '_ZNdmassl9callAllAgentsKernelEPPNS_SAgentEiiPv' cannot be statically determined
nvlink warning : ck size for entry function '_ZNdmassl9callAllPlaceskernelEPPNS_5PlaceEiiPv' cannot be statically determined
MAS5_BailInBailOut build complete.

Presumable cause

-> stack overflow in exchangeAll(places), callAll(Agent), callAll(place)

-> agent is not able to point to a memory address so it raised an illegal memory access
error

Cuda debugger tool: cuda-memcheck
Implementation code branch: David_develop

https://docs.nvidia.com/cuda/archive/11.4.4/cuda-memcheck/index.html
https://bitbucket.org/mass_application_developers/mass_cuda_appl/src/David_develop/

