
Node Embeddings Generation in Graph Databases using Node2Vec

Deepak Sujay Gudiseva

Fall 2025 Term Report

submitted in partial fulfillment of the

requirements of the degree of

Master of Science in Computer Science & Software Engineering

University of Washington

Dec 7, 2025

Project Committee:

Dr. Munehiro Fukuda, Committee Chair

Dr. Min Chen, Committee Member

Dr. Bill Erdly, Committee Member

1

munehiro
Comment on Text
Check out the template for a MS thesis/capstone white paper template and use it. It seems like your current term report uses larger fonts than the standard.

1. Introduction

1.1. Project Overview

Graph representation learning has emerged as a critical field in data science, allowing

complex relational data to be transformed into vector spaces where standard machine

learning algorithms can be applied. Node2Vec, a widely adopted algorithm, generates

these embeddings by simulating biased random walks across a graph to capture both

homophily and structural equivalence. However, structurally, Node2Vec is

computationally intensive and memory-demanding, making it difficult to scale to

massive graphs on single-machine architectures.

The Multi-Agent Spatial Simulation (MASS) library is a distributed framework designed to

parallelize graph computations across a cluster of computing nodes. This project,

"Enabling Distributed Node2Vec on MASS," focuses on implementing a scalable,

distributed version of the Node2Vec algorithm that leverages MASS's agent-based

paradigm.

1.2. Fall Quarter Objectives

The primary objective for the Autumn 2025 quarter was to architect and implement the

core engine of Distributed Node2Vec. Unlike traditional graph algorithms in MASS that

operate on a strict vertex-centric model, deep learning training requires efficient sharing

of model weights (the neural network parameters).

Our specific goals were:

1.​ Design a "Compute-Node-Centric" Architecture: Move away from verifying

updates per-vertex to processing updates per-computing-node (JVM) to minimize

network synchronization overhead.

2.​ Implement Biased Random Walks: Enable MASS Agents to perform second-order

random walks (controlled by parameters ‘p’ and ‘q’) to generate training data.

3.​ Develop Distributed Training Logic: Create a mechanism for local model training

on each worker node, followed by a global synchronization step

("Pack-Reduce-Broadcast").

2

munehiro
Comment on Text
In general, before going into the 1st subsection, each section needs a short paragraph including 2-3 statements that explain what the following subsections will discuss about.

munehiro
Comment on Text
This quarter's or this project's entire?

munehiro
Comment on Text
Reference?

munehiro
Comment on Text
Reference?

munehiro
Comment on Text
Need an explanation of what MASS is.

4.​ Integration: Seamlessly integrate this new engine into the existing MASS

application layer for ease of use.

This report details the successful implementation of these components, the technical

challenges overcome, and the resulting architectural operational flow.

2. Background and Challenges

2.1. The Node2Vec Algorithm

Node2Vec extends the Skip-Gram architecture (originally from Word2Vec) to graphs. It

works in two main phases:

1.​ Random Walk Generation: Agents traverse the graph to create "sentences"

(sequences of nodes). The walk is biased by two parameters:

●​ Return parameter (p): Controls the likelihood of revisiting the previous

node.

●​ In-out parameter (q): Controls the likelihood of exploring further away vs.

staying locally.

2.​ SGD Optimization (Skip-Gram): The algorithm maximizes the probability of

predicting context nodes (neighbors in the walk) given a target node. This

requires maintaining two large embedding matrices (Input and Output weights)

for the entire vocabulary (all nodes in the graph).

2.2. Challenges in a Distributed Setting

Implementing this on a distributed system like MASS presents unique challenges:

●​ Network Latency: Standard Stochastic Gradient Descent (SGD) requires updating

weights after every sample. In a distributed graph, vertices (and their

embeddings) are scattered. Sending weight updates across the network for every

step of a random walk is prohibitively slow.

●​ Memory Constraints: Replicating the entire embedding matrix on every node

consumes vast amounts of memory. Storing it only on a master node creates a

communication bottleneck.

3

munehiro
Comment on Text
Reference?

●​ State Synchronization: Random walkers need to know their previous location to

calculate bias (‘p’ and ‘q’), which requires carrying state across boundaries.

2.3. Limitations of Previous MASS Implementations

Prior iterations of graph algorithms in MASS were largely vertex-centric. Attributes were

stored on VertexPlace objects. While excellent for algorithms like BFS, this is inefficient

for training embeddings because:

●​ Accessing a global weight matrix from a VertexPlace would require a remote

procedure call (RPC) for every dot product operation.

●​ The "Compare-and-Swap" pattern used in typical synchronized algorithms is too

rigid for the stochastic nature of neural network training.

To solve this, we devised a new Compute-Node-Centric approach, detailed in the

implementation section.

3. Autumn Quarter Implementation (AU25)

This quarter, we successfully implemented the complete end-to-end pipeline for

Distributed Node2Vec. The implementation required significant modifications to

mass_java_core and the development of new classes to handle distributed state.

3.1. Architectural Design: Compute-Node-Centric Training

The defining innovation of this implementation is using Node-Granularity instead of

Vertex-Granularity.

4

munehiro
Comment on Text
Need a brief explanation.

munehiro
Comment on Text
I think you need a diagram to depict the system including vertics and compute-node centric places.

Figure-1: Node2VecLocalModel class

●​ Traditional Approach: Each Vertex updates its own embedding. (Too much

communication).

●​ Modified Approach: Each Computing Node (JVM) maintains a Static Local

Model.

●​ All random walks that end up on a specific machine are collected locally.

●​ A static class, Node2VecLocalModel as shown in Figure-1, aggregates these

walks and performs training batch updates locally.

●​ The Master Node synchronizes these local models only once per epoch,

rather than once per vertex update.

3.2. Core Library Modifications (mass_java_core)

We modified the core library to support complex mobile agents and static state

management.

3.2.1. PropertyGraphAgent.java: The Biased Walker

We enhanced the PropertyGraphAgent to support "stateful" migration. For Node2Vec,

the next step depends on the previous step. We implemented walkStep() which

calculates transition probabilities based on the edge weights and p/q bias.

Key Logic Implemented:

5

munehiro
Comment on Text
Figure 1

munehiro
Comment on Text
Whenever you add a code snippet, you need to number each line. Show only necessary lines of code. Using the line #s, your narrative need to give a brief explanation. of the code.

munehiro
Comment on Text
Did you change it directly or derive a new class from it? The former case you need to collaborate with Bo.

●​ State Carriage: The agent carries wargs (Walker Arguments), which track

prevPlaceIndex and prevNeighborIds. This allows the agent to know where it

came from after migrating to a new machine.

Figure-2: Node2VecWalkerArgs class

●​ Second-Order Markov Chain: The transition probability alpha is dynamically

calculated:

●​ If neighbor == previous node: alpha = 1/p

●​ If neighbor is connected to previous node: alpha = 1

●​ If neighbor is disconnected from previous node: alpha = 1/q

6

munehiro
Comment on Text
If PropertyGraphAgent includes additional data members, the instance gets heavier, which affects all programs. I recommend you to derive a new class from PropertyGraphAgent and include these additional members in it.

munehiro
Comment on Text
Reference?

munehiro
Comment on Text
What happens to an agent if alpha changes?

Figure-3: alpha calculation logic in PropertyGraphAgent

3.2.2. PropertyVertexPlace.java: The Distributed Hook

The PropertyVertexPlace acts as the interface between the MASS parallel system and our

static local models. We implemented a robust command handling system in

callMethod() to intercept distributed messages.

New Function IDs implemented:

●​ TRAIN_LOCAL_BATCH: Triggers the static model on this node to run SGD on its

local buffer of walks.

●​ PACK_WEIGHTS / REDUCE_WEIGHTS: Handles the serialization of the large float

arrays representing the model, allowing them to be sent to the Master for

averaging.

●​ COLLECT_EMBEDDING: Allows a vertex to "reach into" the static local model and

pull its final trained vector.

7

munehiro
Comment on Text
Do you really need this code snippet while you have the same information in the above bullet points?

munehiro
Comment on Text
PropertyVertexPlace.java should probably include these members as you did. This is because a graph or graph DB should be continuously mapped to memory.

Figure-4: Case handling logic in PropertyVertexPlace class

3.2.3. Node2Vec.java: The Orchestrator

This is the driver class that manages the distributed lifecycle. We implemented a strict

synchronization barrier logic:

1.​ Broadcast: Send latest global weights to all nodes.

2.​ Train: Order all nodes to train for one epoch on their local data.

3.​ Pack & Reduce: Gather all local updates, average them, and update the global

model.

8

munehiro
Comment on Text
If the above bullet points are sufficient, this Figure 4 is not needed.

munehiro
Comment on Text
These bullet points need to refer to Figure 5. Figure 5 should include line #s. Then, the bullet points should explain what major lines of code in Figure 5 do?

Figure-5: Decentralized training logic in Node2Vec class

This "Pack-Reduce-Broadcast" loop ensures that while nodes train independently

(async), they remain mathematically converged over time.

3.3. Application Layer Integration (mass_java_appl)

To demonstrate the usability of this system, we integrated it into the GraphManager

workflow.

9

3.3.1. GraphManager.java Modifications

We introduced a secondary set of MASS Places called trainingPlaces.

●​ Why? The main graph might have millions of vertices. We don't want to spawn

millions of training threads.

●​ Solution: We create exactly one trainingPlace per computing node. The

Node2Vec driver interacts with these trainingPlaces to trigger the node-level

static operations. This is a crucial optimization that decouples graph size from

training overhead.

3.3.2. KNNPipeline.java

We updated the K-Nearest Neighbors pipeline to seamlessly perform Node2Vec

embedding before analysis. The system now:

1.​ Loads the Graph.

2.​ Computes Embeddings via Distributed Node2Vec.

3.​ Uses the resulting vectors to find similar nodes (KNN).

4. Execution Workflow Summary

The implementation follows this robust execution path, which has been verified in our

local test environment:

1.​ Initialization:

●​ GraphManager boots up MASS.

●​ Graph data is loaded into PropertyGraphPlaces.

●​ trainingPlaces are initialized (1 per Node).

2.​ Vocabulary Build:

●​ All vertices report their existence.

●​ Master builds a mapping (NodeID -> Index).

3.​ Random Walk Phase:

10

munehiro
Comment on Text
Draw a interaction diagram. See https://www.tutorialspoint.com/uml/uml_interaction_diagram.htm

●​ Agents are spawned at every vertex.

●​ Agents hop ‘walk length’ times using the logic in PropertyGraphAgent.

●​ When an agent finishes, it dumps its walk path into the allLocalWalks list of

the Node2VecLocalModel where it originated.

4.​ Training Phase (Skip-Gram):

●​ For E epochs:

●​ Master triggers TRAIN_LOCAL_BATCH.

●​ Each JVM trains on the walks stored locally.

●​ Master triggers PACK -> Average -> BROADCAST.

5.​ Collection:

●​ Vertices query their final embeddings and store them for the KNN

application.

Figure-6: Logic Flow in Node2Vec class

5. Conclusion & Future Work

5.1. Conclusion

This term, we successfully enabled Distributed Node2Vec on MASS. By architecting a

solution that respects the constraints of distributed systems, specifically by minimizing

11

munehiro
Comment on Text
Did you explain TRAIN_LOCAL_BATCH?

munehiro
Comment on Text
Explain it.

munehiro
Comment on Text
So, eventually the main() program collects the final embeddings?
Figure 6 needs line numbers and you need to explain about them from a narrative.

network synchronization through a compute-node-centric design we have laid the

groundwork for training graph embeddings on datasets that exceed the memory of a

single machine. The core logic for biased walking, distributed state management, and

weight synchronization is now complete and integrated into MASS.

5.2. Future Work (Winter)

With the engine built, the next steps focus on validation and optimization:

●​ Verification: Rigorous unit testing of the p and q bias logic, back propagation,

training etc.

●​ Benchmarking: Running the system on standard datasets and comparing

accuracy/runtime against standard single-machine implementations & other

embedding generation algorithms on MASS.

●​ Optimization: Implementing "Triangle Checks" in the agent logic to strictly

enforce 2nd-order properties without carrying excessive state.

●​ Hyperparameter Tuning: Experimenting with synchronization frequency (syncing

every N batches instead of every epoch) to further improve speed.

12

	
	1. Introduction
	1.1. Project Overview
	1.2. Fall Quarter Objectives

	2. Background and Challenges
	2.1. The Node2Vec Algorithm
	2.2. Challenges in a Distributed Setting
	2.3. Limitations of Previous MASS Implementations

	3. Autumn Quarter Implementation (AU25)
	3.1. Architectural Design: Compute-Node-Centric Training
	3.2. Core Library Modifications (mass_java_core)
	3.2.1. PropertyGraphAgent.java: The Biased Walker
	3.2.2. PropertyVertexPlace.java: The Distributed Hook
	3.2.3. Node2Vec.java: The Orchestrator

	3.3. Application Layer Integration (mass_java_appl)
	3.3.1. GraphManager.java Modifications
	3.3.2. KNNPipeline.java

	4. Execution Workflow Summary
	5. Conclusion & Future Work
	5.1. Conclusion
	5.2. Future Work (Winter)

