

munehiro
Comment on Text
Check out the template for a MS thesis/capstone white paper template and use it. It seems like your current term report uses larger fonts than the standard.

1. Introduction

1.1. Project Overview

Graph representation learning has emerged as a critical field in data science, allowing
complex relational data to be transformed into vector spaces where standard machine
learning algorithms can be applied. Node2Vec, a widely adopted algorithm, generates
these embeddings by simulating biased random walks across a graph to capture both
homophily and structural equivalence. However, structurally, Node2Vec is
computationally intensive and memory-demanding, making it difficult to scale to
massive graphs on single-machine architectures.

The Multi-Agent Spatial Simulation (MASS) library is a distributed framework designed to
parallelize graph computations across a cluster of computing nodes. This project,
"Enabling Distributed Node2Vec on MASS," focuses on implementing a scalable,
distributed version of the Node2Vec algorithm that leverages MASS's agent-based
paradigm.

1.2. Fall Quarter Objectives

The primary objective for the Autumn 2025 quarter was to architect and implement the
core engine of Distributed Node2Vec. Unlike traditional graph algorithms in MASS that
operate on a strict vertex-centric model, deep learning training requires efficient sharing
of model weights (the neural network parameters).

Our specific goals were:

1. Design a "Compute-Node-Centric" Architecture: Move away from verifying
updates per-vertex to processing updates per-computing-node (JVM) to minimize
network synchronization overhead.

2. Implement Biased Random Walks: Enable MASS Agents to perform second-order
random walks (controlled by parameters ‘p’ and ‘q’) to generate training data.

3. Develop Distributed Training Logic: Create a mechanism for local model training
on each worker node, followed by a global synchronization step
("Pack-Reduce-Broadcast").

munehiro
Comment on Text
In general, before going into the 1st subsection, each section needs a short paragraph including 2-3 statements that explain what the following subsections will discuss about.

munehiro
Comment on Text
This quarter's or this project's entire?

munehiro
Comment on Text
Reference?

munehiro
Comment on Text
Reference?

munehiro
Comment on Text
Need an explanation of what MASS is.

4. Integration: Seamlessly integrate this new engine into the existing MASS
application layer for ease of use.

This report details the successful implementation of these components, the technical
challenges overcome, and the resulting architectural operational flow.

2. Background and Challenges

2.1. The Node2Vec Algorithm

Node2Vec extends the Skip-Gram architecture (originally from Word2Vec) to graphs. It
works in two main phases:

1. Random Walk Generation: Agents traverse the graph to create "sentences"
(sequences of nodes). The walk is biased by two parameters:

e Return parameter (p): Controls the likelihood of revisiting the previous
node.

e In-out parameter (q): Controls the likelihood of exploring further away vs.
staying locally.

2. SGD Optimization (Skip-Gram): The algorithm maximizes the probability of
predicting context nodes (neighbors in the walk) given a target node. This
requires maintaining two large embedding matrices (Input and Output weights)
for the entire vocabulary (all nodes in the graph).

2.2. Challenges in a Distributed Setting

Implementing this on a distributed system like MASS presents unique challenges:

o Network Latency: Standard Stochastic Gradient Descent (SGD) requires updating
weights after every sample. In a distributed graph, vertices (and their
embeddings) are scattered. Sending weight updates across the network for every
step of a random walk is prohibitively slow.

e Memory Constraints: Replicating the entire embedding matrix on every node
consumes vast amounts of memory. Storing it only on a master node creates a
communication bottleneck.

munehiro
Comment on Text
Reference?

e State Synchronization: Random walkers need to know their previous location to
calculate bias (‘p’ and ‘q’), which requires carrying state across boundaries.

2.3. Limitations of Previous MASS Implementations

Prior iterations of graph algorithms in MASS were largely vertex-centric. Attributes were
stored on VertexPlace objects. While excellent for algorithms like BFS, this is inefficient
for training embeddings because:

® Accessing a global weight matrix from a VertexPlace would require a remote
procedure call (RPC) for every dot product operation.

e The "Compare-and-Swap" pattern used in typical synchronized algorithms is too
rigid for the stochastic nature of neural network training.

To solve this, we devised a new Compute-Node-Centric approach, detailed in the
implementation section.

3. Autumn Quarter Implementation (AU25)

This quarter, we successfully implemented the complete end-to-end pipeline for
Distributed Node2Vec. The implementation required significant modifications to
mass_java_core and the development of new classes to handle distributed state.

3.1. Architectural Design: Compute-Node-Centric Training

The defining innovation of this implementation is using Node-Granularity instead of
Vertex-Granularity.

munehiro
Comment on Text
Need a brief explanation.

munehiro
Comment on Text
I think you need a diagram to depict the system including vertics and compute-node centric places.

public class Node2VecLocalModel {

private static
private static
private static
private static
private static
private static

private static
private static

private static

public static
public static
public static
public static
public static
public static
public static

float[] [] sharedInputEmbeddings = null;
float[][] sharedOutputEmbeddings = null;
final Object modelLock = new Object();
boolean staticModelInitialized = false;
int staticVocabSize =

int staticDimensions

java.util.Map<String, Integer> nodeToIdx = null;
java.util.List<String> id{TpNgde = null; The value of the field Node2VecLocalModel.idxToNode is not used

java.util.List<java.util.List<String>> allLocalWalks = java.util.Collections.synchronizedList(new java.util.ArrayList<>());

final int RESET_STATIC_STATE = 4;

final int SET_VOCABULARY = 5;

final int TRAIN_LOCAL_BATCH = 6;

final int CLEAR_LOCAL_WALKS = 7;

final int COLLECT_EMBEDDING_FROM_LOCAL_MODEL = 8;
final int PACK_WEIGHTS = 10;

final int REDUCE_WEIGHTS = 11;

Figure-1: Node2VecLocalModel class

e Traditional Approach: Each Vertex updates its own embedding. (Too much

communication).
e Modified Approach: Each Computing Node (JVM) maintains a Static Local
Model.
e All random walks that end up on a specific machine are collected locally.
® A static class, Node2VecLocalModel as shown in Figure-1, aggregates these
walks and performs training batch updates locally.
e The Master Node synchronizes these local models only once per epoch,

3.2. Core

rather than once per vertex update.

Library Modifications (mass_java_core)

We modified the core library to support complex mobile agents and static state

management.

3.2.1. Prop

ertyGraphAgent.java: The Biased Walker

We enhanced the PropertyGraphAgent to support "stateful" migration. For Node2Vec,

the next ste

p depends on the previous step. We implemented walkStep() which

calculates transition probabilities based on the edge weights and p/q bias.

Key Logic Implemented:

munehiro
Comment on Text
Figure 1

munehiro
Comment on Text
Whenever you add a code snippet, you need to number each line. Show only necessary lines of code. Using the line #s, your narrative need to give a brief explanation. of the code.

munehiro
Comment on Text
Did you change it directly or derive a new class from it? The former case you need to collaborate with Bo.

e State Carriage: The agent carries wargs (Walker Arguments), which track
prevPlacelndex and prevNeighborlds. This allows the agent to know where it
came from after migrating to a new machine.

6
7
8
9

public class Node2VecWalkerArgs implements Serializable {
10 public int walkLength = 80;

11 public int walksPerNode = 10;

12 public double p = 1.0;

13 public double q = 1.0;

14

15 public int sourcePlaceIndex = -1;
16 public int prevPlaceIndex = -1;
17 public int remainingSteps = 0;

18 public boolean isOrchestrator

19 public boolean endWalk = false;
20

21 public String sourcelItemID =

22 public String prevItemID =

23

24 public String[] prevNeighborIds
25

26

27

28 Set<String> includeEdgeTypes
29

30 boolean useFullAlpha = tr
31

32 Node2VecWalkerArgs() {}
33

Figure-2: Node2VecWalkerArgs class

e Second-Order Markov Chain: The transition probability alpha is dynamically
calculated:
e |f neighbor == previous node: alpha =1/p
e If neighbor is connected to previous node: alpha =1
e |f neighbor is disconnected from previous node: alpha = 1/q

munehiro
Comment on Text
If PropertyGraphAgent includes additional data members, the instance gets heavier, which affects all programs. I recommend you to derive a new class from PropertyGraphAgent and include these additional members in it.

munehiro
Comment on Text
Reference?

munehiro
Comment on Text
What happens to an agent if alpha changes?

if (wargs == null || !'wargs.useFullAlpha || wargs.prevIitemID == null) {
alpha = 1.0;

} else if (wargs.prevItemID.equals(neighborId)) {
alpha = 1.0 / wargs.p;

} else if (prevNeighborSet != null && prevNeighborSet.contains(neighborId)) {
alpha = 1.0;

} else {
alpha = 1.0 / wargs.q;

Figure-3: alpha calculation logic in PropertyGraphAgent

3.2.2. PropertyVertexPlace.java: The Distributed Hook

The PropertyVertexPlace acts as the interface between the MASS parallel system and our
static local models. We implemented a robust command handling system in
callMethod() to intercept distributed messages.

New Function IDs implemented:

e TRAIN LOCAL_BATCH: Triggers the static model on this node to run SGD on its
local buffer of walks.

e PACK WEIGHTS / REDUCE_WEIGHTS: Handles the serialization of the large float
arrays representing the model, allowing them to be sent to the Master for
averaging.

e COLLECT _EMBEDDING: Allows a vertex to "reach into" the static local model and
pull its final trained vector.

munehiro
Comment on Text
Do you really need this code snippet while you have the same information in the above bullet points?

munehiro
Comment on Text
PropertyVertexPlace.java should probably include these members as you did. This is because a graph or graph DB should be continuously mapped to memory.

case Node2VecLocalModel.RESET_STATIC_STATE:
if (argument instanceof Object) {
Long[] args = (Longl]) argument;
int vSize = args[0].intValue();
int dim = args[1].intValue();
long seed = args[2];
Node2VeclLocalModel. resetStaticState(vSize, dim, seed);
}
break;
case Node2VecLocalModel.SET_VOCABULARY:
if (argument instanceof List) {
Node2VeclLocalModel.setVocabulary(i Type safety: Unchecked cast from Object to List<String>
}
break;
case Node2VecLocalModel.TRAIN_LOCAL_BATCH:
MASS.getLogger().debug(" [Static Model] Training local batch call all " + (argument instanceof Object));
if (argument instanceof Object) {
Object[] args = (Object|]) argument;
double alpha = (Double) args([0];
int win = (Integer) argsl[1];
int neg = (Integer) args[2];
MASS.getLogger().debug(" [Static Model] Training local batch with alpha=" + alpha + ", window=" + win + ", negative=" + neg);
Node2VecLocalModel.trainLocalBatch(alpha, win, neg);
Iy
break;
case Node2VecLocalModel.CLEAR_LOCAL_WALKS:
Node2VecLocalModel.clearLocalWalks();
if (this.localWalks != null) {
this.localWalks.clear();
+
break;
case Node2VecLocalModel.COLLECT_EMBEDDING_FROM_LOCAL_MODEL:
float[] emb = Node2VecLocalModel.getEmbeddingForNode(this.ItemID);
if (emb !'= null) {

this.setEmbedding(java.util.Arrays.copyOf(emb, emb.length));

+
break;
case Node2VecLocalModel.PACK_WEIGHTS:
return Node2VeclLocalModel.packWeights();
case Node2VecLocalModel.REDUCE_WEIGHTS:
if (argument instanceof float[]) {
Node2VecLocalModel. updateModelWeights ((float[]
+

break;

Figure-4: Case handling logic in PropertyVertexPlace class

3.2.3. Node2Vec.java: The Orchestrator

This is the driver class that manages the distributed lifecycle. We implemented a strict
synchronization barrier logic:

1. Broadcast: Send latest global weights to all nodes.

2. Train: Order all nodes to train for one epoch on their local data.

3. Pack & Reduce: Gather all local updates, average them, and update the global
model.

munehiro
Comment on Text
If the above bullet points are sufficient, this Figure 4 is not needed.

munehiro
Comment on Text
These bullet points need to refer to Figure 5. Figure 5 should include line #s. Then, the bullet points should explain what major lines of code in Figure 5 do?

private void hrainDistribute) {
System.out.println("Starting distributed training using compute-node-centric approach

for (int epoch ; epoch < epochs; epoch++) {
long start = System.currentTimeMillis();

Object[] args = new Object[] { learningRate, contextSize, numNegativeSamples };

trainingPlacesRef.callAll(Node2VecLocalModel.TRAIN_LOCAL_BATCH, (Object) args);

Object[] packedResults = trainingPlacesRef.propertyGraphCallAll(Node2VecLocalModel.PACK_WEIGHTS, trainingPlacesRef.getArguments (

float[] averagedweights =
int count = 0;

for (Object o : packedResults) {
if (o instanceof fleatl[]) {
float[] w = (float[]) o;
if (averagedWeights =
averagedWeights = new float[w.length]

if (w.length != averagedWeights.length) continue;

for (int i = 0; i < w.length; i++
averagedWeights [i] += w[il;

count++;

if (averagedWeights != & count > @) {

for (int i = @; i < averagedWeights.length; i++) {
averagedweights[i] /= count;

}

Object[] reduceArgs = trainingPlacesRef.getArguments(averagedWeights);
trainingPlacesRef.propertyGraphCallAll(Node2VecLocalModel.REDUCE_WEIGHTS, reduceArgs);
¥

long end = System.currentTimeMillis();
System.out.printf(" Epoch %d/%d completed in %d ms%n", epoch + 1, epochs, (end - start));

learningRate *= H
}

System.out.println("Distributed training complete.");

Figure-5: Decentralized training logic in Node2Vec class

This "Pack-Reduce-Broadcast" loop ensures that while nodes train independently
(async), they remain mathematically converged over time.

3.3. Application Layer Integration (mass_java_appl)

To demonstrate the usability of this system, we integrated it into the GraphManager
workflow.

3.3.1. GraphManager.java Modifications

We introduced a secondary set of MASS Places called trainingPlaces.

e Why? The main graph might have millions of vertices. We don't want to spawn
millions of training threads.

e Solution: We create exactly one trainingPlace per computing node. The
Node2Vec driver interacts with these trainingPlaces to trigger the node-level
static operations. This is a crucial optimization that decouples graph size from
training overhead.

3.3.2. KNNPipeline.java

We updated the K-Nearest Neighbors pipeline to seamlessly perform Node2Vec
embedding before analysis. The system now:

1. Loads the Graph.
2. Computes Embeddings via Distributed Node2Vec.
3. Uses the resulting vectors to find similar nodes (KNN).

4. Execution Workflow Summary

The implementation follows this robust execution path, which has been verified in our
local test environment:

1. Initialization:
e GraphManager boots up MASS.
e Graph data is loaded into PropertyGraphPlaces.
e trainingPlaces are initialized (1 per Node).

2. Vocabulary Build:

e All vertices report their existence.
e Master builds a mapping (NodelD -> Index).

3. Random Walk Phase:

10

munehiro
Comment on Text
Draw a interaction diagram. See https://www.tutorialspoint.com/uml/uml_interaction_diagram.htm

e Agents are spawned at every vertex.

e Agents hop ‘walk length’ times using the logic in PropertyGraphAgent.

e When an agent finishes, it dumps its walk path into the allLocalWalks list of
the Node2VeclLocalModel where it originated.

4. Training Phase (Skip-Gram):

® For E epochs:
o Master triggers TRAIN_LOCAL_BATCH.
e Each JVM trains on the walks stored locally.
e Master triggers PACK -> Average -> BROADCAST.

5. Collection:

e \Vertices query their final embeddings and store them for the KNN
application.

public Map<String, float[]> learnFeatures() {
if (placesRef == null) {
throw new IllegalStateException("Node2Vec must be run in distributed mode with a valid PropertyGraphPlaces reference.");
}
}

buildVocabulary();
initializeEmbeddings();

System.out.println("Using agent-based walk generation.");
generateWalksWithAgents();

trainSkipGram();

System.out.println("Collecting embeddings from distributed static models...");
placesRef.callAll(Node2VecLocalModel.COLLECT_EMBEDDING_FROM_LOCAL_MODEL) ;
return new HashMap<>();

Figure-6: Logic Flow in Node2Vec class

5. Conclusion & Future Work

5.1. Conclusion

This term, we successfully enabled Distributed Node2Vec on MASS. By architecting a
solution that respects the constraints of distributed systems, specifically by minimizing

11

munehiro
Comment on Text
Did you explain TRAIN_LOCAL_BATCH?

munehiro
Comment on Text
Explain it.

munehiro
Comment on Text
So, eventually the main() program collects the final embeddings?
Figure 6 needs line numbers and you need to explain about them from a narrative.

network synchronization through a compute-node-centric design we have laid the
groundwork for training graph embeddings on datasets that exceed the memory of a
single machine. The core logic for biased walking, distributed state management, and
weight synchronization is now complete and integrated into MASS.

5.2. Future Work (Winter)

With the engine built, the next steps focus on validation and optimization:

e Verification: Rigorous unit testing of the p and g bias logic, back propagation,
training etc.

e Benchmarking: Running the system on standard datasets and comparing
accuracy/runtime against standard single-machine implementations & other
embedding generation algorithms on MASS.

e Optimization: Implementing "Triangle Checks" in the agent logic to strictly
enforce 2nd-order properties without carrying excessive state.

e Hyperparameter Tuning: Experimenting with synchronization frequency (syncing
every N batches instead of every epoch) to further improve speed.

12

	
	1. Introduction
	1.1. Project Overview
	1.2. Fall Quarter Objectives

	2. Background and Challenges
	2.1. The Node2Vec Algorithm
	2.2. Challenges in a Distributed Setting
	2.3. Limitations of Previous MASS Implementations

	3. Autumn Quarter Implementation (AU25)
	3.1. Architectural Design: Compute-Node-Centric Training
	3.2. Core Library Modifications (mass_java_core)
	3.2.1. PropertyGraphAgent.java: The Biased Walker
	3.2.2. PropertyVertexPlace.java: The Distributed Hook
	3.2.3. Node2Vec.java: The Orchestrator

	3.3. Application Layer Integration (mass_java_appl)
	3.3.1. GraphManager.java Modifications
	3.3.2. KNNPipeline.java

	4. Execution Workflow Summary
	5. Conclusion & Future Work
	5.1. Conclusion
	5.2. Future Work (Winter)

