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1. Introduction 

1.1. Project Overview 

Graph representation learning has emerged as a critical field in data science, allowing 

complex relational data to be transformed into vector spaces where standard machine 

learning algorithms can be applied. Node2Vec, a widely adopted algorithm, generates 

these embeddings by simulating biased random walks across a graph to capture both 

homophily and structural equivalence. However, structurally, Node2Vec is 

computationally intensive and memory-demanding, making it difficult to scale to 

massive graphs on single-machine architectures. 

 

The Multi-Agent Spatial Simulation (MASS) library is a distributed framework designed to 

parallelize graph computations across a cluster of computing nodes. This project, 

"Enabling Distributed Node2Vec on MASS," focuses on implementing a scalable, 

distributed version of the Node2Vec algorithm that leverages MASS's agent-based 

paradigm. 

1.2. Fall Quarter Objectives 

The primary objective for the Autumn 2025 quarter was to architect and implement the 

core engine of Distributed Node2Vec. Unlike traditional graph algorithms in MASS that 

operate on a strict vertex-centric model, deep learning training requires efficient sharing 

of model weights (the neural network parameters). 

 

Our specific goals were: 

 

1.​ Design a "Compute-Node-Centric" Architecture: Move away from verifying 

updates per-vertex to processing updates per-computing-node (JVM) to minimize 

network synchronization overhead. 

2.​ Implement Biased Random Walks: Enable MASS Agents to perform second-order 

random walks (controlled by parameters ‘p’ and ‘q’) to generate training data. 

3.​ Develop Distributed Training Logic: Create a mechanism for local model training 

on each worker node, followed by a global synchronization step 

("Pack-Reduce-Broadcast"). 
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4.​ Integration: Seamlessly integrate this new engine into the existing MASS 

application layer for ease of use. 

 

This report details the successful implementation of these components, the technical 

challenges overcome, and the resulting architectural operational flow. 

2. Background and Challenges 

2.1. The Node2Vec Algorithm 

Node2Vec extends the Skip-Gram architecture (originally from Word2Vec) to graphs. It 

works in two main phases: 

 

1.​ Random Walk Generation: Agents traverse the graph to create "sentences" 

(sequences of nodes). The walk is biased by two parameters: 

●​ Return parameter (p): Controls the likelihood of revisiting the previous 

node. 

●​ In-out parameter (q): Controls the likelihood of exploring further away vs. 

staying locally. 

2.​ SGD Optimization (Skip-Gram): The algorithm maximizes the probability of 

predicting context nodes (neighbors in the walk) given a target node. This 

requires maintaining two large embedding matrices (Input and Output weights) 

for the entire vocabulary (all nodes in the graph). 

2.2. Challenges in a Distributed Setting 

Implementing this on a distributed system like MASS presents unique challenges: 

 

●​ Network Latency: Standard Stochastic Gradient Descent (SGD) requires updating 

weights after every sample. In a distributed graph, vertices (and their 

embeddings) are scattered. Sending weight updates across the network for every 

step of a random walk is prohibitively slow. 

●​ Memory Constraints: Replicating the entire embedding matrix on every node 

consumes vast amounts of memory. Storing it only on a master node creates a 

communication bottleneck. 
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●​ State Synchronization: Random walkers need to know their previous location to 

calculate bias (‘p’ and ‘q’), which requires carrying state across boundaries. 

2.3. Limitations of Previous MASS Implementations 

Prior iterations of graph algorithms in MASS were largely vertex-centric. Attributes were 

stored on VertexPlace objects. While excellent for algorithms like BFS, this is inefficient 

for training embeddings because: 

 

●​ Accessing a global weight matrix from a VertexPlace would require a remote 

procedure call (RPC) for every dot product operation. 

●​ The "Compare-and-Swap" pattern used in typical synchronized algorithms is too 

rigid for the stochastic nature of neural network training. 

 

To solve this, we devised a new Compute-Node-Centric approach, detailed in the 

implementation section. 

3. Autumn Quarter Implementation (AU25) 

This quarter, we successfully implemented the complete end-to-end pipeline for 

Distributed Node2Vec. The implementation required significant modifications to 

mass_java_core and the development of new classes to handle distributed state. 

3.1. Architectural Design: Compute-Node-Centric Training 

The defining innovation of this implementation is using Node-Granularity instead of 

Vertex-Granularity. 
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Figure-1: Node2VecLocalModel class 

 

●​ Traditional Approach: Each Vertex updates its own embedding. (Too much 

communication). 

●​ Modified Approach: Each Computing Node (JVM) maintains a Static Local 

Model. 

●​ All random walks that end up on a specific machine are collected locally. 

●​ A static class, Node2VecLocalModel as shown in Figure-1, aggregates these 

walks and performs training batch updates locally. 

●​ The Master Node synchronizes these local models only once per epoch, 

rather than once per vertex update. 

3.2. Core Library Modifications (mass_java_core) 

We modified the core library to support complex mobile agents and static state 

management. 

3.2.1. PropertyGraphAgent.java: The Biased Walker 

We enhanced the PropertyGraphAgent to support "stateful" migration. For Node2Vec, 

the next step depends on the previous step. We implemented walkStep() which 

calculates transition probabilities based on the edge weights and p/q bias. 

 

Key Logic Implemented: 
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●​ State Carriage: The agent carries wargs (Walker Arguments), which track 

prevPlaceIndex and prevNeighborIds. This allows the agent to know where it 

came from after migrating to a new machine. 

 

 

Figure-2: Node2VecWalkerArgs class 

 

●​ Second-Order Markov Chain: The transition probability alpha is dynamically 

calculated: 

●​ If neighbor == previous node: alpha = 1/p 

●​ If neighbor is connected to previous node: alpha = 1 

●​ If neighbor is disconnected from previous node: alpha = 1/q 
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Figure-3: alpha calculation logic in  PropertyGraphAgent 

3.2.2. PropertyVertexPlace.java: The Distributed Hook 

The PropertyVertexPlace acts as the interface between the MASS parallel system and our 

static local models. We implemented a robust command handling system in 

callMethod() to intercept distributed messages. 

 

New Function IDs implemented: 

 

●​ TRAIN_LOCAL_BATCH: Triggers the static model on this node to run SGD on its 

local buffer of walks. 

●​ PACK_WEIGHTS / REDUCE_WEIGHTS: Handles the serialization of the large float 

arrays representing the model, allowing them to be sent to the Master for 

averaging. 

●​ COLLECT_EMBEDDING: Allows a vertex to "reach into" the static local model and 

pull its final trained vector. 
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Figure-4: Case handling logic in PropertyVertexPlace class 

3.2.3. Node2Vec.java: The Orchestrator 

This is the driver class that manages the distributed lifecycle. We implemented a strict 

synchronization barrier logic: 

 

1.​ Broadcast: Send latest global weights to all nodes. 

2.​ Train: Order all nodes to train for one epoch on their local data. 

3.​ Pack & Reduce: Gather all local updates, average them, and update the global 

model. 
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Figure-5: Decentralized training logic in Node2Vec class 

 

This "Pack-Reduce-Broadcast" loop ensures that while nodes train independently 

(async), they remain mathematically converged over time. 

3.3. Application Layer Integration (mass_java_appl) 

To demonstrate the usability of this system, we integrated it into the GraphManager 

workflow. 
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3.3.1. GraphManager.java Modifications 

We introduced a secondary set of MASS Places called trainingPlaces. 

 

●​ Why? The main graph might have millions of vertices. We don't want to spawn 

millions of training threads. 

●​ Solution: We create exactly one trainingPlace per computing node. The 

Node2Vec driver interacts with these trainingPlaces to trigger the node-level 

static operations. This is a crucial optimization that decouples graph size from 

training overhead. 

3.3.2. KNNPipeline.java 

We updated the K-Nearest Neighbors pipeline to seamlessly perform Node2Vec 

embedding before analysis. The system now: 

 

1.​ Loads the Graph. 

2.​ Computes Embeddings via Distributed Node2Vec. 

3.​ Uses the resulting vectors to find similar nodes (KNN). 

4. Execution Workflow Summary 

The implementation follows this robust execution path, which has been verified in our 

local test environment: 

 

1.​ Initialization: 

 

●​ GraphManager boots up MASS. 

●​ Graph data is loaded into PropertyGraphPlaces. 

●​ trainingPlaces are initialized (1 per Node). 

 

2.​ Vocabulary Build: 

 

●​ All vertices report their existence. 

●​ Master builds a mapping (NodeID -> Index). 

 

3.​ Random Walk Phase: 
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●​ Agents are spawned at every vertex. 

●​ Agents hop ‘walk length’ times using the logic in PropertyGraphAgent. 

●​ When an agent finishes, it dumps its walk path into the allLocalWalks list of 

the Node2VecLocalModel where it originated. 

 

4.​ Training Phase (Skip-Gram): 

 

●​ For E epochs: 

●​ Master triggers TRAIN_LOCAL_BATCH. 

●​ Each JVM trains on the walks stored locally. 

●​ Master triggers PACK -> Average -> BROADCAST. 

 

5.​ Collection: 

 

●​ Vertices query their final embeddings and store them for the KNN 

application. 

 

 

Figure-6: Logic Flow in Node2Vec class 

5. Conclusion & Future Work 

5.1. Conclusion 

This term, we successfully enabled Distributed Node2Vec on MASS. By architecting a 

solution that respects the constraints of distributed systems, specifically by minimizing 
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network synchronization through a compute-node-centric design we have laid the 

groundwork for training graph embeddings on datasets that exceed the memory of a 

single machine. The core logic for biased walking, distributed state management, and 

weight synchronization is now complete and integrated into MASS. 

5.2. Future Work (Winter) 

With the engine built, the next steps focus on validation and optimization: 

 

●​ Verification: Rigorous unit testing of the p and q bias logic, back propagation, 

training etc. 

●​ Benchmarking: Running the system on standard datasets and comparing 

accuracy/runtime against standard single-machine implementations & other 

embedding generation algorithms on MASS. 

●​ Optimization: Implementing "Triangle Checks" in the agent logic to strictly 

enforce 2nd-order properties without carrying excessive state. 

●​ Hyperparameter Tuning: Experimenting with synchronization frequency (syncing 

every N batches instead of every epoch) to further improve speed. 
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