
Overview

Matthew Sell, CSSE Student

MASS Research Participant, October 2016



Issue 
Management

Revision 
Control

Development

Build 
Automation

Unit Testing

Artifact

Repository

(Java)



 Developer’s Reference Guide

• http://depts.washington.edu/dslab/MASS/docs/dev_quick_reference.pdf

 Git setup, usage help

• Check Bitbucket for tutorials, videos

• Command-line: http://git-scm.com

• “The” book on Git: http://git-scm.com/book

 DSL homepage (manuals) 

• http://depts.washington.edu/dslab/MASS

 Email

 Professor Fukuda: mfukuda@u.washington.edu

 Matthew Sell: mrsell@uw.edu



 Create a free account

• https://bitbucket.org

• Use your “UW” email address for upgraded academic account

• Inform Professor Fukuda or myself to obtain privileges

 Install a Git tool

• Recommend “Sourcetree” (https://www.sourcetreeapp.com)

 Work from the issue tracker and repository

• More info on workflow in a bit…



 Branch. IMMEDIATELY!

• Keep your work separate until ready to merge to “develop”

• Branch name: “<your UW username>_develop”

• Merging to “develop” means, “My work is ready for release”

 Commit early, commit often

• Only commit code that compiles!

• Only commit what YOU changed! (Nothing else!)

• Provide useful commit messages (and issue #)

• Commit messages are public!

 Push to origin

• Multiple development workstations

• Protects your work (backup)

• Others can test drive your work



 Create issue in Bitbucket

• Bug / Enhancement / Proposal / Task

 Git Flow – “Start New Feature”

• “<your initials>-devel” – long running

• Push to Origin

 Development

• Unit tests!

 Resolve issue in Bitbucket

 Git Flow – “Finish Feature”

• Okay to delete branch



 Using Git Workflow

• http://danielkummer.github.io/git-flow-cheatsheet/

• “master” branch for releases ONLY

• “develop” branch for merging changes

 Development branch is always a “Release Candidate”

• Use feature branching from “develop” for your changes



 Automated build from Git repository

 Unit testing / code coverage

 Build / test failure notifications

 Browser based, hosted at UWB

• http://fukuda-cent-01.css.uwb.edu/jenkins

Assume: “If it doesn’t build for Jenkins, it won’t for anyone else”



Managing dependencies
• Ensures proper revisioning

• Dependencies of dependencies (!)
 More info: http://en.wikipedia.org/wiki/Dependency_hell

Making consistent builds
• Between developers

• Across platforms

• Using different IDEs



 Don’t commit messy code!

• Let the IDE help you

• Think about maintenance

• Allow interviewers to see your code

• Tips: https://www.troyhunt.com/10-commandments-of-good-source-control/

 Do something useful with exceptions

 Clever is a “code smell”

• Others: http://blog.codinghorror.com/code-smells

 Don’t reinvent the wheel…

 Unit tests!

 All of these tools and experience is valuable on your resume!




