MASS Development Environment

. ~ Matthew Sell, CSSE Student
- MASS Research Participant, October 2016

Development Cycle

Atlassian

bitbucket

Issue
Management

Revision
Control

Artifact

Repository Development

(Java)

Build

Automation

HELP!!!

Developer’s Reference Guide
« http://depts.washington.edu/dslab/MASS/docs/dev_quick_reference.pdf
Git setup, usage help

- Check Bitbucket for tutorials, videos
« Command-line: http://git-scm.com

“The” book on Git: http://git-scm.com/book
DSL homepage (manuals)

http://depts.washington.edu/dslab/MASS
Email

Professor Fukuda: mfukuda@u.washington.edu

Matthew Sell: mrsell@uw.edu

Bitbucket

Create a free account

+ https://bitbucket.org
« Use your “UW” email address for upgraded academic account

+ Inform Professor Fukuda or myself to obtain privileges

Install a Git tool

« Recommend “Sourcetree” (https://www.sourcetreeapp.com)

Work from the issue tracker and repository

« More info on workflow in a bit...

a bistsgucket

Using Git

Branch. IMMEDIATELY!

Keep your work separate until ready to merge to “develop”
Branch name: “<your UW username>_develop”
Merging to “develop” means, “My work is ready for release”
Commit early, commit often
Only commit code that compiles!
« Only commit what YOU changed! (Nothing else!)
« Provide useful commit messages (and issue #)

Commit messages are public!
Push to origin

Multiple development workstations
Protects your work (backup)

Others can test drive your work

Create issue in Bitbucket
Bug / Enhancement / Proposal / Task
Git Flow — “Start New Feature”
“<your initials>-devel” — long running
Push to Origin
Development
Unit tests!

Resolve issue in Bitbucket

Git Flow — “Finish Feature”

Okay to delete branch

Wozrkilow

Workilow - Git

Using Git Workflow

http://danielkummer.github.io/git-flow-cheatsheet/
- ‘““‘master’” branch for releases ONLY

- ‘“develop” branch for merging changes

- Development branch is always a “Release Candidate”

« Use feature branching from “develop” for your changes

Jenkins CI

Automated build from Git repository
Unit testing / code coverage
Build / test failure notifications

Browser based, hosted at UWB

« http://fukuda-cent-01.css.uwb.edu/jenkins

Assume: “If it doesn’t build for Jenkins, it won'’t for anyone else”

Why Maven?

Managing dependencies
- Ensures proper revisioning
- Dependencies of dependencies (!)

« More 1Info: http://en.wikipedia.org/wiki/Dependency_hell

Making consistent builds
- Between developers

 Across platforms
- Using different IDEs

Final Comments...

Don’t commit messy code!

« Let the IDE help you
« Think about maintenance
- Allow interviewers to see your code
Tips: https://www.troyhunt.com/10-commandments-of-good-source-control/

Do something useful with exceptions

Clever is a ““‘code smell”
« Others: http://blog.codinghorror.com/code-smells
Don’t reinvent the wheel...

Unit tests!

All of these tools and experience is valuable on your resume!

Questions?

YOUR SAMPLE SIZES ARE SMALL
YOUR STANDARD DEVIATIONS ARE HIGH
YOUR CONCLUSION MEANS NOTHING

AND YOU SHOULD FEEL BAD

