

NemoProfile Network Motif Analysis
Parallelization with MASS Library

CSS499 Term Report, Spring 2016

Drew Andersen

Introduction
This quarter I began work on adding a feature called NemoProfile to a series of parallel
big data programs called Bionet, developed by former student Matthew Kipps. The
NemoProfile feature adds additional, relevant information to the programs’ output, but
with added computational and memory costs. My goal was to efficiently implement the
feature and measure these penalties.

Background
Recent advances in technology have led to an increase in the amount of data available
to researchers in many fields, including biology. Some of this information, such as
protein-protein interactions, is best presented in a network or graph data structure.
Researchers often analyze these biological networks by attempting to detect unique,
recurring subgraph patterns called network motifs. Many algorithms and tools are
available to aid in this process, including ESU, randESU, and AllCollect, but most tools
detect and enumerate these motifs, but do not map the motifs to specific nodes. This
mapping is valuable to researchers, but has traditionally be considered too expensive
to collect.

Professor Wooyoung Kim and a former student developed a novel technique to
efficiently map network motif instances to nodes. This technique uses the ESU
algorithm (Figure 1) to detect
and enumerate instances of all
subgraphs of a given size in a
target network. The resulting
enumeration of subgraphs is
then tested against a random
pool of similar networks to
determine which subgraph
patterns appear more
frequently in the target
network than in a typical
network (Figure 2). The
resulting patterns are
considered network motifs. By
retaining the mapping of nodes
to subgraphs, the NemoProfile
technique can also allow for
efficient collection of all instances of network motifs by executing ESU on an induced

1

subgraph consisting of the nodes belonging to network motifs, as identified through
NemoProfile. This process of network motif collection is called NemoCollect.

Problem
While NemoProfile adds minimal overhead to a sequential implementation of an
ESU-based implementation of the network motif finding process, there is potential for
additional overhead when parallelizing the NemoProfile technique. The additional
overhead steps primarily from three sources:

1. Merging of node-motif frequency mappings. In a sequential, shared-memory
model, instances are enumerated in a single map. However, in a parallel,
distributed-memory model, the instances are enumerated in n maps, where n is
the number of computing nodes. When these maps are collected, they must be
sequentially combined at the master node.

2. The amount of data to transfer between nodes is higher, leading to larger
latency.

3. The amount of data stored at each node is higher, leading to higher memory
usage.

Our goal is to determine how much additional overhead is added to a typical
ESU-based parallel network motif detection program compared to such a program with
NemoProfile and NemoCollect implemented.

The programs created by Kipps (called Bionet) parallelize the ESU algorithm through
three different methods: MPI, MASS agents-based, and MASS places-based. He also

2

implemented a sequential version of the algorithm for comparison. These
implementations enumerated subgraphs for a target network, but did not map
subgraphs to nodes or perform the comparison against random networks to detect
network motifs. Also, the agents-based implementation suffers from severe memory
overhead issues for larger network and motif sizes, to the point that remoted nodes
run out of memory and throw exceptions.

Implementation
In the original implementations of Bionet, the subgraph pattern enumerations are
stored in hash maps. I considered three options to replace this structure:

1. Two-dimensional matrix array. While this implementation would have been the
easiest to implement, it would also lead to relatively high memory complexity
because there is no way to determine how large the matrix would need to be at
each node.

2. Two-tuples. Under this implementation, the two-tuples would essentially
perform a naive NemoCollect. I originally attempted this implementation due to
a misunderstanding of how NemoProfile functions, but soon discovered my
mistake as evidenced by prohibitively expensive overhead.

3. Nested hashmaps. This was the version we ultimately chose. The outer hashmap
maps vertices to maps like the ones utilized in the original implementation,
mapping patterns to frequencies of occurrence.

I designed and implemented a new class called SubgraphProfile to manage the
complexity of the new data structure (Figure 3). The class was designed to be used
across all four
implementations of
Bionet (with minor
modifications necessary
for MPI). In addition to
moving the complexity of
the add and merge
processes into a class, I
also moved the label and
display processes into this
class. The final design
turned out to be rather
simple, but was the result
of a great deal of trial and
error.

3

4

Results
I am still in the process of gathering experimental data. So far, the overhead appears to
be significant, due almost entirely to the merging process. Surprisingly, this is true
even for the sequential portion of the process, which would seem to contradict the
results of the unpublished paper by Kim and Haukup.

Future Work
My next step is to finish gathering and analyzing the experimental data. Following
that, I will re-examine the sequential NemoProfile implementation created by Kim and
Haukup to see if there are any significant differences between their implementation
and mine. Next, I will implement the remaining elements of NemoProfile and
NemoCollect into Bionet and report the results. Finally, I plan to begin work on a
production version of NemoProfile/NemoCollect that could be released to the public.

5

