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Introduction 
This quarter I began work on adding a feature called NemoProfile to a series of parallel 
big data programs called Bionet, developed by former student Matthew Kipps. The 
NemoProfile feature adds additional, relevant information to the programs’ output, but 
with added computational and memory costs. My goal was to efficiently implement the 
feature and measure these penalties. 

Background 
Recent advances in technology have led to an increase in the amount of data available 
to researchers in many fields, including biology. Some of this information, such as 
protein-protein interactions, is best presented in a network or graph data structure. 
Researchers often analyze these biological networks by attempting to detect unique, 
recurring subgraph patterns called ​network motifs​. Many algorithms and tools are 
available to aid in this process, including ESU, randESU, and AllCollect, but most tools 
detect and enumerate these motifs, but do not map the motifs to specific nodes. This 
mapping is valuable to researchers, but has traditionally be considered too expensive 
to collect. 
 
Professor Wooyoung Kim and a former student developed a novel technique to 
efficiently map network motif instances to nodes. This technique uses the ESU 
algorithm (Figure 1) to detect 
and enumerate instances of all 
subgraphs of a given size in a 
target network. The resulting 
enumeration of subgraphs is 
then tested against a random 
pool of similar networks to 
determine which subgraph 
patterns appear more 
frequently in the target 
network than in a typical 
network (Figure 2). The 
resulting patterns are 
considered network motifs. By 
retaining the mapping of nodes 
to subgraphs, the NemoProfile 
technique can also allow for 
efficient collection of all instances of network motifs by executing ESU on an induced 
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subgraph consisting of the nodes belonging to network motifs, as identified through 
NemoProfile. This process of network motif collection is called NemoCollect. 
 

 
 

Problem 
While NemoProfile adds minimal overhead to a sequential implementation of an 
ESU-based implementation of the network motif finding process, there is potential for 
additional overhead when parallelizing the NemoProfile technique. The additional 
overhead steps primarily from three sources: 
 

1. Merging of node-motif frequency mappings. In a sequential, shared-memory 
model, instances are enumerated in a single map. However, in a parallel, 
distributed-memory model, the instances are enumerated in ​n ​maps, where ​n​ is 
the number of computing nodes. When these maps are collected, they must be 
sequentially combined at the master node. 

2. The amount of data to transfer between nodes is higher, leading to larger 
latency. 

3. The amount of data stored at each node is higher, leading to higher memory 
usage. 

 
Our goal is to determine how much additional overhead is added to a typical 
ESU-based parallel network motif detection program compared to such a program with 
NemoProfile and NemoCollect implemented. 
 
The programs created by Kipps (called Bionet) parallelize the ESU algorithm through 
three different methods: MPI, MASS agents-based, and MASS places-based. He also 
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implemented a sequential version of the algorithm for comparison. These 
implementations enumerated subgraphs for a target network, but did not map 
subgraphs to nodes or perform the comparison against random networks to detect 
network motifs. Also, the agents-based implementation suffers from severe memory 
overhead issues for larger network and motif sizes, to the point that remoted nodes 
run out of memory and throw exceptions. 

Implementation 
In the original implementations of Bionet, the subgraph pattern enumerations are 
stored in hash maps. I considered three options to replace this structure: 
 

1. Two-dimensional matrix array. While this implementation would have been the 
easiest to implement, it would also lead to relatively high memory complexity 
because there is no way to determine how large the matrix would need to be at 
each node. 

2. Two-tuples. Under this implementation, the two-tuples would essentially 
perform a naive NemoCollect. I originally attempted this implementation due to 
a misunderstanding of how NemoProfile functions, but soon discovered my 
mistake as evidenced by prohibitively expensive overhead. 

3. Nested hashmaps. This was the version we ultimately chose. The outer hashmap 
maps vertices to maps like the ones utilized in the original implementation, 
mapping patterns to frequencies of occurrence. 

 
I designed and implemented a new class called SubgraphProfile to manage the 
complexity of the new data structure (Figure 3). The class was designed to be used 
across all four 
implementations of 
Bionet (with minor 
modifications necessary 
for MPI). In addition to 
moving the complexity of 
the add and merge 
processes into a class, I 
also moved the label and 
display processes into this 
class. The final design 
turned out to be rather 
simple, but was the result 
of a great deal of trial and 
error. 
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Results 
I am still in the process of gathering experimental data. So far, the overhead appears to 
be significant, due almost entirely to the merging process. Surprisingly, this is true 
even for the sequential portion of the process, which would seem to contradict the 
results of the unpublished paper by Kim and Haukup. 

Future Work 
My next step is to finish gathering and analyzing the experimental data. Following 
that, I will re-examine the sequential NemoProfile implementation created by Kim and 
Haukup to see if there are any significant differences between their implementation 
and mine. Next, I will implement the remaining elements of NemoProfile and 
NemoCollect into Bionet and report the results. Finally, I plan to begin work on a 
production version of NemoProfile/NemoCollect that could be released to the public. 
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