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Graph databases are a type of NoSQL databases that use graph structures to store and represent 

data. Unlike traditional relational databases that use tables and rows to represent data, graph 

databases use nodes and edges to represent relationships between data items. This allows for 

more flexible and efficient querying of complex and connected data items. Graph databases 

provide us with functional capabilities of querying a large number of interconnected data 

schemas, such as social networks and biological networks. In this project, we aim to build a 

graph database using the MASS (Multi-Agent Spatial Simulation) library that relies on Places 

and Agents as the core components. The MASS library has already supported graph data 

structure (GraphPlaces) which is distributed on a cluster of computing nodes. However, the 

current implementation worked on specific graph types. This project implements graph creation 



 

  

using CSV files as generic inputs as possible. We also implement a query-parsing engine that 

takes OpenCypher queries as inputs and parses it to method calls of MASS GraphPlaces. On top 

of that we have implemented four types of queries (including  where clause, aggregate type, and 

multi relationship queries)  in order to perform verification of the graph database and to perform 

query benchmarks. Each benchmark measures the query latency, graph creation times, and 

spatial scalability of all the queries. The performance measurements are performed on  a cluster 

of eight computing nodes, and the spatial scalability is measured using a Twitch monthly dataset, 

which contains more than 7k nodes and more than 20k edges. The research presents significant 

improvements in query latency and spatial scalability as we increase the number of computing 

nodes.
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1. Introduction 

In the dynamic world of big data analytics, traditional approaches have predominantly relied on 

data streaming frameworks such as MapR, Apache Spark, and Apache Storm to process and 

analyze massive volumes of information. These frameworks have been instrumental in 

facilitating real-time data processing and scalable analytics pipelines. However, it is crucial to 

recognize that big data computing encompasses more than just data streaming. There also exists 

another big-data computing domain that is equally important and evolving increasingly, that is, 

the analytics of complex data structures such as graphs and arrays. 

 

While data streaming frameworks excel in handling continuous data flows, they may not be 

optimally suited for the analysis of interconnected data points, where relationships  play a pivotal 

role. Graph databases, in particular, have gained popularity as a practical big data computing 

domain, as they provide a robust foundation for representing and analyzing relationships 

between entities. However, constructing and analyzing such complicated data structures over 

distributed memory while ensuring smooth operations and reusable methodologies can pose 

significant challenges. 

 

To address these challenges and unlock the full potential of graph databases and other data 

structures, we propose the adoption of agent-based graph computing. This novel paradigm 

leverages the power of distributed memory and intelligent agent dispatching to enable efficient 

construction, analysis, and reuse of complex data structures.  By combining the strengths of 
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agent-based systems and graph computing, we aim to demonstrate the numerous advantages and 

transformative capabilities that this approach offers. 

 

In this white paper, we delve into the concept of agent based computing and explore how agent 

migrations can overcome the limitations of traditional graph data storage.  

The subsequent sections of this white paper will provide a comprehensive analysis of agent-

based graph computing, its underlying principles, and its implementation as a standalone 

database. We will present the different types of queries that have been implemented, and how 

performance is affected. We will also dive into the MASS library that provides the entire 

skeleton to this project. 

1.1. Background 

 

MASS [1] (Multi-Agents Spatial Simulation) is an agents-based parallel programming library to 

do computation over a cluster of nodes . It provides an intuitive programming framework to do 

big data processes and can simulate a lot of real-life problems including bioinformatics, climate 

change, social networking, etc.  A cluster of computing nodes  fork a process at each node, and 

all the processes communicate with each other via TCP connections. There are two key concepts 

in the MASS library: Places and Agents. Places is a distributed array of place elements over a 

cluster of computing nodes. It is managed by a set of global indices and each place element can 

be identified with an index. Data can be saved in a specific place and exchanged between Places 

instances, (each simply referred to as a place). 
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Agents are a set of execution instances that can migrate over places. Each agent object (referred 

to as an agent in the following discussion) can specify the next place’s index to indicate where to 

migrate next. When an agent resides in a place, it can manipulate the data saved on that place. 

Agents are grouped into bundles. On each computing node, multiple threads check-in each agent 

one by one and process each agent’s request. On top of the Places class, MASS also supports 

other data structures including Binary Tree, QuadTree, Continuous Space [1], and Graph [3]. 

Those agent-navigable can better meet users’ various computing needs. 

1.2. Motivation 

Graph is an abstraction of relationships in nature, which has direct application to many real 

world problems such as biological networks, social networks and neural networks. Therefore, the 

study of graphs, having the ability to extract information from any graph has a very strong and 

practical significance. This significance is the major motivation of this project, to create a Graph 

Database capable of understanding and interpreting the queries. 

With a tremendous growth of ML and AI, the volume of associated data in industry as well as in 

academia is growing manifolds, often reaching to the level of petabytes (1024 terabytes) and 

exabytes (1024 petabytes). The data can include billions and trillions of records of people, 

including their habits, their details, which can transform to generation of graphs with millions of 

vertices and edges. Analyzing and fetching information from these graphs has become very 

important. The principle task of fetching information from any datasource is to provide an ease 

of interaction with the data. It is very challenging to process and compute the rapidly growing 

datasets in a reasonable amount of time, as well as provide with the ability to fetch data on the 

fly with the limited computing and memory resources available. In order to provide the 

https://www.zotero.org/google-docs/?vZhIEf
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performance and immediate data delivery, there have been a few implementations of graph 

databases such as Neo4j [4] and RedisGraph [5]. 

Based on the purpose of comparing the performance and programmability of different 

implementations of the graph database, we have come up with an Agent Based Graph Database 

Model. The model is based on MASS Java, and employs all the features of the MASS library. 

The Agent Based Graph will draw parallels from Neo4j and RedisGraph for comparing query 

translations, and will do a performance and data accuracy analysis with different types of 

applications. 

1.3. Goal 

Based on the motivations above, the project goals for this capstone work are defined as follows: 

● Design and implement a generic data parser, where when provided with CSV data files, it 

reads and translates the given rows into Graph Nodes and Edges. 

● Design and implement a query parser engine that can interpret OpenCypher queries. 

● Design and implement basic graph queries that give us an understanding of general 

operations that can be performed on a graph. 

 

The rest of the white paper is organized in the following manner: Chapter 2 discusses the 

background and the related work done by existing applications such as Neo4j. Chapter 3 gives a 

detailed understanding of the execution process and the multiple components involved from 

when the application is initialized to returning of results. Chapter 4 dives deep into the 

implementation and the business logic behind every query that the graph database currently 
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supports. Chapter 5 evaluates the performance, scalability and verification of the graph database 

application. Chapter 6 summarizes the conclusions and future improvements of this white paper. 

2. Related Work 

2.1. Neo4j 

Neo4j  is a leading graph database that enables users to efficiently model, store, and query 

complex data relationships. As a graph database, it leverages the inherent flexibility of graphs to 

represent data in a way that closely reflects real-world relationships. With its powerful query 

language, Cypher, and support for multiple programming languages, Neo4j helps build 

applications in a much quicker and faster manner that leverage the full power of graph data. 

The core element of the Neo4j architecture is the storage engine, which is responsible for 

persisting the data to the disk and provides optimization for the storage. 

The storage engine also enables the functionality of scaling a neo4j cluster to many parallel 

running machines.  

One of the key advantages of Neo4j is its scalability. It is designed to handle large and complex 

datasets, making it a popular choice for enterprise-level applications. With its support for 

clustering and sharding, Neo4j can easily scale horizontally to meet the needs of high-traffic 

applications. However, the core problem with scalability in a Neo4j cluster is that since the data 

is stored on to the disk, the retrieval of data is slower for heavy queries. This serves as a 

bottleneck in large scale applications where the query needs to respond quickly. 
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Figure 1: Visual representation of a Neo4j Graph 

2.2. RedisGraph 

RedisGraph is a high-performance graph database module that is built on top of Redis, the 

popular in-memory data structure store. It is designed to handle large and complex datasets with 

high performance and accuracy. With its ability to leverage the power of Redis, RedisGraph 

offers a fast, scalable, and flexible solution for building graph-based applications. RedisGraph is 

highly optimized for graph queries and is ideal for use cases that require real-time graph analysis, 

such as fraud detection, recommendation engines, and social networks. 

One of the key benefits of RedisGraph is its ease of use. It offers a simple and intuitive query 

language that is easy to learn and use. This makes it easy for developers to get started with graph 

databases and start building powerful applications. Additionally, RedisGraph offers a powerful 
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set of APIs for accessing and manipulating graph data, making it easy to integrate with other 

technologies and tools. 

Another important aspect of RedisGraph is its scalability. It is designed to handle large datasets 

and high volumes of queries with ease, making it a good choice for mission-critical applications 

that require high performance and scalability. RedisGraph leverages the power of Redis to offer 

features such as clustering and sharding, which enable vertical scaling and ensure high 

availability and fault tolerance. With its ability to handle complex graph queries in real-time, 

RedisGraph is a powerful solution for building applications that require advanced data modeling 

and analysis. 

However, the core problem with vertical scalability is that the cost incurred to increase the size 

of a single machine would be extremely high, and it also adds an upper bound limit to the size of 

data it can handle. Since, redis graph is a memory store single machine graph database, it cannot 

scale vertically. 

2.3. Summary 

Neo4j and RedisGraph are very popular and widely used graph databases and they provide a 

huge variety of analytics tools for processing large amounts of data. However, they do come with 

limitations. RedisGraph works on a memory model and a key value storage system, hence it 

provides faster retrieval for the data stored. But due to the memory model architecture, it is not 

scalable for very large datasets. Ne04j, on the other hand, works on a disk based model which 

makes it an ideal candidate for large datasets, but due to the disk based architecture all reads and 

writes are slow in comparison.  
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With an Agent Based Graph database, which is based on MASS architecture we aim to mitigate 

both of these limitations. MASS architecture enables us to define a distributed memory over a set 

of compute nodes. Each graph node that resides on this distributed space provides us with a 

constant access time, thus mitigating the slow retrieval issue by neo4j. Additionally, with the 

MASS architecture, it is possible for us to scale the computing nodes horizontally, hence 

mitigating the scale issue by RedisGraph. 
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3. Execution Mode 

This chapter aims to provide an in-depth overview of the MASS Java library, the current graph 

implementation on which this project's work is based. It also talks about the format of data that 

we have used for successful completion of this project and also shed some light on the system 

architecture and design decisions for this project. 

3.1. MASS Library 

 

 

Figure 2: MASS Library Data Model 
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MASS  is an agent-based parallel computing library for multi-agent and spatial simulation over a 

cluster of computing nodes. MASS started as a research project at the of Distributed Systems 

Laboratory (hereinafter refers to as “DSLab”) led by Professor Munehiro Fukuda of University 

of Washington Bothell in 2010, currently available in several languages, including Java [6], C++ 

[7], and CUDA [8]. Over the years, many of the ideas behind the system were presented in 

various journals and research papers over the years. MASS provides an intuitive programming 

framework for big data processing that can simulate many real-world problems, such as 

bioinformatics, social networks, geographic information systems and climate analysis . MASS 

also supports other data structures, including arrays, binary trees, quadtrees, continuous spaces, 

which can better meet the needs of users in various situations. 

3.2. GraphPlaces 

The MASS library has already supported the graph data structure. It was originally implemented 

by Justin Gilroy [9] and refactored by Brain Luger [3]. In the MASS library, the graph data 

structure is called GraphPlaces. GraphPlaces is an extension of the existing MASS Places class 

with the capability to support simulations. Each GraphPlaces consists of vertices. Vertices with 

the graph are distributed across all nodes as shown in Figure 3. When we add vertices to the 

graph, we will follow a round-robin fashion so that the vertices are balanced across the entire 

cluster. Each vertex was represented by a VertexPlace object and the VertexPlace class is an 

extension of the MASS Place class. The vertex contains a list of outgoing edges and information 

about the vertex itself. 
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Figure 3:Visual representation of a distributed graph 

 

When constructing a graph, users can load the graph from a supported graph format including 

Hippie, Matsim, UW-Bothell proprietary DSL, and SAR. Users can also choose to add vertices 

and edges manually by calling Addvertex() and AddEdge() methods. On each computing node, 

vertices are stored in a single vector as shown in Figure 4. The single vector can grow 

dynamically with the size of the graph so that we don’t have to know the graph size in advance. 

The implementation also has a removal queue as shown in the red rectangle of Figure 4. It was 

used to recycle the removed vertices so that we don’t have to shift all the elements in the 

container. When a vertex is removed, it will be added to the queue. On the next call to 

addVertex(), the recycled vertices will be dequeued. After constructing a graph, agents can 

migrate over an edge from one vertex to another. 
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Figure 4: Vertex container and distribution [3] 

 

 

Table 1:Relationship between MASS Java classes 

3.3. Data Format 

On a limited dataset with only eight nodes, as shown in Figure 5 and Table 2 ,we diligently 

carried out a number of preliminary benchmarks and query verification methods early in our 

evaluation process. We were able to establish a strong basis for evaluating the system's 
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performance and verifying the accuracy and dependability of query processing thanks to this 

methodical methodology. We made sure the system could give accurate and consistent results by 

putting it through these first tests, creating a solid starting point for further investigation. 

 

Figure 5: Preliminary benchmark data 

 

Table 2: Preliminary Benchmark data 
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Further, we decided to take advantage of the vast resources made available by the well-known 

Stanford Large Network Dataset Collection, more often referred to as SNAP [10], in order to 

conduct a more thorough and rigorous evaluation of the system's performance. This priceless 

collection includes a huge variety of datasets, each of which has distinctive dimensions, 

complexities, and application to the actual world. We plan to reproduce and simulate numerous 

real-world scenarios using suitable datasets from the SNAP collection. This will allow us to fully 

explore the system's scalability, efficiency, and general efficacy in managing various and 

difficult data environments. 

 

 

 

Table 3: Twitch dataset for users in different languages 

 

The SNAP datasets offer an unrivaled chance to put the system through rigorous stress tests and 

performance analysis because they have been extensively curated and widely used by researchers 

and practitioners in the field. We can learn more about the behavior, resource usage, and 

flexibility of the system by investigating datasets with a range of sizes, complexities, and 

topologies. For this project we have taken a Twitch dataset, as shown in Table 3, which depicts a 

social-network graph containing details of user-to-user relationship in different languages. The 
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first row of Table 3 depicts the language, and row 2 and 3 shows the number of vertices and 

edges in each graph. 

3.4. System Architecture 

 

Figure 6: Architecture of an Agent Based Graph Database 

 

The architecture of the graph database is divided into 2 sub-systems. The first system reads the 

CSV files and parses them into graph node objects and corresponding edges. This system relies 

heavily on the OpenCSV[11] library to read and understand the set of CSV files given. 

The second sub system is responsible for reading and understanding the Cypher queries sent to it. 

This system relies on ANTLR parser to determine which place and agent to invoke to get the 

query results. 
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4. Implementation 

This section discusses the design and implementation details of the generic graph parser, the six 

type of queries (see Table 4) implemented as part of the completion of this project and the 

utilization of a grammar parser tool to create a cypher query parser engine.  

 

 

1. "MATCH (p:Person) WHERE p.Name = \"Tom\” RETURN p" 

2. “MATCH (p:Person) RETURN min(p.Salary)” 

3. “MATCH (p:Person) RETURN max(p.Salary)” 

4. “MATCH (p:Person) RETURN avg(p.Age)” 

5. "MATCH (p1:Person)-[:KNOWS]->(p2:Person) WHERE p1.name = \"Tom\” 

RETURN p2" 

6. "MATCH (p1:Person)-[:KNOWS]->(p2:Person)[:KNOWS]->(p3:Person)  WHERE 

p1.name = \"Tom\” RETURN p3" 

Table 4: Example list of all the types of queries implemented. 

4.1. ANTLR and OpenCypher 

OpenCypher[12] is the most widely adopted, fully-specified, and open query language for 

property graph databases that was introduced by Neo4j in 2015. Since its inception, opencypher 

has been adopted by other graph database vendors including RedisGraph, AgnesGraph etc.  

 

OpenCypher provides a unified and standardized syntax for querying and manipulating graph 

data irrespective of the data engine working behind it. It is highly derived from syntax similar to 

SQL and has in-built support for all varieties of graph operations, such as creating and modifying 
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graph nodes, creating and finding relationships, searching, aggregating and filtering results.  

The most unique selling point of OpenCypher is that the design is meant to be extensible, which 

means that anyone can utilize the language in any form and any operations and it will still 

maintain the compatibility with the predefined functions.  

 

In order to read and understand an OpenCypher query, we need a mechanism to break it down 

into legible values that our agent-based database understands. We then try to understand what 

each token signifies and to get what each query means. In order to help understand each query 

and its grammar, we have utilized ANTLR[13] (Another Tool For Language Recognition) as our 

query analyzer. Among other different options like JFlex[14], JavaCC[15], Coco/R[16] we chose 

to go with ANTLR for two reasons. The first one is that ANTLR is intuitive and it has very 

streamlined integration with all the popular languages like C++ and Python, making it  

ANTLR is a powerful parser generator that uses a set of predefined rules in order to parse and 

interpret any given text and derive legible context from it. ANTLR is widely used in generating 

parsers, interpreters, compilers and even for generating codes.  

 

ANTLR generates a parser that is based on a formal grammar specification provided to the tool. 

It also provides the functionality to create custom grammar files to create custom parsers. The 

generated parser uses the input provided to it, and then creates an abstract syntax tree. In the 

syntax tree, there contains tokens, which are texts derived from the inputs. These tokens can be 

further processed to generate code, execute commands and perform other varieties of actions.  

In order to parse an OpenCypher query, we have used an open source grammar file[17]  that 

contains rules to parse all supported queries.  
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Upon compilation, the parser returns a enter and exit rule which can be overridden. We will 

override each of these methods as and when we need to implement any given query. 

 

We have taken MATCH type query to start off our query parser engine. Among several available 

queries we chose to start with a MATCH type query, and the reason behind it was that most of 

our information retrieval for a graph database uses MATCH. We decided it would be most 

feasible to begin with this as it would provide a very strong foundation for implementation of 

other query types.  

For the given query, “MATCH (tom:Person {name: ‘Tom’})” we will discuss a step by 

step algorithm that will help us implement this query in our Agent Based Graph Database. 

In this case, we have a MATCH type query with a where clause provided to us. In order to parse 

this Match query we will perform the following steps: 

1. Tokenize the query. Tokenization process uses a CommonTokenStream class to separate 

the keywords in the query. 

2. Create a parse tree based on the key words. Antlr uses ParseTree class to create the tree 

nodes. Figure 7 depicts the resultant tree.  

3. Create a Listener to walk through the tree nodes created.  

4. Override the MatchOC rule method and extract the required information. 

For our case, we need to understand that the query is on a node of the type Person 

and we need to understand that the attribute key is ‘name’ and the attribute value 

in that case is ‘Tom’. 

Figure 7 depicts the results when a Match query is provided as an input. 
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5. With this information we can determine the required GraphPlaces methods and use them 

to process the information.  

 

 

 

Figure 7: Parsed Tree for Match Query 

 

4.2. CSV Parser 

In previous iterations of the MASS library, there had been implementations to create a graph 

structure using different kinds of source files, namely HIPEE and MATSIM [9]. Both of these 

data formats for graphs have a wide range of usefulness and implementations in graph 

computing. However, these data formats do not provide us with the ability to fully utilize the 

power of Open Cypher graph queries. There are two major reasons for that. First, the data format 

for each HIPEE and MATSIM has to follow a strict standard, which takes away the ability for 

our graph node to have different identifiable attributes. Second, we cannot perform aggregates 

and variable relationships between the graph nodes. In order to query a graph database, we 

needed to implement a graph structure that can have multiple fields and each of those fields 

could be queried.  

 



 

 20 

To overcome these two challenges, we came up with the idea of creating a GenericGraph class, 

which is an extension to the GraphPlaces ( as mentioned in ch3.2), that can take input in the form 

of a generic CSV file. The file will contain information for the nodes, where each row would 

represent the attributes related to the node. For example, if the graph is for a group of people on a 

social networking website, the attributes can be name, address, etc. 

The GenericGraph class has two members, Generic Vertex which is an expansion of VertexPlace 

class and consists of properties and attributes relating to a node, and GenericEdge class, which 

stores all the properties of an edge, such as weight and relationship.  

 

The parser uses OpenCSV library to read and parse the csv file. The code snippet in Listing 1 

provides information on reading a csv file and creation of MASS Graph Structure. 

 

The loadFromFile function accepts the path of the graph datafiles as an input and calls the 

populate_graph function. The populate_graph uses OpenCsv library to open and read the 

contents of the file. 
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17 

18 

19 

20 

21 

public void populate_graph(String nodes, String edges){ 

   HashMap<String, String> nodeNameId = new HashMap<>(); 

   try (CSVReader csvReader = new CSVReader(new FileReader(nodes));) { 

 

       String[] headers = null; 

       Object[] values = null; 

 

       headers = csvReader.readNext(); 

 

 

       int vertex_id = 0; 

       while ((values = csvReader.readNext()) != null) { 

 

try (CSVReader csvReader = new CSVReader(new FileReader(edges));) { 

            String[] headers = null; 

            Object[] values = null; 

            headers = csvReader.readNext(); 

            while ((values = csvReader.readNext()) != null) { 

                if (values.length < 2){ 

                    continue; 

                } 
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22 

23 

24 

25 

                int source = 

Integer.parseInt(nodeNameId.get(values[0])); 

                int dest = Integer.parseInt(nodeNameId.get(values[1])); 

                cacheEdge(source, dest, 0);    } 

Listing 1: Code Snipper for CSV file parser 

The populate_graph() method from Listing 1 takes a node attribute file, and an edge attribute file 

as an input. It then starts parsing each line of the attribute file and adds it to GenericVertex 

objects. GenericVertex class has a properties attribute which is a key value pair map, which is 

defined in order to make the Graph node attributes as general as possible. It also creates an 

internal map of vertex id and node primary attribute and is cached into the MASS memory. 

These cached nodes are used for accessing the data on remote nodes. Lines 33 through 52 in 

Listing 1 perform the similar file read operations on the file containing edge related information. 

 

4.3. Where Clause Query 

 

A where clause in an opencypher query draws similarity with the one in any SQL-based query. 

When we have a group of nodes in a graph, where each node has some defining attributes, we 

employ a where clause query to find a certain node with a certain unique attribute. As in the case 

of query1, we want to find the node, if it exists, where the name is Tom. 
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Query 1: 

"MATCH (p:Person WHERE p.Name = \"Tom\" RETURN p" 

  

 

A MATCH query with the WHERE clause is implemented by using the functionality of Places 

and their interaction with each of the graph nodes. The way GraphPlaces[5] is constructed is that 

each graph node resides on a Place. So when we implement an OpenCypher query that requires 

us to find a node where a particular property matches a required value, we can directly do a 

Places.callAll() and provide the value as an argument. When CallAll() happens, each of the Place 

executes the method simultaneously and there we have overridden the business logic to return 

the Place that matches our argument query. Listing 2 provides a detail of the code written to 

execute the where query. Lines 4 to 10 perform a string break down of the argument which 

contains the information of the where clause parameter. Lines 11 and 12 gathers information 

from the given place and then does a string match to return the result. 

  



 

 24 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

String whereVar = ctx.oC_Where().oC_Expression().getText(); 

String patternVar = ctx.oC_Pattern().getText(); 

network.callAll(GraphDBNode.computeMatch, (Object) whereVar); 

public Object computeMatchQuery(Object argument){ 

       String args = (String) argument; 

       String[] fromArgs = args.split("="); 

       String property = fromArgs[0]; 

       String value = fromArgs[1]; 

       String[] property2 = property.split("\\."); 

       String attr = (String) 

this.properties.get(property2[1].trim()); 

       if (value1.equals(attr)){ 

               return attr; 

       } 

       return attr; 

   } 

Listing 2: Code Snippet for Processing Graph Queries 

4.4. Aggregate Queries 

An Aggregate type of query is very similar to general aggregations that we do in statistical 

analysis of any given data. When we have a group of nodes in a graph, where each node has a set 

of  defining attributes, we employ the use of aggregate queries when we want to fetch the results 
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and analyze the graph from a top-view point in frame. 

 

As shown in Query 2 and Query 3, where we are trying to find the node with the minimum and 

maximum salary respectively. Apart from min and max, we have also implemented queries that 

will calculate the count and average of the given attributes.  

 

 

 

 

Query 2: 

 

 "MATCH (p:Person) RETURN min(p.Salary)" 

  

Query 3:

 

 "MATCH (p:Person) RETURN max(p.Salary)" 

 

To implement aggregate type of queries, we take into consideration two important factors. First, 

since the aggregation we perform using the queries are on the properties of the graph node and 

since each graph node is located on each of the places, we can make use of the CallAll method 

for each place in order to find the given aggregation. Second,  since we can only get the attribute 

value at each place, we also need to get the attribute from each node and then aggregate it 

manually at the business layer.  
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In Listing 3, we are using the query rule from the Cypher grammar that we have created. As all 

the rules we have created in the grammar are hierarchical in nature, we can parse any query 

through multiple rules. The parser recognizes all types of queries under the first rule of the parser 

hierarchy, that is the OC_query context rule. We then determine what the query wants to return 

by fetching the node that contains the return variable. The next step is to identify the aggregator 

for the query as well as the property at which the aggregation needs to be performed, for which 

we use basic substring matching available for us. 
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15 

@Override 

 public void enterOC_Query(CypherParser.OC_QueryContext ctx) { 

     CypherParser.OC_RegularQueryContext c = ctx.oC_RegularQuery(); 

  

     String returnVariable = 

c.oC_SingleQuery().oC_SinglePartQuery().oC_Return().oC_ProjectionBody()

.getText();  

     if(returnVariable.contains(MIN) || returnVariable.contains(MAX) || 

returnVariable.contains(AVG) || returnVariable.contains(SUM)){ 

         isMatch = 1; 

         String[] fromArgs = returnVariable.split("\\("); 

         String aggregator = fromArgs[0]; 

         Object property = 

(Object)fromArgs[1].split("\\.")[1].replace(")", ""); 

         Oject[] res = network.callAll(GraphDBNode.computeAgg, args); 

Listing 3: Code snippet for parsing the aggregate type queries 
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In the implementation shown in Listing 3, we do a single level aggregation for the given attribute 

on each place individually, and then send that data to the main program for the place level 

aggregation. Another way to possibly do this would be to use the agents and migrate agents to 

each place and let agents do the aggregation and return. Both solutions are very network heavy 

and can cause congestion in the network with a lot of message exchanges happening together. 

This creates a huge strain on the network as each place will send its data back to the main node. 

To solve this problem, we have come up with a two-level aggregation method by using the help 

of lambdas.  

The lambda (see Listing 4) is implemented with a strategy to reduce the number of messages that 

are sent to the main node. We have implemented a Lambda class that extends GraphPlaces and 

each lambda instance has access to a set of local Vertex place objects, which contains all the 

information regarding the attributes of the given graph node. We then iterate over these local 

places and aggregate the results for the given set. Each of these instances then sends the result 

back to the main function. So now, instead of each place sending their local results to the main 

node, we have a smaller set of results on which we can then perform our next level aggregation. 

 

1 

2 

3 

4 

5 

public class Lambdas extends GraphPlaces { 

   @Override 

   public Object[] callAll(int functionId, Object[] argument) { 

 

       String property = (String) argument[0]; 
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       String aggregator = (String) argument[1]; 

 

       HashMap<String, Object> attributeValues = new HashMap<>(); 

       for (int i = 0; i < g.getGraphPlaces().size(); i++) { 

           switch (aggregator) { 

               case "min" 

                   int mn_val = Integer.MAX_VALUE; 

                   for (String k : attributeValues.keySet()) { 

  int value = Integer.parseInt((String) attributeValues.get(k)); 

                   if (value < mn_val) { 

                       mn_val = value; 

                       u = k; 

                   } 

           } 

           val = (Object) mn_val; 

           user = (Object) u; 

           break; 

 

           case "max": 

               int mx_val = Integer.MIN_VALUE; 

               for (String k : attributeValues.keySet()) { 

   int value = Integer.parseInt((String) attributeValues.get(k)); 
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                   if (value > mx_val) { 

                       mx_val = value; 

                       u = k; 

                   } 

               } 

               val = (Object) mx_val; 

               user = (Object) u; 

               break; 

           Object[] res = {user, val}; 

           return res; 

       } 

Listing 4: Code snippet for Lambdas implementation 

 

Listing 4 shows the implementation of Lambda class. The class extends to GraphPlaces and each 

instance of Lambda would have access to all the locally created places for the current compute 

node. From line 7 to 28 we iterate over the local places and perform a reduction based on the 

arguments received from the callAll method dispatch. 

4.5. Relationship Queries 

A relationship query is very unique to a Graph database aspect. When we have a group of nodes 

in a graph, where each node has some defining attributes, and each node is connected to one or 

more nodes within that graph. We employ the relationship query when we try to find connections 
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between the nodes based on the relationship they share. If the two nodes are people, as given the 

Query 4, we can find the nodes that “Tom” knows within the Graph. Another example of a 

simple use-case would be, if there are two types of nodes in the graph, actors and movies, and we 

want to determine all the movies the particular actor has been a part of. In this case, the 

relationship would be “ACTED” instead of “KNOWS”. 

 

Query 4: 

"MATCH (p1:Person)-[:KNOWS]->(p2:Person) WHERE p1.name = \"Tom\” RETURN 

p2"  

 

Any relationship query is defined in 2 sections, the first section determines how to reach the 

node, which in our case is by specifying a “Knows” relationship. This idea can be explored into 

different nodes having different relationships between them. For example, we can have a node 

“person” and a node “city”, where the relationship between the two is that the person “lives” in 

the city 

The second section of the query to find the node with which we are searching for a relationship, 

which essentially means a starting node for our search within the graph. 

In Query 4, we can determine the starting node p1 by utilizing the where conditional parsing we 

have implemented in our application. For getting the relationship, we use the OpenCypher 

Grammar method to fetch the exact relationship. 

After we have determined the relationship and the starting node, we employ the use of Agent 

based migration to perform a breadth first search to fetch all the neighboring nodes and return the 

nodes where the relationship matches with the required one. 
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if ( smartPlace.footprint == -1 ) { 

                smartPlace.footprint = 1; //This place has been visited 

                kill( ); 

            } 

            // Set my next node before spawning children. 

            nextNode =  

                 ( neighbors[0] != prevNode ) ? neighbors[0] : 

                   neighbors[1]; 

            migrate( nextNode ); //Migrate to the next Node 

            SmartArgs2Agents[] args 

                    = new SmartArgs2Agents[( getAgentId( ) == 0 && getPlace( 

).getIndex( )[0] == 0 && ( ( SmartPlace )getPlace( ) ).footprint == -1 ) ? 

                    neighbors.length - 1: 

                    neighbors.length - 2];  

            for ( int i = 0, j = 0; i < neighbors.length; i++ ) { 

                if ( neighbors[i] == nextNode || neighbors[i] == prevNode ) 

// skip the parent's next node or previous node 

                    continue; 

                args[j++] = new SmartArgs2Agents( neighbors[i],getPlace( 

).getIndex( )[0]); 
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            } 

            spawn( args.length, args ); 

            //Before the Agent moves or Spawns set the prevNode 

            prevNode = getPlace( ).getIndex( )[0]; 

            smartPlace.footprint = 1; //This place has been visited 

        }     level--;     

Listing 5: Code Snippet for multi-level relation migration 

 

 

Listing 5 depicts the implementation of a multi level agent migration for a given graph. Lines 1 

to 4 perform a check that current vertex has been visited. Lines 5 to 20, perform the following 

two things. First, they determine all the neighbors of the current vertex and then create a set of 

migration to a set of nodes, and spawn child agents to traverse all the other neighbors.  

5. Evaluation 

This chapter presents experimental results on the MASS implementation of the graph database 

for the following queries. 

 

"MATCH (p:Person) WHERE p.Name = \"Tom\” RETURN p" 

“MATCH (p:Person) RETURN max(p.Salary)” 



 

 33 

"MATCH (p1:Person)-[:KNOWS]->(p2:Person) WHERE p1.name = \"Tom\” RETURN 

p2" 

"MATCH(p1:Person)-[:KNOWS]->(p2:Person)-[:KNOWS]->(p3:Person)WHERE 

p1.name = \"Tom\” RETURN p3" 

Table 5: List of evaluated queries 

5.1. Environment Set-up 

The applications were executed on the HERMES cluster and the CSSMPI cluster at the 

University of Washington Bothell. Those two clusters have 24 computing nodes in total. The 

detailed information about the computing nodes is shown in Table 4.1. When executing 

applications, the first 12 computing nodes are from the HERMES cluster, and the rest 12 

computing nodes are from the CSSMPI cluster. 
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# Computing 

Nodes 

# Logical 

CPU Cores 

CPU Model Memor

y 

Cluster 

3 4 Intel Xeon 5150 @ 2.66 GHz  16 GB HERME

S 

4 8 Intel Xeon E5410 @ 2.33 GHz 16 GB HERME

S 

5 4 Intel Xeon Gold 5220R @ 2.20 GHz 16 GB HERME

S 

12 4 Intel Xeon Gold 6130 @ 2.10 GHz 16 GB CSSMPI 

Table 6: Execution environments of HERMES and CSSPMI clusters 

5.2. Evaluation Scenario 

 

We have established a comprehensive set of three distinct metrics that serve as evaluation criteria 

for our study. These metrics enable us to thoroughly assess the performance and effectiveness of 

our proposed solution. The first metric, known as Query Verification, focuses on validating the 

accuracy and correctness of queries processed by our system. We meticulously analyze and 

verify the results obtained from these queries to ensure their reliability. 
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The second metric we employ is Query Round Trip Time, which encompasses the entire journey 

of queries within our system. We collect an extensive range of data values for this metric, 

specifically targeting a dataset comprising 7,000 nodes and 35,000 edges. By measuring the time 

it takes for queries to travel through the system and return with results, we gain insights into the 

efficiency and responsiveness of our solution. 

 

Lastly, we evaluate the spatial scalability of our system through the Spatial Scalability metric. 

We meticulously assess the system's performance when operating on different computing nodes, 

specifically focusing on a range of 1,900 to 9,500 nodes. This analysis allows us to gauge how 

well our solution adapts and scales in response to varying computational resources, providing 

valuable insights into its potential to handle larger datasets and workloads. 

 

By employing these three metrics in our evaluation process, we can thoroughly scrutinize the 

capabilities and performance of our proposed solution, ensuring its effectiveness, reliability, and 

scalability in real-world scenarios. 

5.2.1. Verification of Query 

Figure 8 depicts the result for query 1, (ie., a WHERE clause query), where we are trying to fetch 

the node where name equals the value, Tom. Based on the RETURN type, the graph database 

can return the entire node, or certain attributes.  

We can return the node and print all the properties that the node has. 
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Figure 8:Verification Results of Where Clause 

 

The Figure 9 is from query 2, where we are trying to find the minimum “Salary” for the given set 

of nodes. For the sake of convenience, I also printed out the salaries of each of the “Person” that 

we have in our graph. 

 

 

Figure 9: Verification of Aggregate for minimum 

 

The Figure 10 depicts the results for query 3, where we wanted to get the maximum of an 

attribute and return the resulting node. We can perform these types of aggregations on any of the 

properties that the node possesses. However, the application will throw an exception if the 

property is not of the type where aggregation can happen, for example “address”. 
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Figure 10: Verification of Aggregate for maximum 

 

The Figure 11 depicts the results for query 3, where we wanted to get the maximum of an 

attribute and return the resulting node. We can perform these types of aggregations on any of the 

properties that the node possesses. However, the application will throw an exception if the 

property is not of the type where aggregation can happen, for example “address”. 

 

 

 

Figure 11: Verification of Relationship query 

 

5.2.2. Spatial Scalability 

Given that MASS Places operates on a highly efficient distributed memory model, the process of 

expanding the number of graph nodes within the system becomes synonymous with the act of 

augmenting the quantity of places. This seamless expansion, in turn, leads to a direct 
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augmentation in the accessibility of each individual place for the agent, ensuring that the time 

required to access any given place remains constant and unchanged. 

 

In order to evaluate the impact of dataset size on performance, a notable experiment was 

conducted wherein the dataset was incrementally expanded from 1,000 nodes to a substantially 

larger scale of 9,000 nodes. The dataset used for this purpose was sourced from the well-

regarded SNAP datasets. Remarkably, this substantial increase in dataset size had little to no 

discernible effect on the overall performance of the system, further attesting to the robustness 

and scalability of MASS Places. 
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Figure 12: Query time for different data files 

 

5.2.3. Query Round Trip Time 

Figure 13 through 18 provide a graphical representation of the time taken for graph creation and 

time taken by each query as we increase the number of computing nodes. All these query results 

are performed on a social networking twitch dataset provided by SNAP [12], a Stanford open 

source group that generates and provides graphical data for solving different types of problems 

and performing analysis. 
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From the Figure 13 we can observe that graph creation is a linearly increasing graph. The reason 

behind this is the creation of a graph is a sequential process and increasing the number of 

vertices and edges will cause the time taken to increase. In addition to that, as we increase the 

number of compute nodes, the communication overhead increases as well.  

A solution to fixing these time creations is to use Graph Streaming in MASS [13] that was 

implemented by Yan. The implementation divides the graphs into smaller subgraphs and 

performs the creation of vertices and edges in parallel. This would significantly improve the 

results for large datasets. 

 

 

 

Figure 13: Query Round trip time for Twitch Dataset 
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Figure 14 through 18 follow the same trend as we increase the number of computing nodes. We 

observe a significant improvement in the query return time up until we increase the number of 

compute nodes to four. The reason is that with two or four computing nodes, the number of 

places and agents within these places the computation happens in parallel and with the number of 

compute nodes, the communication overhead is not significant enough to cause any slowdowns. 

However, with the number of compute nodes increased to eight, the number of messages passed 

between the nodes increases as the total number of vertices stored on each computing node 

decreases, which also results in a decrease in number of agents.  

Therefore, for each agent migration between places would require communication over the 

network and thus increase the communication overhead by manifolds.  

 

Figure 14:Query Round trip time for Twitch Dataset 
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Figure 15:Query Round trip time for Twitch Dataset 

 

 

Figure 16: Query Round trip time for Twitch Dataset 
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Figure 17: Query Round trip time for Twitch Dataset 

 

Figure 18: Query Round trip time for Twitch Dataset with 9.5k nodes 
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6. Conclusion 

This project completed the implementation for creating a CSV data file parser, an opencypher 

query parser, and successful implementations of where type graph query, aggregate type graph 

queries, and relationship type graph queries. We also performed the scalability and performance 

testing using 1, 2, 4 and 8 compute nodes.  

The execution results show that for both small and large datasets, our Agent based graph 

database scales horizontally without having an impact on performance. This project also verifies 

the correctness of a graph query for both small and large datasets.  

 

For future works, several improvements can be considered to enhance the existing queries and 

overall functionality of the system: 

 

1. Generalization of "where" queries: Introduce the capability to encompass a broader range 

of query requirements by incorporating comparators that can return not only a single 

node but also a comprehensive list of nodes. This expansion would enable users to 

specify queries that retrieve a range of graph nodes based on specific criteria. 

2. Augmentation of aggregate queries: Enhance the scope and versatility of aggregate 

queries by incorporating additional functionalities. This expansion would empower users 

to perform more complex aggregations, enabling them to gain deeper insights and derive 

more meaningful results from their data. 
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3. Extension of CRUD operations: Extend the capabilities of the system by incorporating 

Create and Update operations through Cypher queries. This addition would facilitate 

seamless data management within the graph database, allowing users to effortlessly 

create and modify graph nodes and edges. 

4. Performance benchmarking: Establish a comprehensive benchmarking framework to 

assess the performance of the graph database. Conduct comparative analyses with 

industry-leading solutions like Neo4j and RedisGraph to gauge the system's efficiency, 

scalability, and effectiveness in handling large-scale datasets and complex queries. 

5. Development of a Generic Parser class: Create a versatile and adaptable parser class 

capable of reading any data file format and converting it into corresponding objects such 

as GenericVertex and GenericEdge. This class would enhance the system's flexibility, 

allowing users to seamlessly import and process data from various sources, further 

expanding its applicability. 

6. Exploration of diverse application domains: Conduct extensive research and 

experimentation in different domains, such as financial datasets or network systems. By 

exploring these domains, the system can be adapted and optimized to cater specifically to 

the unique requirements and challenges posed by different application contexts, thereby 

expanding its potential range of applications and use cases. 

7. We are also planning on adding multi user support to MASS in order to perform 

transactional database queries. 
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