
Ian Dudder CSS 497: Autumn 2021 Term Report

1

MASS C++ Benchmark Programs

Ian Dudder

Advisor: Dr. Munehiro Fukuda
CSS 497: Undergraduate Research Project

Project Purpose

MASS (Multi-Agent Spatial Simulation) is a parallel-computing library being developed by

the Distributed Systems Lab (DSLab) at the University of Washington Bothell. This library

specializes in the implementation of agent-based models for spatial simulations.

The DSLab team aims to compare MASS C++ to RepastHPC and Flame, two other parallel-

computing libraries, using the criteria of execution speed and programmability. To ensure

a fair comparison of these libraries, the same seven benchmark programs will be

implemented in each of the three libraries and ran using the same input arguments and the
same runtime environment.

The purpose of this capstone project is to implement four of these benchmark programs in

MASS C++ to prepare for the upcoming evaluations of these libraries. The results of these

evaluations will be summarized in an academic paper in the ACM’s TOMACS (Transactions

on Modeling and Computer Simulation) journal.

The four benchmark programs I will be implementing in MASS C++ are

1. Bail-in/Bail-Out

2. Virtual Development Team (VDT)

3. Social Network

4. Multi-Agent Transport Simulation (MATSim)

Benchmark 1: Bail-In/Bail-Out

Bail-In/Bail-Out is a financial model that simulates interactions between banks, firms, and

households to evaluate the economic stability of the market and monitor for a bankruptcy

of one of the participating banks.

The household entities include workers and owners. Each owner is associated with a single

firm and seeks to prevent the firm from going bankrupt. Workers are employed by a firm,

earn a fixed wage, and deposit their wages after spending a fixed percentage.

Firms pay workers and try to avoid bankruptcy by taking out loans from banks when they

cannot cover their own production costs. Meanwhile, banks seek to approve loans
whenever they can and will take out loans from other banks when they cannot.

Ian Dudder CSS 497: Autumn 2021 Term Report

2

MASS Implementation

For the MASS C++ implementation of this benchmark, Firms, Banks, and Workers are all

Agents, and Owners are objects stored by each individual Firm. The Financial Market class

is the place on which these agents reside and interact with each other.

Figure 1: Bail-In/Bail-Out Design

The Financial Market is initialized as a one-dimensional array equal in size to the number

of Firms in the simulation. Workers are evenly distributed across this array, and because
there are fewer Banks than Firms, Banks populate the lower-indexed entries in the array.

The agents in the simulation use the Financial Market they reside on as a shared memory

space, relying on it to communicate with other agents and send messages to other Financial

Market places.

The simulation runs in rounds, with each round giving each entity a turn to act. The
following sequence of events plays out during each round of the simulation:

1. Firms calculate their costs and profits, pay their workers, and pay back any
outstanding loans. If neither the firm nor the firm’s owner can cover the costs
incurred during this round, they will approach three random banks to take out a
loan at the lowest interest rate possible. However, if the firm is already in debt, they
bankrupt and re-enter the simulation with default values.

2. Workers receive wages from their employing firms, spend a percentage of their
wages consuming products, and deposit the leftover amount at their bank.

3. Banks receive payments, pay back loans, and seek loans from other banks as needed
to cover their costs. If a bank cannot secure a loan and ends with a negative
liquidity, it goes bankrupt and the simulation ends.

In most cases, Firms reside on a different place element than the Bank they need to
communicate with, so it was not possible for them to know what the Bank’s interest rate
and liquidity were when trying to take out a loan. My solution to this was to have every

Ian Dudder CSS 497: Autumn 2021 Term Report

3

Financial Market place keep a local copy of the Bank’s information in the “bank registry”
allowing Firms to look up each Bank’s interest rates and liquidities when they needed to
take out a loan. Then Firms add a negative value to their Financial Market’s outgoing
transactions total to be sent to the Bank in a subsequent call to exchangeAll.

This works relatively well, however, the Financial Market is only able to update its bank
registry at the end of each round, meaning that the local copies are not synchronized
between places during the round. This runs the risk of two Firms taking out a loan from the
same bank believing that the Bank can afford it, when in reality, granting the two loans
causes the Bank to have a negative liquidity. However, this handling of the issue appears to
be similar to the RepastHPC benchmark, so at the very least the flaw is consistent across
library implementations.

Furthermore, the RepastHPC benchmark implementation deviates slightly from the
original specification in that it reduces the workers’ wages by 70% each round rather than
keeping the wages fixed. Furthermore, the Bank’s interest rates are the same for each Bank
and are not randomized each round. These deviations are reflected in the MASS
implementation to keep it consistent with the RepastHPC benchmark. However, it appears
that the reduction in Worker wages each round causes a bankruptcy to happen very early,
so to accommodate this, the program can be given a fixed number of rounds that it will
always run regardless of when a bankruptcy occurs.

Programmability Analysis

In terms of programmability, this program was very difficult to model as an agent-based

model. Banks and Firms very much needed frequent direct communication with each other,

which was not possible when both classes were agents on different computing nodes. To

work around this issue, I had to create the Financial Market Place to act as a shared

memory and means of communication between the two entities. However, this slowed

down the program will all the exchange all calls needed to let agents communicate.

In terms of quantitative data for the programmability, the lines of code (LoC), number of

classes, and number of methods are also considered. The data is summarized in Table 1

with more details available in Appendix D.

Table 1: Bail-In/Bail-Out Quantitative Programmability Data

Quantitative Measure Count
Number of Files 11
Number of Classes 5
Number of Methods 46
Total Lines of Code 1478
Lines of actual logic 578
Library-specific Boilerplate LoC 135
Non-Boilerplate Lines of Logic 443

Ian Dudder CSS 497: Autumn 2021 Term Report

4

Benchmark 2: Virtual Development Team (VDT)

Virtual Development Team simulates a team of 25 software engineers working on tasks to

complete a project. Each engineer may be any of the five different types in the following
engineering hierarchy:

1. Project Lead

2. User Experience Designer

3. Senior Software Developer

4. Junior Software Developer

5. Test Engineer

Each task must flow from top to bottom in this hierarchy, meaning that different numbers

of each type of engineer on a team will result in a different completion time of the tasks.

This program demonstrates which combination of software engineers on a team will result
in the fastest completion time.

There are two types of tasks: production tasks and collaboration tasks. Production tasks

require a certain number of hours from each type of engineer and flow from top to bottom

in the engineer hierarchy. Collaboration tasks simulate meetings and require participating

engineers to halt work on their production tasks to participate.

Engineers will choose tasks from their respective tray with a 20% chance to choose the

newest task, a 20% chance to choose the oldest task, a 10% chance to choose a random

task, and a 50% chance to choose the highest priority task. Additionally, to add a random

real-life element to the simulation, there is a 30% chance that once a task has been

selected, an exception occurs. This means that the engineer will have to return the task to

the next tray above it with 1-8 extra hours added on for that type of engineer. Because

there are no trays above project leads, if they have an exception, the number of hours

required for project leads is doubled.

MASS Implementation

In MASS, Engineers are Agents and Teams are Places. Tasks are read in from a text file, as

are a number of different configurations for the teams. The Teams are instantiated as a 2D

matrix each with 25 Engineer agents. Engineers will be assigned a different type depending

on what configuration their team has. If there are more Teams than configuration types, the

configurations will repeat. Teams manage an array of trays, one for each type of engineer,

where engineers take production tasks from.

Ian Dudder CSS 497: Autumn 2021 Term Report

5

The simulation runs one hour at a

time, with each Team keeping track

of the current day and hour. Each

hour begins with the Team checking

if it is time to start a collaboration

task. If so, it marks it as in progress.

Next, engineers check to see if there

is a collaboration task in progress.

Collaboration tasks specify which

types of engineers need to attend,

and only require one engineer of

each required type to attend, so the

first engineer of each type that

checks the collaboration task will be

assigned to it.

Then engineers work on their

production task if they have one or select a new one if they do not. Once the number of

hours required by the engineer type reach zero, the engineer returns the task to the Team

to be passed down a tray. Figure 2 shows the lifespan of a task as it moves down trays as
engineers work on it.

Once all production and collaboration tasks are complete, the Team records the day and

hour they completed them. Once all Teams are finished, the completion times for each team
are printed to the program’s output.

Programmability Analysis

This benchmark was conceptually very straightforward to model with MASS. Modeling

Teams as places and Engineers as agents gave the simulation all the tools it needed to run

properly. Furthermore, because Teams work completely independent of one another, this

program did not require any exchangeAll calls, which means this program was not subject

to the same communication issues as the other benchmark programs.

In terms of quantitative data, the data is summarized in Table 2 with more details in
Appendix D.

Table 2: VDT Quantitative Programmability Data

Quantitative Measure Count
Number of Files 7
Number of Classes 3
Number of Methods 39
Total Lines of Code 1208
Lines of actual logic 571

Figure 2: VDT Design

Ian Dudder CSS 497: Autumn 2021 Term Report

6

Library-specific Boilerplate LoC 84
Non-Boilerplate Lines of Logic 487

Benchmark 3: Social Network

Social Network simulates a network of people each with a finite set of first-degree friends.

Then it computes the degrees of friendship between people in the group. For example, a

first-degree friend is someone that a person knows directly, and a second-degree friend is a

friend of a friend.

The social network is modeled as a k-regular

graph, a special kind of graph where each

vertex (person) has the same number of edges

(friends). Figure 2 displays a four-regular

graph, where each vertex has exactly four

edges.

A requirement for a k-regular graph is that

either the number of edges or the number of

vertices (or both) must be an even number.

MASS Implementation

In MASS, this benchmark was effectively

modelled using only People as Places and did not require any agents. The algorithm to find

any degree of friendship is simple. To get the ith degree of friendship, each Person asks

their first-degree friends who their i-1 degree friends are. This algorithm leverages the

exchangeAll method to pass this information between Persons in the simulation during
each round.

Once execution is complete, each person prints out their list of friends for each degree of
friendship.

Programmability

This benchmark program was very easy to model in MASS, with the Places class offering all

functionality necessary to implement it. Because MASS uses an array of Places and allows

them to add each other as neighbors, MASS is the perfect library to model a graph

structure. Therefore, implementing the k-regular graph in MASS was very simple.

The quantitative data for SocialNet’s programmability can be found in Table 3 with more

details in Appendix D.

Table 3: Social Network Quantitative Programmability Data

Quantitative Measure Count
Number of Files 3
Number of Classes 1

Figure 3: Four-Regular Graph

Ian Dudder CSS 497: Autumn 2021 Term Report

7

Number of Methods 10
Total Lines of Code 396
Lines of actual logic 180
Library-specific Boilerplate LoC 44
Non-Boilerplate Lines of Logic 136

Benchmark 4: Multi-Agent Transport Simulation

Multi-Agent Transport Simulation (MATSim) simulates a fleet of vehicles commuting

during peak hours of traffic with similar start and end points in the roadway. With a limited

number of cars that can occupy an intersection or road at one time, congestion on the

roadway is bound to occur causing cars to be idle during their route.

This simulation has cars do a morning route where they travel to a destination near the

center of the city grid, and an evening route that has them travel back to their start point on

the outskirts.

The city roadway is modeled as a graph where intersections are vertices and the roads

between them are edges. The graph is created and stored in a text file prior to the start of

the program. Similarly, agents’ routes are calculated ahead of time and stored in a text file
as well. The shortest path is always chosen for each agent’s route.

Implementation

In MASS, this benchmark is modelled with Cars as Agents, Intersections as Places, and

Roads as edges. The graph and routes are read in from a text file and placed into a shared

memory segment on each computing node for the Intersections and Cars to read from.

Cars drive along Intersections onto Roads, and

then use MASS’s migrate function to travel to

the next Intersection in their route. This

implementation uses direction-based collision

handling to prevent intersections from

exceeding their capacity. This means the

simulation will only allow one direction of

movement at a time, then pausing to update the

number of open spots each intersection has.

For example, cars will move north, and

intersections will update their capacity before
allowing the next wave of cars to move east.

Programmability

This benchmark has been conceptually easy to

design and model in MASS. Again, MASS is very

Figure 4: MatSim Roadway

Ian Dudder CSS 497: Autumn 2021 Term Report

8

good at implementing graphs, so modeling the roadway in MASS was mostly automatic.

Additionally, the agent class offered all the needed functionality for cars to move through
the roadway.

The quantitative data for MATSim’s programmability is in Table 4 with more details

available in Appendix D.

Table 4: MATSim Quantitative Programmability Data

Quantitative Measure Count
Number of Files 9
Number of Classes 4
Number of Methods 38
Total Lines of Code 1195
Lines of actual logic 552
Library-specific Boilerplate LoC 104
Non-Boilerplate Lines of Logic 448

Evaluations

To collect evaluative data on each benchmark program, input arguments are chosen with

the intention of having each program run on one computing node for around 30 minutes.

Then the program is ran using a different number of threads and processes each time to

observe how parallelization affects the runtime.

Note that the following evaluations are not the same evaluations that will be used to

compare the libraries. Instead, all the benchmark programs for all three libraries will be re-

ran using the same input arguments. The following results are merely to demonstrate how

the benchmark programs can be parallelized and how they might be evaluated.

Bail-In/Bail-Out

Bail-In/Bail-Out was executed using 20,000 worker agents, 2,000 firms, and 5 banks with

an initial production cost of $35,000, an initial interest rate of 0.8, and a liquidity of 20,000.

Because a bankruptcy occurred very quickly, I set it to run 15,000 rounds so it could run

for longer and the parallelizability could be observed better. Figure 5 summarizes the

results.

Ian Dudder CSS 497: Autumn 2021 Term Report

9

This evaluation had a

very strange outcome.

On one thread, it got

progressively slower

when increasing the

number of computing

nodes. Another strange

observation is that two

threads delivered

worse execution speed

than one thread, but

experienced faster

execution speed when

using more computing
nodes.

Virtual Development Team

Virtual Development Team was executed with an input task file containing 10,000

production tasks and 7 collaboration tasks, and it used 24x24 matrix of teams. Teams were
given 4 different configurations from a text file:

1. Configuration 1: Leads (3), UX Designers (4), Senior Software Developer (5), Junior
Software Developer (6), and Tester (7).

2. Configuration 2: Leads (2), UX Designers (4), Senior Software Developer (6), Junior

Software Developer (8), and Tester (5).

3. Configuration 3: Leads (5), UX Designers (5), Senior Software Developer (5), Junior

Software Developer (5), and Tester (5).

4. Configuration 4: Leads (6), UX Designers (5), Senior Software Developer (4), Junior
Software Developer (5), and Tester (5).

The results of these runs are displayed visually in the graph in Figure 6, demonstrating that

the runtime went from 30 minutes with 1 computing node to just 5 minutes with 24

computing nodes. The complete tables used to construct this graph are available in

Appendix A.

0

5

10

15

20

25

30

0 2 4 6 8 10

R
u

n
ti

m
e

(m
in

s)

Computing Nodes

Figure 5: Bail-In/Bail-Out Execution Speed

One Thread

Two Threads

Ian Dudder CSS 497: Autumn 2021 Term Report

10

As is visible from the results of the run, the program actually runs slower on two threads

than one thread. This is most likely due to an implementation issue of the benchmark
program when dealing with critical sections and race conditions.

Social Network

Social Network was ran using a social network of 6,000 people each with 30 first-degree

friends and looking for the 60th degree of friendship. These input arguments were used to

execute the program on 1-8 computing nodes and 1-4 threads. The program was ran 3

times on each setting and the average of the runtimes was used to generate the graph in

Figure 7. The table of each individual setting’s runtime can be found in Appendix A.

Based on the graph, this benchmark program experiences a considerable reduction in
runtime when using multiple processes and multithreading.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25

R
u

n
ti

m
e

(m
in

s)

#Computing Nodes

Figure 6: VDT Execution Speed

One Thread

Two Threads

0

5

10

15

20

25

30

35

0 2 4 6 8 10

R
u

n
ti

m
e

(m
in

s)

Computing Nodes

Figure 7: SocialNet Execution Speed

One Thread

Two Threads

Three Threads

Four Threads

Ian Dudder CSS 497: Autumn 2021 Term Report

11

Conclusion

With these last four benchmark programs, MASS C++ now has all seven benchmark

programs implemented and ready to evaluate. Appendix C acknowledges some flaws with

these programs and sheds some light on some specific cases that may cause issues with

these programs.

The next steps are for this project will be to evaluate all seven benchmark programs in

terms of execution speed and programmability and compare the results to RepastHPC and

Flame’s benchmark programs. I am graduating this quarter, therefore will not be involved

in this part of the process, but another student will be starting these evaluations next

quarter. Appendix B gives detailed instructions on how to run these four benchmark

programs, which will hopefully help the evaluations get started faster.

Ian Dudder CSS 497: Autumn 2021 Term Report

12

Appendix A: Execution Runtime Tables

The following tables display the different runtimes collected from running Bail-In/Bail-Out

(table 5), VDT (table 6), and Social Network (table 7). Social Network was experiencing

issues running on 9 or more computing nodes due to the size of the social network, so

results were only collected for 1-8 computing nodes. However, Social Network’s results are

more reliable because each setting was repeated 3 times to produce an average runtime

across the 3 runs. Similarly, Bail-In/Bail-Out had the same issue running on 9 or more
computing nodes when the number of rounds requested was very large.

Table 5: Bail-In/Bail-Out Execution Results

One Thread

Computing Nodes Runtime (Microseconds) Runtime (Minutes)

1 813548192 13.56

2 917869711 15.30

4 888352303 14.81

8 984405126 16.41

Two Threads

Computing Nodes Runtime (Microseconds) Runtime (Minutes)

1 1486716503 24.78

2 1358628932 22.64

4 1102354839 18.37

8 1095992634 18.27

Table 6: VDT Execution Results

One Thread

Computing Nodes Runtime (Microseconds) Runtime (Minutes)

1 1819802728 30.33

2 993540729 16.56

4 597151325 9.95

8 386432994 6.44

12 310718073 5.18

16 295463275 4.92

20 299134471 4.99

24 307124345 5.12

Two Threads

Computing Nodes Runtime (Microseconds) Runtime (Minutes)

1 4545308701 68.76

2 2363594180 39.40

Ian Dudder CSS 497: Autumn 2021 Term Report

13

4 1361565164 22.70

8 791901644 13.20

12 585945742 9.77

16 516674615 8.61

20 416074910 6.93

24 413584386 6.89

Table 7: SocialNet Execution Results

One Thread

Computing
Nodes

Run 1 (μs) Run 2 (μs) Run 3 (μs) Average (μs) Average
(mins)

1 1902898557 1876038847 1891407297 1890114900 31.50

2 948942114 952113309 947541237 949532220 15.83

4 495676658 496453668 494412358 495514228 8.26

8 254928253 254848755 256831371 255536126.3 4.26

Two Threads

Computing
Nodes

Run 1 (μs) Run 2 (μs) Run 3 (μs) Average (μs) Average
(mins)

1 943001492 943250705 943072219 943108138.7 15.72

2 473075356 474833397 472895019 473601257.3 7.90

4 251617461 251647501 252060005 251774989 4.20

8 127304005 127921676 127444620 127556767 2.13

Three Threads

Computing
Nodes

Run 1 (μs) Run 2 (μs) Run 3 (μs) Average (μs) Average
(mins)

1 629352124 627016792 625870869 627413261.7 10.46

2 319017893 319363791 319768563 319383415.7 5.32

4 168117694 168154116 168439246 168237018.7 2.80

8 86005741 85227401 92598584 87943908.67 1.47

Four Threads

Computing
Nodes

Run 1 (μs) Run 2 (μs) Run 3 (μs) Average (μs) Average
(mins)

1 472751827 505578886 502813839 493714850.7 8.23

2 245946187 255379109 255010544 252111946.7 4.20

4 128516320 134937031 185807283 149753544.7 2.50

8 66418928 66421894 66431744 66424188.67 1.11

Ian Dudder CSS 497: Autumn 2021 Term Report

14

Appendix B: How to Run the Benchmark Programs

This appendix provides all the details required to run the benchmark programs. All four

benchmark programs contain all the necessary source files and shell files in their

respective Bitbucket repositories. However, some of these files may need to be edited

based on your directory layout so that they can link to the MASS core library properly.

Configuring Your File Directory

Before starting this section, make sure you have the latest version of the benchmark

program from Bitbucket as well as the latest copy of the mass_cpp_core library. Once you

have both the program and the library on your machine, you may begin the following steps:

1. Create symbolic links to the following three files in the mass_cpp_core directory:

a. /mass_cpp_core/ubuntu/libmass.so

b. /mass_cpp_core/ubuntu/mprocess

c. /mass_cpp_core/ubuntu/killMProcess.sh

2. Find compile.sh in the benchmark program’s directory. Edit line 2 of this file to point

to the mass_cpp_core directory in relation to compile.sh’s location. For example, if

the mass_cpp_core folder is located one directory back from compile.sh, the line will
read “export MASS_DIR=../mass_cpp_core”.

3. Find run.sh in the benchmark program’s directory. Edit line 1 of this file to point to

the mass_cpp_core/ubuntu folder in relation to run.sh’s location. For example, if the

mass_cpp_core folder is located one directory back from run.sh, the line will read
“LD_LIBRARY_PATH=../mass_cpp_core/ubuntu”.

4. Make sure machinefile.txt lists all the machines you want to establish a connection

with during execution. The file provided on Bitbucket lists hermes02-hermes12 and

cssmpi1h-cssmpi12h and assumes that hermes01 is the master node. The master

node should always be excluded from this file.

5. Compile the benchmark’s source files with “./compile.sh” to ensure all executable

files are up to date.

Once the above steps are complete, you are ready to execute the benchmark program. For
benchmark-specific information, see the following sections.

Bail-In/Bail-Out Input Setup and Execution

This benchmark program can be found at:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/Ian_MASS_Bench
marks/Benchmarks/MASS/MASS_FinancialModeling/

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/Ian_MASS_Benchmarks/Benchmarks/MASS/MASS_FinancialModeling/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/Ian_MASS_Benchmarks/Benchmarks/MASS/MASS_FinancialModeling/

Ian Dudder CSS 497: Autumn 2021 Term Report

15

This benchmark program requires only one additional text file to run and contains

information on the number of agents to instantiate as well as initial values. This text file is

named “simArgs.txt” by default. An example is given below to demonstrate how this file

should be formatted:

Workers 20000

Firms 2000

Banks 5

Production 35000

Interest 0.8

Liquidity 20000

When you have the simulation arguments you want, use the following instructions to
execute the program:

1. Execute run.sh with “./run.sh”.

2. Enter the following arguments when prompted:

a. Number of Nodes – the number of computing nodes (machines) you want to
use to run your program.

b. Number of Threads – the number of threads to use.

c. Number of Turns – provides the number of rounds the program will execute

the simulation loop for. It is guaranteed to run this number of rounds

regardless of when a bankruptcy happens.

d. Port Number - the port number you want to use for communicating between
remote computing nodes.

e. Password - your UW password for the hermes machines. It is recommended

that you establish an RSA key so that you can authenticate remote computing

nodes without having to pass your password between remote computing

nodes.

3. If the program terminates for any reason before MASS::finish is called, execute

./killMProcess.sh to clean up the processes on the other computing nodes before
attempting to execute again.

Virtual Development Team Input Setup and Execution

This benchmark can be found at:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/Ian_MASS_Bench
marks/Benchmarks/MASS/MASS_VDT/

 This benchmark file requires two text files, one to list the tasks for the engineers to
complete and another to list the different combinations of each type of engineer for a team.

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/Ian_MASS_Benchmarks/Benchmarks/MASS/MASS_VDT/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/Ian_MASS_Benchmarks/Benchmarks/MASS/MASS_VDT/

Ian Dudder CSS 497: Autumn 2021 Term Report

16

The task file should be formatted in two sections: the top section for collaboration tasks,

and the bottom section for production tasks. Here is an example:

Collaboration

toMeet:h1,h2,h3,h4,h5, Type:1, Priority:9999, Length:L, ID:I, Day:d

Production

Hours:h1,h2,h3,h4,h5, Type:0, Priority:18, totalHours:T, ID:I

Under the “toMeet” and “Hours” section, h1 refers to the number of hours for project leads,

h2 refers to the number for of user experience designers, and so on. Length L should equal

the sum of all hours in the “toMeet” section, and totalHours T should equal the sum of all

hours in the “Hours” section. Another thing to note is that the IDs of the tasks should be
unique, and not repeated for collaboration tasks and production tasks.

The next text file needed to run is the team configuration file, which should be formatted as
follows:

#Configurations

#Leads,#UX,#Srs,#Jrs,#Testers

Here is an example of the configuration file that was used to collect the evaluative data in

this paper:

4

3,4,5,6,7

2,4,6,8,5

5,5,5,5,5

6,5,4,5,5

If you would like to generate a new task file, it is recommended that you use the program

located in the Bitbucket repository at:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/Nathan_Repast_H

PC/Repast_VDT_Final/InputFileVDT/.

Once the two files are in the directory, follow the steps to execute the program:

1. Execute run.sh with “./run.sh”.

2. Enter the following arguments when prompted:

a. Number of Nodes – the number of computing nodes (machines) you want to

use to run your program.

b. Number of Threads – the number of threads to use.

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/Nathan_Repast_HPC/Repast_VDT_Final/InputFileVDT/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/Nathan_Repast_HPC/Repast_VDT_Final/InputFileVDT/

Ian Dudder CSS 497: Autumn 2021 Term Report

17

c. XSIZE – the number of teams to instantiate along the x-axis (i.e. columns in

the places matrix). Note that the places matrix is split across this axis.

d. YSIZE – the number of teams to instantiate along the y-axis (i.e. rows in the
places matrix).

e. Port Number - the port number you want to use for communicating between

remote computing nodes.

f. Password - your UW password for the hermes machines. It is recommended

that you establish an RSA key so that you can authenticate remote computing

nodes without having to pass your password between remote computing

nodes.

3. If the program terminates for any reason before MASS::finish is called, execute

./killMProcess.sh to clean up the processes on the other computing nodes before

attempting to execute again.

Social Network Input Setup and Execution

This benchmark program can be found at:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/Ian_MASS_Bench
marks/Benchmarks/MASS/MASS_SocialNetwork/

Social Network does not require any text files as input. Therefore, you can immediately run

the following instructions after compiling your program:

1. Execute run.sh with “./run.sh”.

2. Enter the following arguments when prompted:

a. Number of Nodes – the number of computing nodes (machines) you want to

use to run your program.

b. Number of Threads – the number of threads to use.

c. Number of People – the number of people you want in the social network

(number of vertices in the k-regular graph). Note that either the number of

people or the number of first-degree friends (or both) must be an even

number for a k-regular graph to be generated.

d. Number of first-degree friends – the number of first-degree friends you want

each person to have (the number of edges in the k-regular graph). Note that

either the number of people or the number of first-degree friends (or both)
must be an even number for a k-regular graph to be generated.

e. Fraction of the group – this value will be used to calculate the number of

first-degree friends in the social network by dividing the number of people in

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/Ian_MASS_Benchmarks/Benchmarks/MASS/MASS_SocialNetwork/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/Ian_MASS_Benchmarks/Benchmarks/MASS/MASS_SocialNetwork/

Ian Dudder CSS 497: Autumn 2021 Term Report

18

the group by this number. If you already entered a value for the number of

first-degree friends, you can enter -1 here to have this argument ignored.

f. Port Number - the port number you want to use for communicating between
remote computing nodes.

g. Password - your UW password for the hermes machines. It is recommended

that you establish an RSA key so that you can authenticate remote computing

nodes without having to pass your password between remote computing

nodes.

3. If the program terminates for any reason before MASS::finish is called, execute

./killMProcess.sh to clean up the processes on the other computing nodes before

attempting to execute again.

Multi-Agent Transport Simulation Input Setup and Execution

This benchmark program can be found at:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/Ian_MASS_Bench
marks/Benchmarks/MASS/MASS_MatSim/

This benchmark requires two input files to run the program: Car_Agents.txt and
Node_Links.txt.

Car_Agents.txt lists the cars’ start and endpoints in the roadway graph and provides the

route the car will take to get from the start to endpoint by listing the road IDs.

Node_Links.txt is the input file to generate the roadway graph, assigning IDs to
intersections and roadways and indicating which intersections are connected.

To ensure these files are accurate, please use Nathan’s program to automatically generate

these text files located on Bitbucket at:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/Nathan_Repast_H
PC/Repast_MATSIM_Final/InputFileMATSIM/.

Once the text files are generated, use the steps below to execute the program:

1. Execute run.sh with “./run.sh”.

2. Enter the following arguments when prompted:

a. Number of Nodes – the number of computing nodes (machines) you want to
use to run your program.

b. Number of Threads – the number of threads to use.

c. XSIZE – the number of intersections along the x-axis in the roadway graph.
This value must be consistent with the Node_Links.txt file.

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/Ian_MASS_Benchmarks/Benchmarks/MASS/MASS_MatSim/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/Ian_MASS_Benchmarks/Benchmarks/MASS/MASS_MatSim/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/Nathan_Repast_HPC/Repast_MATSIM_Final/InputFileMATSIM/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/Nathan_Repast_HPC/Repast_MATSIM_Final/InputFileMATSIM/

Ian Dudder CSS 497: Autumn 2021 Term Report

19

d. YSIZE – the number of intersections along the y-axis in the roadway graph.

This value must be consistent with the Node_Links.txt file.

e. NumAgents – The number of car agents to instantiate on the places. This
value must be consistent with the Car_Agents.txt file.

f. Port Number - the port number you want to use for communicating between

remote computing nodes.

g. Password - your UW password for the hermes machines. It is recommended

that you establish an RSA key so that you can authenticate remote computing

nodes without having to pass your password between remote computing

nodes.

3. If the program terminates for any reason before MASS::finish is called, execute

./killMProcess.sh to clean up the processes on the other computing nodes before

attempting to execute again.

4. If the program terminates before File2ShmPlace::free has been called, the ipc shared

memory segments will remain. Therefore, you must execute deleteShm.sh to
remove all these segments from all the computing nodes.

Appendix C: Known Execution Issues

Currently, there are some issues that may cause the benchmark programs to crash or run

more slowly during execution. These issues are described in the following sections.

Bail-in/Bail-Out:

• Crashes when running longer than 10-15 minutes (~20,000 rounds).

• Crashes when trying to run on 9 or more computing nodes when requesting to run a

large number of rounds.

VDT:

• Currently takes longer to run on multiple threads than it does for one thread. The

suspected cause of this is implementation issues with mutex locks causing a

decrease in performance.

Social Network:

• Crashes when using 9 or more computing nodes when the social network or the

number of first-degree friends is very large. To prevent this issue, try reducing the

size of the social network.

MATSim:

• Crashes when sending the vacancy information between intersections on different

computing nodes.

Ian Dudder CSS 497: Autumn 2021 Term Report

20

Appendix D: Lines of Code Counting

This section provides the output of the “LoC.java” program that counted the number of

lines of code for each benchmark programs’ source files. Note that Timer.h and Timer.cpp

were excluded because they were only necessary for the evaluation of the program, not

necessary for the benchmark itself to run.

Additionally, this section also gives the breakdown for the number of methods and library-

specific boilerplate lines of code. The library-specific boilerplate lines of code is any code

that is required for the library to run that is not related to the implementation of the

benchmark program itself. This includes things such as function Id’s, each class’s

callMethod section, and extern C functions. This count excludes whitespace and lines

containing only the closing curly brace.

The number of methods excluded constructors and the callMethod function since those are
considered boilerplate methods.

Bail-In/Bail-Out

Lines of Code program output:

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/Bank/Bank.cpp

Total: 146

Definitions (imports): 8

Comments: 39

Blanks: 21

LoC of actual logic: 78

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/Bank/Bank.h

Total: 136

Definitions (imports): 26

Comments: 55

Blanks: 31

LoC of actual logic: 24

Results of: /home/NETID/imdudder/mass-

Ian/Loc_count/Bank/FinancialMarket.h

Total: 257

Definitions (imports): 53

Comments: 94

Blanks: 58

LoC of actual logic: 52

Results of: /home/NETID/imdudder/mass-

Ian/Loc_count/Bank/FinancialMarket.cpp

Total: 259

Definitions (imports): 20

Comments: 80

Blanks: 34

LoC of actual logic: 125

Ian Dudder CSS 497: Autumn 2021 Term Report

21

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/Bank/Firm.cpp

Total: 174

Definitions (imports): 12

Comments: 42

Blanks: 19

LoC of actual logic: 101

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/Bank/Firm.h

Total: 139

Definitions (imports): 24

Comments: 55

Blanks: 35

LoC of actual logic: 25

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/Bank/main.cpp

Total: 179

Definitions (imports): 21

Comments: 30

Blanks: 24

LoC of actual logic: 104

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/Bank/Owner.cpp

Total: 11

Definitions (imports): 2

Comments: 1

Blanks: 5

LoC of actual logic: 3

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/Bank/Owner.h

Total: 26

Definitions (imports): 4

Comments: 9

Blanks: 4

LoC of actual logic: 9

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/Bank/Worker.cpp

Total: 62

Definitions (imports): 6

Comments: 18

Blanks: 9

LoC of actual logic: 29

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/Bank/Worker.h

Total: 89

Definitions (imports): 11

Comments: 30

Blanks: 20

LoC of actual logic: 28

All files combined

Number of files: 11

Total: 1478

Definitions (imports): 187

Ian Dudder CSS 497: Autumn 2021 Term Report

22

Comments: 453

Blanks: 260

LoC of actual logic: 578

Number of Methods/Functions (per class):

• Bank: 9

• Financial Market: 15

• Firm: 12

• Main: 3 additional functions

• Owner: 2

• Worker: 5

• Total: 46

Library-Specific Boilerplate LoC (per file)

• Bank.h: 22

• Bank.cpp: 4

• FinancialMarket.h: 49

• FinancialMarket.cpp: 4

• Firm.h: 13

• Firm.cpp: 4

• Main.cpp: 25

• Worker.h: 10

• Worker.cpp: 4

• Total: 135

Virtual Development Team

Lines of Code program output:

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/VDT/Engineer.cpp

Total: 86

Definitions (imports): 5

Comments: 17

Blanks: 13

LoC of actual logic: 51

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/VDT/main.cpp

Total: 298

Definitions (imports): 19

Comments: 71

Blanks: 25

LoC of actual logic: 183

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/VDT/Engineer.h

Total: 86

Definitions (imports): 17

Comments: 30

Ian Dudder CSS 497: Autumn 2021 Term Report

23

Blanks: 18

LoC of actual logic: 21

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/VDT/Task.cpp

Total: 115

Definitions (imports): 2

Comments: 19

Blanks: 26

LoC of actual logic: 68

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/VDT/Task.h

Total: 97

Definitions (imports): 13

Comments: 39

Blanks: 24

LoC of actual logic: 21

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/VDT/Team.cpp

Total: 301

Definitions (imports): 14

Comments: 75

Blanks: 33

LoC of actual logic: 179

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/VDT/Team.h

Total: 225

Definitions (imports): 43

Comments: 85

Blanks: 49

LoC of actual logic: 48

All files combined

Number of files: 7

Total: 1208

Definitions (imports): 113

Comments: 336

Blanks: 188

LoC of actual logic: 571

Number of Methods/Functions (per class):

• Engineer: 4

• Team: 14

• Task: 18

• Main: 3 additional functions

• Total: 39

Library-Specific Boilerplate LoC (per file)

• Engineer.h: 13

Ian Dudder CSS 497: Autumn 2021 Term Report

24

• Engineer.cpp: 4

• Team.h: 40

• Team.cpp: 4

• Main.cpp: 23

• Total: 84

Social Network

Lines of Code program output:

Results of: /home/NETID/imdudder/mass-

Ian/Loc_count/SocialNet/main.cpp

Total: 173

Definitions (imports): 18

Comments: 39

Blanks: 21

LoC of actual logic: 95

Results of: /home/NETID/imdudder/mass-

Ian/Loc_count/SocialNet/Person.cpp

Total: 112

Definitions (imports): 14

Comments: 22

Blanks: 16

LoC of actual logic: 60

Results of: /home/NETID/imdudder/mass-

Ian/Loc_count/SocialNet/Person.h

Total: 111

Definitions (imports): 23

Comments: 36

Blanks: 27

LoC of actual logic: 25

All files combined

Number of files: 3

Total: 396

Definitions (imports): 55

Comments: 97

Blanks: 64

LoC of actual logic: 180

Number of Methods/Functions:

• Person: 7

• Main: 3 additional functions

• Total: 10

Library-specific Boiler-plate LoC:

Ian Dudder CSS 497: Autumn 2021 Term Report

25

• Person.h 22

• Person.cpp 4

• Main.cpp: 18

• Total: 44

MATSim

Lines of Code program output:

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/Matsim/Car.cpp

Total: 247

Definitions (imports): 12

Comments: 47

Blanks: 24

LoC of actual logic: 164

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/Matsim/Car.h

Total: 143

Definitions (imports): 26

Comments: 58

Blanks: 30

LoC of actual logic: 29

Results of: /home/NETID/imdudder/mass-

Ian/Loc_count/Matsim/File2ShmPlace.cpp

Total: 61

Definitions (imports): 8

Comments: 9

Blanks: 6

LoC of actual logic: 38

Results of: /home/NETID/imdudder/mass-

Ian/Loc_count/Matsim/File2ShmPlace.h

Total: 67

Definitions (imports): 17

Comments: 20

Blanks: 11

LoC of actual logic: 19

Results of: /home/NETID/imdudder/mass-

Ian/Loc_count/Matsim/Intersection.cpp

Total: 230

Definitions (imports): 18

Comments: 60

Blanks: 28

LoC of actual logic: 124

Results of: /home/NETID/imdudder/mass-

Ian/Loc_count/Matsim/Intersection.h

Total: 186

Definitions (imports): 45

Comments: 71

Ian Dudder CSS 497: Autumn 2021 Term Report

26

Blanks: 40

LoC of actual logic: 30

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/Matsim/main.cpp

Total: 176

Definitions (imports): 17

Comments: 40

Blanks: 26

LoC of actual logic: 93

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/Matsim/Road.cpp

Total: 48

Definitions (imports): 2

Comments: 2

Blanks: 11

LoC of actual logic: 33

Results of: /home/NETID/imdudder/mass-Ian/Loc_count/Matsim/Road.h

Total: 37

Definitions (imports): 5

Comments: 4

Blanks: 6

LoC of actual logic: 22

All files combined

Number of files: 9

Total: 1195

Definitions (imports): 150

Comments: 311

Blanks: 182

LoC of actual logic: 552

Number of Methods/Functions (per class):

• Car: 11

• File2ShmPlace: 2

• Intersection: 12

• Main: 2 additional functions

• Road: 11

• Total: 38

Library-Specific Boilerplace LoC (per file):

• Car.h: 19

• Car.cpp: 4

• File2ShmPlace.h: 10

• File2ShmPlace.cpp: 4

• Intersection.h: 37

• Intersection.cpp: 4

Ian Dudder CSS 497: Autumn 2021 Term Report

27

• Main.cpp: 26

• Total: 104

