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Overview 
 

In the field of computaConal poliCcal science, one of the more important and burgeoning fields of study 
is the use of algorithms to create poliCcal redistricCng plans and evaluate proposed district plans for 
objecCve fairness.  During my CSS 600 course this quarter, I focused on researching and assessing the 
feasibility of agent-based algorithmic redistricCng and gerrymandering detecCon in the MASS 
framework.  To evaluate this topic area for potenCal further research, I conducted a systemaCc literature 
review on current research, reviewed specifics related to the topic, reviewed previously implemented 
frameworks for algorithmic redistricCng, and sought to understand algorithmic implementaCons for 
generaCng and evaluaCng district plans. 

In the following secCons, I will provide some background informaCon on redistricCng and 
gerrymandering, look at the specifics related to algorithmic redistricCng and gerrymandering detecCon, 
look at how district plans are evaluated, discuss how gerrymandering can be detected from a 
computaConal perspecCve, and conclude with some potenCal limitaCons and future work. 

Background 
 

Redistric)ng Process 
RedistricCng is the process of redrawing the boundaries of electoral districts in the United States.  The 
process typically follows the decennial census, which updates populaCon data and is used to ensure 
equal representaCon based on populaCon shi\s.  As a state’s populaCon changes, the number of seats in 
the House of RepresentaCves allo_ed to an individual state can grow or shrink depending on populaCon 
changes.  This process is called reapporConment and serves as the drive behind redistricCng.  

RedistricCng can be a lengthy process comprised of several different steps, but redistricCng can generally 
be disClled down to six key steps: 

1.) Census PopulaCon Gathering:  Every ten years, the United States Census Bureau conducts a 
naConwide data-gathering operaCon that asks residents of the United States to report 
demographic informaCon regarding their family unit.  The Census Bureau gathers informaCon 
regarding racial background, educaCon, health, housing, number of family members, and 
transportaCon-based quesCons.  While the amount of informaCon collected is relaCvely diverse, 
the perCnent informaCon for redistricCng centers around the number of people residing in 
residence and the racial makeup of the family unit to ensure equal representaCon. 

2.) ReapporConment: Following the tabulaCon of the census data, the populaCon data is used to 
determine how many seats each state should have in the House of RepresentaCves.  The United 
States ConsCtuCon fixes the number of House seats at 435, and when the populaCon grows in 
one state but shrinks or stays staCc in another, this can cause the number of seats allo_ed to 
change.  For example, in the 2020 reapporConment following the 2020 census, the ouclow of 
people from California caused the state to lose one seat, while the populaCon increase in Texas 
increased the number of seats by two.  

3.) State RedistricCng:  While the federal government, through the Census Bureau, collects the 
populaCon data and determines the number of seats allo_ed to each state, the individual states 



must redraw the district boundaries within their borders.  The specifics of the redistricCng 
process vary from state to state but typically have components regarding populaCon equality 
between districts, conCguous districts, and compact districts.  Some states have different 
mandates prescribed by their state consCtuCon and Federal mandates, like compliance with the 
VoCng Rights Acts. 
Just as the rules for redistricCng vary between states, so does the enCty that carries out the 
drawing of districts.  In some states, the process is overseen by the parCsan state legislature.  
While this may seem to be a suitable body to carry out the process as the populaCon directly 
elects them, many have quesConed the suitability of having a body with a vested interest in 
protecCng their power drawing districts.  In recent years, many states have turned to 
independent bodies to reduce the amount of parCsan influence in the process.  Even with 
independent redistricCng commissions, many examples of unfair maps sCll emerge from those 
enCCes. 

4.) Public Input: An essenCal component of the redistricCng process is the elicitaCon of feedback 
from the public on potenCal redistricCng maps.  While many ignore the process due to a lack of 
interest, many states hold public hearings to allow individual ciCzens to voice quesCons or 
concerns on the potenCal map.  In some states, ciCzens can even draw and submit their maps.  
With many ciCzens lacking the experCse to draw district maps from scratch, some commercial 
and open-source so\ware packages have emerged to support the drawing of district maps, with 
some ensuring those maps compile with the redistricCng criteria in the state. 

5.) Legal Challenges: A\er a candidate map has passed through the necessary redistricCng 
commission or body, the map is sCll subject to legal challenges from affected parCes.  In fact, 
many of the notable instances of parCsan gerrymandering have been discovered through the use 
of legal challenges.  RedistricCng maps can be challenged on several grounds, but most 
challenges boil down to racial and parCsan gerrymandering.  While we will detail the specifics of 
gerrymandering in a later secCon, the process typically involves manipulaCng district boundaries 
to favor a specific group or poliCcal party.  When legal challenges are leveraged against a 
potenCal redistricCng plan, courts may review the plan to ensure compliance with state and 
federal redistricCng constraints.  Many academics involved in research on redistricCng have 
served as expert witnesses during these cases and have used algorithms and staCsCcal analysis 
to reinforce their posiCon. 

6.) ImplementaCon: Once a redistricCng plan has cleared all statutory and legal hurdles, the state 
implements the district bounds specified by the plan for the next elecCon cycle.  Voters may find 
themselves in a newly drawn district with potenCally different representaCon. 

The redistricCng process can be complex, with the involved parCes balancing the need to redraw 
boundaries with respect to statutory requirements and interest groups with varying objecCves.  One 
important element to note is that unCl relaCvely recently, the process was ripe for poliCcal interference, 
and the difficulty of the process le\ li_le room for ciCzen oversight.  As we will explore in later secCons, 
the rise of compuCng power and the availability of granular data has opened an avenue to reduce 
human bias and develop a fairer system for generaCng redistricCng plans. 

 



Gerrymandering 
The term “gerrymandering” dates back to the early 19th century when the then-governor of 
Massachuse_s, Elbridge Gerry, approved a redistricCng bill that created a district that many thought 
looked like a salamander.  A newspaper mocked the district plan in a poliCcal cartoon, shown in figure 1, 
which combined the governor’s last name, Gerry, with the word salamander to create the term 
“gerrymander.” While the term was a tongue-in-cheek joke at the Cme, it has le\ a lasCng legacy on 
American poliCcs and a stain on the redistricCng process. 

Today, gerrymandering is commonly defined as the pracCce of manipulaCng electoral district boundaries 
to favor a parCcular party or group.  The corrupCon of redistricCng process involved creaCng an unfair 
advantage for one party in elecCons by concentraCng or diluCng the voCng power of rival groups.  The 
focus is gerrymandering today centers around two main types: 

1.) ParCsan Gerrymandering: In an ideal form, the redistricCng process should produce maps drawn 
to ensure fair representaCon for all voCng members of society.  When maps are drawn to 
maximize one poliCcal party’s power intenConally, parCsan gerrymandering occurs.  This form of 
gerrymandering is the most commonly idenCfied form when people think about the subject. 

2.) Racial Gerrymandering:  Unlike parCsan gerrymandering, which focuses on maximizing the 
power of a parCcular poliCcal party, racial gerrymandering seeks to draw districts that dilute the 
voCng strength of racial or ethnic minority groups. 

 

Figure 1 - “The Gerry-Mander” Cartoon [2] 

 

The goal of gerrymandering is to amplify a desired poliCcal party’s power beyond what they would 
receive based on the makeup of the voCng populaCon.  Power amplificaCon typically comes in the form 
of two complementary methods, packing and cracking, shown in figure 2[20].  Packing is the process of 
diluCng the power of one voCng block by consolidaCng a majority of the target voCng populaCon into a 



small number of districts.  While this would give the packed party the illusion of proporConal 
representaCon through overwhelming victories in the consolidated districts, the remaining members 
would be spread across many districts, known as cracking.  In combinaCon, packing and cracking create 
what are known as gerrymandered districts which insulate the current ruling party from compeCCon and 
deprive marginalized groups of meaningful representaCon. 

 

Figure 2 - Packed & Cracked District Maps[8] 

 

Gerrymandering can result in some significant negaCve consequences.  While research has shown that 
the effects of gerrymandering are largely diluted on the naConal level, the impacts can be much more 
present on a state or local level.  The effects of gerrymandering can be disClled into a few key impacts.  
First, it manipulates representaCon.  Electoral results can be distorted by denying the creaCon of districts 
that accurately reflect the electorate’s overall preferences.  Without a legislature that accurately reflects 
the composiCon and will of the voters it is supposed to represent, the outcome of elecCons in 
gerrymandered districts is inaccurate.  Second, gerrymandered districts greatly reduce the 
compeCCveness of the elecCons.  One of the primary moCvaCons in parCsan gerrymandering is to 
create effecCvely “safe seats” for incumbents where only a parCcular party can win.  Safe seats reduce 
compeCCon and discourage potenCal challengers, as there can be an insurmountable parCsan barrier to 
winning the elecCon.  Third, and parCcularly perCnent to racial gerrymandering, is disenfranchisement.  
By creaCng districts that dilute the voCng power of a group or party, those voters are le\ without 
equitable representaCon and thus are prevented from having their voices heard.  Finally, gerrymandered 
districts serve to amplify poliCcal polarizaCon.  Suppose a poliCcian or poliCcal party is overwhelmingly 
dominant to the point that compeCCveness in the district is nonexistent; there is li_le incenCve for a 
candidate to appeal to voters outside of their poliCcal base. 

While states have made efforts to create a more neutral redistricCng process through means like 
independent redistricCng commissions, stringent district criteria, and other methods, those efforts sCll 
leave the process open to human bias and parCsan influence.  To address the issue of gerrymandering, 
researchers have proposed empirical methods to remove parCsan influence and generate redistricCng 
plans based on geographical and voCng populaCon requirements [9]. 



 

Algorithmic Redistric9ng 
 

The injecCon of human bias into the redistricCng process has long been a point of consternaCon when 
drawing and assessing a potenCal district map.  Civic-minded academics have long sought to remove this 
bias and create neutral districCng plans with algorithms serving as unbiased arbiters in redistricCng.  
Even with the overwhelming opCmism that algorithms would fix what many regarded as a broken 
redistricCng system, limitaCons in computaConal capacity and data granularity stymied much of the 
development in the early days. 

Algorithmic redistricCng dates back to the 1960s, with works from people like Vickrey heralding 
algorithms as the key to “procedural fairness” in the redistricCng process [13].  Vickrey felt that by using 
algorithms, the redistricCng process could remove the human element and create a process that was 
solely machine-driven in nature, thus creaCng a process that le\ no room for human choice and poliCcal 
bias.  Another scienCst named Edward Forrest [6] echoed Vickrey’s senCments, staCng, “Since the 
computer doesn’t know how to gerrymander … the electronically generated map can’t be anything but 
unbiased”.  While the senCment expressed by the two authors may have been too idealisCc, as a 
computer can clearly be programmed to generate a gerrymandered map, even ones that may be 
incredibly difficult to detect, the consensus among many in the emerging field is that algorithms can be a 
crucial component in drasCcally reducing the amount unfairness in the redistricCng process. 

In today’s modern compuCng environment, the algorithmic ideas of early academics have evolved into a 
wealth of different so\ware packages designed to support redistricCng efforts across the United States.  
RedistricCng enCCes have uClized these so\ware packages to design and analyze districCng plans.  When 
coupled with increased compuCng power and data granularity, these so\ware packages can create 
highly detailed and objecCvely fair maps. 

While the overarching goal of Vickrey and Forrest to create “perfect” districCng plans may be technically 
intractable, recent progress has made algorithmic redistricCng an essenCal element to reforming the 
redistricCng process [15].  This secCon explores how compuCng resources have been leveraged in 
redistricCng and surveys the various redistricCng algorithms uClized in modern algorithmic redistricCng.  
First, we will look at algorithms used to generate district plans and follow up with methods used to 
analyze a potenCal/proposed plan.   

 

Defining the Redistric)ng Problem 
Across many works in the field of algorithmic redistricCng, the process of redistricCng can be disClled to 
a set parCCon problem with addiConal restricCons.  Let G = (V,E) be a connected graph represenCng a 
given state’s geography.  For all verCces v ∈	V,	v	represents a populaCon unit with weight w(v) equal to 
the unit’s populaCon [8].  PopulaCon units can come in different forms and are, in some cases, specific to 
the redistricCng problem.  The smallest populaCon unit denominaCon, typically census blocks, provides 
more granularity and accuracy when generaCng district plans at the cost of increased computaConal 
complexity.  VerCces v,w ∈	V	share an edge if the associated populaCon units’ polygonal boundaries are 
adjacent, meaning they share at least a vertex.   



The goal is to parCCon G into k connected subgraphs, each represenCng a district.  The districts, denoted 
as Gi, where Gi = (Vi , Ei ) and Vi ⊂ V , Ei ⊂ E, should be created such that the total populaCon of any 
district populaCon(Gi) = ∑v ∈Vi w(v)is equal to the desired populaCon L.  The load capacity is the 
desired number of people per district under perfectly even representaCon [8].  The populaCon deviaCon 
from L is the important criterion for judging the soluCon’s efficacy to the redistricCng problem and how 
suitable the district plan is.  While there are many different ways to judge the efficacy of a redistricCng 
plan as we will see in later secCons, populaCon distribuCon and the deviaCon of the populaCon between 
districts serve as the baseline metric. 

 

What is a redistric)ng algorithm: 
At a high level, an algorithm is a set of instrucCons that a computer uses to solve a given problem.  
Usually, the algorithm takes in some amount of input data to produce an output soluCon.  In the realm 
of redistricCng, a redistricCng algorithm may take as input the populaCons and geographies of some unit 
of measure, typically in the form of precincts, census tracts, census blocks, counCes, etc., as well as the 
desired number of districts and produces an output comprised of districts, which designates which units 
are assigned to each created district. 

While the computer executes the algorithm, humans and their potenCal biases write the instrucCons 
and create the algorithmic design decisions.  This fact leads to the quesCon of what makes a quality 
district plan, and since the computer can’t idenCfy what makes a good district plan on its own, humans 
must first define what makes one plan superior to another.   The discussion of what qualifies an 
objecCvely good district is a broad and sCll raging debate.  This paper focuses solely on the basic 
requirements: populaCon equality between districts and compact district boundaries.  In the field of 
algorithmic redistricCng, there are three main categories of algorithms: enumeraCon, parCConing, and 
swapping.   

 

Enumera)on 
EnumeraCon algorithms, as the name might imply, focus on generaCng every possible way to district a 
given region.  The main advantage of enumeraCon algorithms is that they have the potenCal to generate 
every possible way to divide a region into a set number of districts.  When reviewing the aspiraCons of 
people like Vickrey and Forrest, they believed these algorithms would solve the problem of human 
biases in redistricCng.  If every district plan is available for review, it is possible to idenCfy the best based 
on the idealized set of criteria.  While this may seem like a suitable method for generaCng district plans 
in theory, a pracCcal look at even a small region can result in an obscenely large number of possible 
plans. 

A natural approach to designing an algorithm for redistricCng is to generate all possible valid district 
plans.  This technique essenCally boils down to uClizing a set of redistricCng constraints, like populaCon 
equality and conCguous districts, to idenCfy valid district plans and having the computer generate a list 
of every possible plan that meets those constraints.  

If we could enumerate all possible districts, the redistricCng problem is a relaCvely straighcorward 
opCmizaCon algorithm: score all possible plans to idenCfy the best one; essenCally, a brute force 



algorithm [15].  This approach achieves the idealized “perfecCon” quality Vickrey and Forrest hoped 
would solve the problem of biases in redistricCng because it considers all possible plans and is 
guaranteed to find the best one.  Given this theoreCcal advantage when compared to other approaches, 
enumeraCon has been proposed as a strategy to idenCfy and evaluate plans for decades.  

This begs the quesCon: if enumeraCon can yield an exact result, why is it not widely used for redistricCng 
today?  There is one main reason: combinatorial explosion [15].  While in extremely small simulaCons, 
enumeraCon may be feasible, but the vast number of ways we can draw district lines makes the list of 
potenCally valid plans incredibly large.  As the redistricCng region grows, the problem increases 
exponenCally, quickly exceeding the pracCcal limits of compuCng power and data storage.  Even with the 
advancements in supercompuCng, the approach is sCll unfeasible. 

To solidify the intractability of the enumeraCon approach, consider the simple problem of parCConing an 
n x n grid into n equal-sized districts.  As shown in figure 3, as the n value increases, the number of plans 
explodes relaCvely quickly, becoming too large for enumeraCon to be pracCcal.  When looking at real-life 
examples, the combinatorial explosion bears out.  For example, the number of ways to build four 
congressional districts out of 99 counCes of Iowa is esCmated to be around 1024.  While the esCmate for 
Iowa may seem large, the problem grows even larger if plans are generated from finer-grain units like 
precincts or census blocks, which are more commonly used for redistricCng simulaCon.  For reference, 
Iowa law requires that counites be used as the base unit for redistricCng; if census blocks were used, this 
would require generaCng plans from 216,007 units rather than 99 units. 

 

Figure 3 - N x N Number of District Plans [15] 

Since enumeraCon has been demonstrated to be computaConally infeasible and inappropriate for 
understanding real-world redistricCng problems, researchers have turned to other strategies for 
generaCng and assessing district plans. 

 



Par))oning 
As the name implies, parCConing algorithms take a geographic region comprised of populaCon units, 
such as a state, and divides them into a set number of conCguous districts.  In most implementaCons, 
the parCCon algorithms fall into greedy and recursive approaches, each with different variaCons. 

Among the greedy redistricCng algorithms, many are based on Voronoi approaches.  The choice of 
Voronoi-based approaches is driven mainly by the fact that Voronoi diagrams produce a fixed number of 
conCguous and compact district parCCons – a noted crucial element in generaCng appropriate district 
plans.  Voronoi-based redistricCng algorithms work off of a set of centers to assign populaCon units to 
the closest open center in the set that has reached a given populaCon threshold.  As noted by Levin, the 
secCon of centers significantly impacts the resulCng district plans [8].  In Svec et al.’s implementaCon, 
Svec created centers based on the largest populaCon units resulCng in a populaCon deviaCon of 0.74% 
between generated districts [5].  Another implementaCon by Ricca et al. used centers based on 
minimizing the longest path from a center to the most distant populaCon unit in its district [14].  That 
approach resulted in significantly worse populaCon deviaCon between candidate districts.  Svec et al.’s 
approach demonstrated a superior approach based solely on populaCon deviaCon, but it came at the 
cost of potenCally parCConing a single house or other building into separate districts.  

In addiCon to greedy-based Voronoi approaches, k-means-based algorithms are present in the field of 
algorithmic redistricCng.  K-means algorithms draw heavily on Voronoi approaches but with the ability to 
move centers a\er each iteraCon.  As with the previous approaches, the secCon of centers can 
significantly impact the algorithm’s output.  In a study on the state of North Carolina, random iniCal 
centers with the k-means algorithm produced populaCon deviaCons greater than 150%, far beyond what 
is acceptable.  Bo_man et al. used centers based on the current district layout and produced an output 
with a 2.5% populaCon deviaCon [21].  The significant variance in the populaCon deviaCons 
demonstrates the importance of iniCalizing centers with purpose.  While the selecCon of centers is 
important, another aspect to consider is the impact the size of a given populaCon unit may have.  As 
data granularity related to redistricCng has increased, the types of populaCon units available to 
researchers have also broadened.  In a study produced by Cohen-Addad et al., centers were selected 
randomly, but census blocks were uClized instead of using census tracts.  Census blocks and tracts are 
both geographic units used by the Census Bureau to collect and report populaCon data, but census 
blocks are the smallest geographic unit used.  Even with the use of random centers, which was 
demonstrated to be ineffecCve, Cohen-Addad’s paper shows that even with random centers, the 
granularity of census blocks allowed for the producCon of district plans with incredibly small populaCon 
deviaCon in six of the six states studied [10].  While Cohen-Addad’s algorithm showed the uClity of 
census blocks as a populaCon unit, the districts generated were not as compact due to the census block’s 
geometry being represented by a single point.   

While Voronoi algorithms assign units to districts based on the distance to the closest center, 
Constrained Polygonal SpaCal Clustering (CPSC) uses an objecCve funcCon to weigh a set of criteria.  
CPSC works by dividing the area into census blocks and then using a Voronoi diagram to create iniCal 
districts based on the populaCon density of each block [8].  The algorithm works iteraCvely to improve 
the district plan by adjusCng the boundaries of the districts while saCsfying any constraints.  While a 
Voronoi algorithm can generate the iniCal district plans, exisCng plans can also be a starCng point.  This 
aspect presents a unique feature of the CPSC algorithm in that it can consider the exisCng poliCcal 



boundaries and a_empt to respect them as much as possible.  Joshi et al. implemented a CPSC algorithm 
with an objecCve funcCon, requiring populaCon deviaCon to be within 1%, that districts be conCguous 
and maximize district compactness [16].  The results produced by the study demonstrated that this 
approach could generate mulCple district plans with populaCon deviaCons within 1%. 

Recursive algorithms are also effecCve for generaCng district plans because they break the redistricCng 
problem into smaller subproblems.  Among the recursive redistricCng algorithms, the shortest split-line 
algorithm (SSL) is the most common [8].  The shortest-split line algorithm uClizes a divide-and-conquer 
approach, where the goal of every iteraCon is to find the shortest line that cuts the geographic region 
into two pieces such that these pieces contain equal porCons of the populaCon.  EssenCally, the 
algorithm works by dividing the area into a grid of cells and bisecCng each cell along its shortest 
dimension.  A\er which, the algorithm selects the line that minimizes the maximum distance between 
any two points with a district and splits the district along that line.  SSL is an iteraCve process that 
conCnues unCl the desired number of districts are created.  SSL does come with some tradeoffs.  While 
the algorithm is fairly straighcorward to implement and efficient, it does not consider exisCng poliCcal 
boundaries or other contextual factors that may be important in specific scenarios.  In addiCon, as the 
size of the geographic region increases, the computaConal complexity increases significantly.  Benn and 
German and Kalcsics et al. uClized similar SSL algorithms to generate postal districts and found that while 
the populaCon deviaCons were within acceptable limits, the Cme complexity of the algorithm was O(n3) 
and higher for even small sample sizes[18,19].    

The Diminishing Halves Algorithm (DHA) is another dive-and-conquer algorithm similar to SSL.  The DHA 
works by recursively dividing a geographic area into two halves, with the goal being that each half has a 
roughly equal populaCon [8].   

 

Swapping 
Swapping algorithms start with an exisCng redistricCng plan based on the desired criteria.  The 
algorithms evaluate populaCon units on the boundary of two districts and swap boundary units between 
neighboring districts.  Swapping algorithms can be further disCnguished by how swaps are constrained.  
Local search swapping allows for swaps that will improve a given district, while metaheurisCc swapping 
allows some detrimental swaps in the short term that could create a be_er plan later on.  DisCnct from 
parCConing algorithms, local search and metaheurisCc swaps require a complete redistricCng plan as 
input. 

A local search swapping algorithm only reassigns populaCon units between districts if the swap improves 
the plan.  In this approach, the exisCng district boundaries are adjusted by swapping pairs of conCguous 
areas to improve specific objecCves, most commonly populaCon deviaCon or compactness.  Each swap is 
evaluated by calculaCng the resulCng change concerning the desired objecCve, and only swaps that 
improve upon the district plan are accepted.  Local search swapping has been uClized in three major 
studies by Kaiser, Nagle, and Hayes for county-level redistricCng.  Kaiser produced a congressional 
redistricCng plan for Illinois with a 26.4% populaCon deviaCon, while Nagle, also working with Illinois but 
a smaller subset of the state, produced plans with a 4% populaCon deviaCon.  Hayes uClized local search 
swapping to generate redistricCng plans in North Carolina with a similar 4.4% populaCon deviaCon.  A 
significant drawback with local search swapping is the reliance on the layout of the current districts.  If 



the current district plan is a subopCmal starCng point, local search swapping can exhaust beneficial 
swaps before producing a valid or opCmal plan. 

In order to miCgate the shortcomings of local search swapping, other works have focused on allowing 
detrimental swaps to avoid exhausCng beneficial swaps and se_ling at a local opCmum.  MetaheurisCc 
swapping allows more of the sample space to be explored by allowing swaps that worsen the output.  
Similar to local search swapping, the algorithms involve iteraCvely modifying an exisCng district plan and 
evaluaCng the results to see if it is an improvement of the previous one, with the caveat that the 
algorithm occasionally allows changes that make the output worse.  An illustraCve example of this 
process is simulated annealing.  Simulated annealing introduces non-determinisCc random swaps, which 
can increase populaCon deviaCon to improve other objecCve criteria.  In the previously menConed 
paper by Hayes regarding redistricCng in North Carolina, simulated annealing reduced the populaCon 
deviaCon from 4.4% to under 1%.       

Tabu search is another metaheurisCc swapping algorithm that is present in the field of algorithmic 
redistricCng.  Unique to this approach is the ability to cut down on redundant district plans by avoiding 
previously explored soluCons.  Tabu search introduces “tabu” paths that make the result worse iniCally 
to explore different areas of the soluCon set.  Bozkaya et al. implemented a tabu search algorithm to 
generate district plans for Edmonton, resulCng in a populaCon deviaCon of around 1%.  While the results 
produced by Bozkaya appear promising, no exisCng studies extend this technique to the scale of states in 
the U.S[1]. 

 

Another form of metaheurisCcs swapping is geneCc algorithms.  GeneCc algorithms combine features of 
high-scoring plans from an objecCve funcCon, mimicking the evoluCon process of natural selecCon.  [8].  
Josh et al. uClized a geneCc algorithm to tackle the redistricCng problem in Nebraska and Indiana, 
resulCng in populaCon deviaCons that exceeded the legal threshold [16].  Joshi uClized a method that 
used a weighCng funcCon to combine constraints into an objecCve funcCon.  Vanneschi et al. followed 
with an NSGA-II technique that focused on opCmizing compactness and populaCon equality and was 
able to produce populaCon deviaCons under the legal threshold [12].  While the results seemed 
promising, as we will note in the next secCon, the simulated states were relaCvely small in terms of 
populaCon units and lacked extension to larger, more complex states.  Baas et al. extended the work of 
Vanneschi to include conCguity, poliCcal compeCCveness, and proporConality in the objecCve funcCons 
as well as uClizing current district bounds as seeds for new plans [7].  Baas showed results that met the 
legal populaCon deviaCon requirement, but the weights used in the objecCve funcCon and the number 
of generaCons required to generate legal plans were le\ unspecified.         

 

Limita)ons of Algorithmic Redistric)ng 
Algorithmic redistricCng presents a promising field of study and an objecCve way to create and idenCfy 
redistricCng plans with minimal human bias.  As developments in the field are relaCvely recent and the 
methods uClized are not enCrely validated across different studies, some significant limitaCons and areas 
of concern exist. 



First, there is no universal criteria base for generaCng redistricCng plans.  As was menConed in a 
previous secCon, the criteria for generaCng district plans vary greatly from state to state.  Certain states 
may only have minimal constraints on what consCtutes a valid district plan, such as the minimal 
requirements for populaCon equality between districts and conCguity.  In contrast, others can have 
specifics relaCng to parCsan fairness and minority-majority district composiCon.  With the wildly varying 
constraint criteria, what consCtutes a “valid” plan is sCll up for debate. 

Second, in addiCon to the subjecCvity of the different criteria, balancing the desired criteria in simulaCon 
is another challenge.  The quesCon of what constraint weight should be has yet to be decided and is 
reflected in the vastly different weights applied to the constraints among the various studies.  It is 
challenging to generate a consensus without an agreed-upon importance of the different constraints. 

Third, many experiments conducted in the field of algorithmic redistricCng lack transparency.  Many 
studies in the field do not demonstrate effecCveness in all states and usually include a closed-source 
code base and are thus unverifiable.  Reviewing how an algorithm is constructed, how various 
constraints are weighted, and the ability to reconstruct the experiment to validate the finding is 
paramount to further development in the field. 

Fourth, in between the decennial census, demographics in the United States can change dramaCcally.  As 
demographics change, so would the results of a potenCal redistricCng plan.  The shi\ing demographics 
make studying redistricCng difficult to validate outside of the census period.  While older data can be 
used in theory, the ability to work with up-to-date, real-life data is essenCal to creaCng algorithms that 
reflect reality on the ground. 

Finally, in many studies, the potenCal for poliCcal interference remains a paramount concern.  How an 
algorithm is constructed to respond to various redistricCng constraints can significantly impact the 
output plan.  While many studies purport to seek a poliCcally neutral result, the lack of transparency in 
some of the papers leads to concerns about the results. 

 

Evalua9ng Redistric9ng Plans 
 

When redistricCng plans are created through algorithms or hand-drawn, they must be evaluated to 
ensure they meet all necessary state and federal constraints.  Constraints on redistricCng plans vary 
widely from state to state, with each state prioriCzing certain constraints over others.  Washington, for 
example, lays out requirements in ArCcle 2, SecCon 43 of the state consCtuCon as well as in the Revised 
Code of Washington (RCW) [3] that districts must be: 

1.) Be conCguous 
2.) Have equal populaCon 
3.) Be geographically compact 
4.) Preserve county and municipality boundaries as much as possible 
5.) Not be connected across geographic barriers, although ferries across water may establish 

conCguity 
6.) “Provide fair and effecCve representaCon and ... encourage electoral compeCCon.” 

 



Given these unique and varying state and geographical requirements, a one size fits all approach to 
generaCng redistricCng plans is not feasible.  Instead, generaCng redistricCng plans requires careful 
consideraCon of a mulCtude of different data points, including demographics, poliCcal affiliaCon, 
geography, candidates, and other state and federal-specific factors.   

While the legal requirements in each state vary, there are some common standards used in the field of 
redistricCng: 

1. Popula0on Equality: refers to the fundamental principle in redistricCng that districts must be 
drawn to have roughly equal populaCons.  This standard stems from the “one person, one vote” 
principle that by having equal populaCons, each person’s vote carries equal weight. 

2. Con0guity is another fundamental principle in modern redistricCng that all parts of a district 
must be physically connected.  When districts are formed, it should be done in a way that avoids 
districts that are separated by an unreasonable distance or are fully surrounded by other 
districts. 

3. Compactness: is an element closely linked to conCguity and focuses on the geographic shape of 
the district.  In this constraint, districts must be geographically compact.  As popularized by the 
poliCcal cartoon of the 1800s, where gerrymandering derived its namesake, the district should 
not meander through a state but should be geographically succinct.  Some studies have 
purported that compact districts facilitate be_er representaCon as they are not as difficult for a 
representaCve to navigate. 

4. Communi0es of Interest: deals with groups of people who share common social, cultural, or 
geographic characterisCcs.  This criteria reasons that people who share similar characterisCcs, 
parCcularly across racial or cultural boundaries, will have common concerns or poliCcal interests 
and should be dealt with parCcular concern during redistricCng.  Splivng these communiCes of 
interest could have negaCve repercussions on that parCcular group.  While this standard has 
received some a_enCon in the field of redistricCng, it is difficult to quanCfy its importance in 
terms of a weighted criteria.  In addiCon, many states do not consider this specific requirement 
when generaCng district plans. 

5. ParCsan Fairness: also known as poliCcal fairness, considers poliCcal party affiliaCon when 
drawing district bounds.  ParCsan fairness aims to ensure that a redistricCng plan does not 
unfairly disadvantage one poliCcal party over the other.  

Detec9ng Gerrymandering 
 

As menConed in the background secCon, gerrymandering has a long history of malicious use in the 
United States.  While many previous methods for detecCng gerrymandering relied on a visual and 
numerical inspecCon of the districts in a proposed redistricCng plan, the rise of computaConal methods 
for detecCng gerrymandering has seen significant a_enCon in recent years.   

As with many redistricCng aspects, no one agreed upon way to detect gerrymandering exists.  Instead, 
research has focused on analyzing potenCal plans for staCsCcal anomalies.  In the field of 
gerrymandering detecCon, there are five key metrics for idenCfying a plan that may have elements of 
gerrymandering: 



1. Efficiency Gap Analysis: assesses the degree to which potenCal parCsan gerrymandering has 
occurred in a candidate plan.  Efficiency gap analysis quanCfies one poliCcal party’s advantage or 
disadvantage over the other.  Efficiency gap analysis relies on measuring wasted votes, which 
looks at lost votes (votes cast for a candidate that did not win) and surplus votes (votes cast for a 
candidate over what is needed to win the elecCon). 

2. Par0san Symmetry Analysis: similar to the efficiency gap, assesses potenCal parCsan 
gerrymandering by quanCfying the relaConship between a poliCcal party’s vote share and the 
number of seats won in an elecCon.  Primarily, this metric seeks to measure the imbalance 
between a party’s vote share and the number of seats won in an elecCon to determine if one 
party has a significant advantage over the other. 

3. Geographic analysis: different from the previous metrics, geographic analysis uses spaCal 
characterisCcs of districts to detect signs of intenConal manipulaCon.  To score a potenCal 
district, geographic analysis uses metrics like compactness, conCguity, and previous district 
boundaries. 

4. Demographic analysis: focuses on assessing a plan’s impact on specific communiCes and 
quanCfies the potenCal vote diluCon or concentraCon.  Using demographic data on a_ributes 
like racial populaCons, socioeconomic factors, and other demographic data points, demographic 
analysis looks for intenConally manipulated populaCon distribuCons to gain an advantage for a 
parCcular party. 

5. Simula0on and Outlier Detec0on: uClizes a computer simulaCon to generate mulCple scenarios 
based on a potenCal district plan and uses the results to determine if the plan generates results 
significantly different from other plans.  Outlier detecCon typically requires a wealth of plans 
generated based on neutral criteria and determines if a proposed plan would create an outsized 
victory or loss for one party over another.  Outlier detecCon represents one of the more 
prominent and cuvng-edge approaches featured in legal cases involving gerrymandering, but 
some experts disagree on its effecCveness. 

Limita9ons/Future Work 
 

When looking at limitaCons in assessing the feasibility of implemenCng redistricCng simulaCon and 
redistricCng plan evaluaCon in an agent-based environment like MASS, I’ve come across a few 
limitaCons.  First, there exists no body of work uClizing agents to increase algorithm execuCon speed or 
increase accuracy.  While this limitaCon does not mean it’s not possible, it may result in, at worst, an 
inefficient or ineffecCve soluCon or will only maintain current accuracy performance while taking on 
more significant performance overhead.   

Second, as menConed in the algorithmic redistricCng limitaCons, there isn’t a well-defined consensus on 
what redistricCng criteria are the most effecCve or proper for generaCng redistricCng plans.  For a 
baseline implementaCon, populaCon equality and conCguous district creaCon would be the likely 
constraints, resulCng in a soluCon that does not cover all states. 

Third, previous work in MASS has demonstrated its effecCveness for algorithms like K-means and 
Voronoi approaches.  While those have been uClized for redistricCng simulaCon, they represent some of 
the more basic and early algorithms.  Those algorithms would generate valid soluCons with the 



previously menConed baseline constraints but may not be as academically worthy as more advanced 
approaches. 

Moving forward, I am focused on two areas for finishing my preliminary research on the topic.  First, I 
want to design and test a simplified experiment in MASS to gauge if further work is worthwhile.  This 
experiment would most likely take the form of a small graph with syntheCc populaCon data to test 
potenCal algorithms and validate both the accuracy of the soluCon and the speed of execuCon.  Second, 
I want to evaluate the suitability of MASS to be used to evaluate a potenCal district.  Using the 
evaluaCon metrics previously listed, I want to see if evaluaCon is suitable for an agent-based approach.  
While I conducted a significant amount of research in algorithmic redistricCng, I sCll need to spend more 
Cme assessing the feasibility of algorithmic redistricCng and evaluaCon as a potenCal capstone research 
topic. 
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