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Agent-based modeling (ABM) allows researchers in the social, behavioral, and economic (SBE) 

sciences to use software to model complex problems and environments that involve thousands to 

millions of interacting agents. These models require significant computing power and memory to 

handle the high numbers of agents. Various research groups have implemented parallelized ABM 

libraries which allow models to utilize multiple computing nodes to improve performance with 

higher problem sizes. However, it is not clear which of these libraries provides the best-performing 

models and which is the easiest to develop a model with. The goal of this project is to compare the 

performance and programmability of three current parallel ABM libraries, MASS C++, 

RepastHPC, and FLAME. The Distributed Systems Lab at the University of Washington Bothell 

developed Multi-Agent Spatial Simulation (MASS) C++ as a C++-based ABM library. Different 



 

 

 

research groups developed RepastHPC and FLAME before MASS C++, and SBE researchers have 

successfully used these libraries to create agent-based models. To measure performance, we 

designed a set of seven benchmark programs covering various problems in the SBE sciences, and 

implemented each of them three times using MASS C++, RepastHPC, and FLAME. We compared 

the average execution times of the three implementations for each benchmark to determine which 

library performed the best. We found that models written with MASS C++ generally performed 

the best with MASS C++ compared to RepastHPC.  On the other hand, FLAME had the worst 

performance across all benchmarks since it could not handle the same parameters given to the 

MASS C++ and RepastHPC implementations. To measure programmability, we performed a static 

code analysis and manual code review of each benchmark implementation to assess the three 

libraries quantitatively and qualitatively. We found that in terms of quantitative metrics, MASS 

C++ was slightly more programmable than the others. However, regarding qualitative differences, 

MASS C++ and RepastHPC had different approaches which present different benefits, while 

FLAME had the most limitations.  
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Chapter 1. INTRODUCTION 

Researchers across all disciplines, particularly those studying Social, Behavioral, and 

Economic (SBE) sciences, use conceptual modeling to assess and simulate problems so that they 

can better understand and predict them [20][21]. For problems that involve several entities 

interacting with each other and their environment or ecosystem, researchers use agent-based 

modeling (ABM), also known as agent-based modeling and simulation (ABMS) [17]. In agent-

based modeling, systems are represented as collections of autonomous, dynamic agents operating 

within a designated simulation space. These agents may have simple computational capabilities, 

but their behavior as a collective can form accurate models [4]. The models become more accurate 

to real-world systems and populations when given a larger simulation space and a higher number 

of agents. However, the problem size that a model can handle is limited by the model’s scalability, 

its ability to handle increased problem sizes without compromising its execution time [21]. 

The scalability of agent-based models is a critical consideration in their design and 

implementation, because high numbers of entities are required for accurate simulations. On a 

single process, an ABM can simulate the activities of up to millions of simple entities, but such 

simulations can take hours to complete, and more entities or higher complexity will increase the 

execution time [6][21]. Therefore, agent-based models may use parallel computing to minimize 

the execution time even with a large workload. Parallel agent-based modeling distributes the 

simulation space across these processes and coordinates the agents such that they can still operate 

as if it was a single process. 

Researchers can parallelize agent-based models on a single machine by using 

multithreading or multiprocessing, but this still limits the model to the machine’s memory and 
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processing power [21]. By distributing the model across a cluster of computing nodes, the model 

is no longer limited to the capabilities of a single machine. This addresses the scalability limitations 

of ABMs by providing more memory for the simulations to operate on. More memory allows for 

much higher entity counts, and the decreased load on each node can also allow simulations to be 

completed faster. Researchers may create their agent-based model entirely from the ground up and 

implement cluster-based parallelization themselves. However, this is costly and complex, so most 

ABM researchers will only implement sequential (non-parallelized) models [21]. Alternatively, 

researchers may build their model using an existing cluster-based ABM library as a basis. 

However, it is unclear which parallel ABM libraries are best for which models, or whether one 

library is better for developing models in general. Current research compares parallel agent-based 

models based, but they only implemented a single, generic mathematical model rather than models 

relevant to the SBE sciences [18]. 

Our research project analyzes and compares three different C/C++-based implementations 

of generalized, cluster-based ABM libraries: Multi-Agent Spatial Simulation (MASS) C++, 

RepastHPC, and FLAME. MASS C++ was written by the Distributed Systems Lab (DSLab) at the 

University of Washington Bothell [10]. Assessing the capability of MASS C++ compared to other 

cluster-based ABM libraries will guide further development for the MASS library and demonstrate 

its potential to ABM researchers. To compare the three libraries, the DSLab wrote seven 

benchmark programs for each library for a total of 21 benchmark programs. These benchmarks 

provide objective criteria for a comparative analysis on the bases of performance and 

programmability. Professor Munehiro Fukuda selected the seven benchmark programs in 2017 as 

a set of comprehensive and realistic applications for agent-based modeling which could adequately 

test MASS C++ and other ABM platforms such as RepastHPC and FLAME [21]. The benchmarks 
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simulate applications in the social, behavioral, and economic (SBE) sciences as well as tasks in 

biology, ecology, and city-planning. The selected benchmarks are as follows: 

• Social Network - a simulation of online communities and their interactions and activities. 

Each agent acts as an individual within the network, interacting with its neighbors [2]. 

• Tuberculosis - a simulation of the movement and growth of tuberculosis bacteria [8]. 

• Conway’s Game of Life - a simple and predictable cellular automaton [11]. 

• MATSim - a simulation of transport organization based on a queuing network [13][22]. 

• Brain Grid - a simulation of a neural network modeling electrical connections along 

synapses between neurons [20]. 

• Bail-in/out - a simulation involving clusters of agents with each cluster representing firms, 

banks, or households and modeling how they interact [15]. 

• Virtual Design Team - a simulation of a design team for modeling productivity [16]. The 

team is represented as a hierarchical structure that moves through product phases. 

To perform an accurate comparative analysis of the three libraries, we developed a testing 

methodology using the 21 benchmark programs. We defined consistent sets of parameters that 

would demonstrate the relative performance of each benchmark with a given number of computing 

nodes. In addition, we developed driver programs and shell scripts for executing the benchmarks, 

making the testing process easier and more replicable for future study. Finally, we performed a 

static code analysis and manual code review on each benchmark implementation to assess the 

overall programmability of each ABM library based on both qualitative and quantitative 

characteristics. 

The structure of this paper is as follows: Chapter 2 covers the background behind the three 

parallel agent-based modeling libraries and the seven benchmark programs; Chapter 3 discusses 
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previous efforts to compare agent-based modeling libraries; Chapter 4 details the methods by 

which this study compared the three libraries; Chapter 5 shows and evaluates the results of the 

comparison; and Chapter 6 summarizes and concludes the findings of this paper and discusses 

future opportunities for study. 

Chapter 2. BACKGROUND 

Section 2.1 describes and compares the design and implementation of the MASS C++, RepastHPC, 

and FLAME parallel ABM libraries. Section 2.2 describes the set of seven parallel ABM 

benchmark programs we designed and implemented for the three ABM libraries 

2.1 PARALLEL AGENT-BASED MODELING LIBRARIES 

MASS C++, RepastHPC, and FLAME are libraries which allow for a general implementation of 

parallelized agent-based modeling (ABM). However, agent-based modeling does not inherently 

require parallel computing, with most models executing as a sequential program rather than using 

parallel processes [21]. Some of these sequential models might utilize multithreading to improve 

performance, but the memory and processing power is still limited to that of a single machine. 

These memory and processing power limits represent the spatial and temporal scalability of a 

program respectively. Sequential models work for small problem sizes but lack the spatial and 

temporal scalability to address realistic problem sizes which better represent real scenarios. 

Parallel computing greatly increases the temporal and spatial scalability of agent-based models 

[17]. Parallelization with ABMs is based on a shared-memory programming paradigm where 

processes and threads share memory for the agents to execute on, increasing the model’s spatial 

scalability. In addition, the multiple computing nodes effectively share their computing power to 

process the agents together, increasing the model’s temporal scalability. 
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Researchers interested in agent-based modeling may use simpler, GUI-based but non-

parallel methods for agent-based modeling [21]. These methods include interpretive platforms 

such as NetLogo, Repast Simphony, and MASON, which are easy to use but are less scalable with 

the high problem sizes that are often required for realistic agent-based modeling [3][23][24]. These 

platforms are also based on interpretive languages such as Java and Logo, which inherently have 

slower code interpretation than native execution with compiled languages such as C/C++. Rather 

than using these platforms, researchers may also decide to create bespoke agent-based models for 

a specific problem, as is the case with MATSim which is designed for traffic simulations [13]. 

These solutions are tailor-made for the problem but must be developed in-house and from the 

ground up, which is complex and costly. Researchers are therefore less likely to implement 

parallelization for these custom models because that would add further complexity. 

Considering the limitations of interpretive platforms and application-specific agent-based 

models, there remains a need for generalized parallel ABM platforms which are highly scalable 

for realistic problem sizes while also being easily programmable for a variety of applications. To 

address this need, we developed the Multi-Agent Spatial Simulation (MASS) C++ library as a 

general parallel ABM platform. RepastHPC and FLAME are two other implementations which 

have been used in the industry for scalable agent-based modeling. We compared the performance 

and scalability of these three parallel ABM libraries to determine which of them best satisfies the 

general needs of agent-based model researchers. 

Sections 2.1, 2.2, and 2.3 describe the designs of MASS C++, RepastHPC, and FLAME 

and cover the similarities and differences between them. 
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2.1.1 MASS C++ 

The Distributed Systems Laboratory (DSLab) at the University of Washington Bothell developed 

the Multi-Agent Spatial Simulation (MASS) library for the C++ compiled language. MASS is 

defined by its use of “Places” as well as its migrating Agents [5][9][21]. “Places” are agent-

navigable spaces that are dynamically allocated over a cluster of computing nodes to form a 

network. Places can interact with the Agents that exist on or migrate to them and can exchange 

information with other Places. Agents in MASS migrate between Places to obtain or change 

information about those Places and interact with the Agents at their current Place. 

We implemented parallelization for MASS C++ using intercommunicating processes that 

are forked over a cluster of computing nodes. These processes communicate to each other directly 

through TCP sockets rather than through the Message-Passing Interface (MPI) that RepastHPC 

and FLAME use. MASS C++ also features multi-threading, which allows for parallelization of 

Place and Agent functions and message exchanges. This multi-threading can be used on a single 

node or on multiple nodes, with each node’s process managing its local threads. The 

multithreading is designed to improve the performance compared to a single-threaded process but 

may not be compatible with all models because of issues caused by thread synchronization.  

Developers seeking to create agent-based models with MASS C++ must define the 

behavior of their application’s Places and Agents by extending the base classes with new functions 

[5]. In their main program, they must place code that tells MASS to dynamically load Places and 

Agents. Then, within a loop, they must coordinate the function invocations, message exchanges, 

and the dynamic creation/termination/migration of agents that occurs in each iteration of the 

model. 
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2.1.2 RepastHPC 

The Argonne National Laboratory has developed a parallel simulation platform for agent-

based modeling known as RepastHPC. RepastHPC is defined by its execution environment, known 

as a “Context”, that populates the shared simulation spaces within it, known as “Projection” 

instances, with “Agents” [7][21][25]. The Context also manages the removal and movement of 

Agents over the shared space. RepastHPC Agents are implemented as extensible C++ objects, with 

users defining Agent behavior through its functions. Contexts and Projections act as spaces for 

Agents to exist on, but they do not perform any computations of their own. RepastHPC utilizes a 

dynamic discrete-event scheduler with conservative synchronization to organize its Agents. The 

order of Agent actions is determined through the scheduling of their Events which occur at specific 

ticks in the scheduler. 

In addition to the Repast-specific constructs, RepastHPC also uses constructs from Logo, 

a programming language primarily used for education [7]. The designers of RepastHPC propose 

that it is easier to conceive of and design models using these constructs. In particular, “Turtles” 

represent mobile agents, “Patches” represent fixed agents, “Links” connect Turtles to form 

networks, and an “Observer” provides overall model management. Not all models require these 

Logo-like constructs, and so it is possible to develop models strictly using RepastHPC-specific 

constructs. We developed the RepastHPC benchmark implementations using elements from both. 

Parallelization for RepastHPC is achieved using the Message-Passing Interface (MPI) 

which facilitates the communication between nodes on the cluster. Agents in one node on the 

cluster are unable to directly communicate with agents on other clusters. Instead, a copy of an 

agent must be created on the other node which retrieves up-to-date information about the original 

agent as needed [17]. This process causes communication overhead, and the agent copies add 
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memory costs. RepastHPC models operate within “ghost spaces”, in which Agents can view the 

simulation boundary of adjacent MPI ranks. This allows agents in each rank to see the information 

of nearby spaces, such as their Agent occupancy. Ghost spaces are read-only, so there is a 

possibility of collisions when multiple Agents end up in the same logical position, and this is 

something users of the library must be aware of. 

RepastHPC and MASS C++ are both implementations of parallel agent-based modeling, 

but they have fundamental differences in design which can affect their relative performance and 

programmability. RepastHPC’s contexts, projections, and agents are analogues to MASS’ 

processes, places, and agents respectively, but they have different capabilities. For example, 

RepastHPC is unable to handle collisions on a system level. Unlike RepastHPC’s Contexts and 

Projections, Places in MASS C++ can act upon the Agents that are on them and can perform 

computations of their own [21]. However, RepastHPC features more robust multi-dimensional 

spaces and graphing topologies for developers to use as compared to MASS, which can only use 

its Places arrays to emulate graph structures. 

2.1.3 FLAME 

The University of Sheffield, UK has developed FLAME as a C-based agent-based modeling 

platform [9]. A key aspect of FLAME is that it does not instantiate any simulation space on 

memory, with its processes retaining only environmental variables for its Agents to use. The 

Agents themselves, including their initial data and functions, are declared in XML files which act 

like C++ header files. 

FLAME’s parallelization is based on the Message-Passing Interface (MPI) like 

RepastHPC. Because FLAME’s Agents do not share a simulation space, they communicate with 

each other through message broadcasts and exchanges on message boards at each MPI rank. This 
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results in significant communication overhead as agents wait to receive messages. FLAME does 

not support the movement of agents like MASS or RepastHPC, instead statically mapping its 

Agents on MPI ranks and relying on message broadcasts to transmit and change Agent states. 

FLAME’s lack of a managed simulation space means that collisions can only be avoided if every 

Agent broadcasts their location to all other Agents. Each agent must then process every incoming 

message to determine which messages are relevant before it can change its state. The overhead of 

this process is computationally costly and so agent migration is impractical on FLAME. 

Despite FLAME’s significant limitations, it may still be chosen for programming agent-

based models that do not require agent migration. The code surrounding the allocation and 

deallocation of memory for agents and the code for inter-agent communication are generated 

automatically, allowing developers to focus on defining agent behavior, which both simplifies and 

limits programmability. 

2.2 PARALLEL ABM BENCHMARK PROGRAMS 

We selected seven agent-based models based on systems and problems in the social, behavioral, 

and economic (SBE) sciences as benchmarks for a comparative analysis between ABM libraries 

[20][21]. These models cover a range of distinct agent behaviors which perform and must be 

programmed differently, allowing for a more comprehensive performance and programmability 

analysis than a single, generic model. Agent-based models feature either static or dynamic agents, 

based on whether the agents have mobility across the simulation space. Depending on the model 

and the organization of the simulation space, they may have different forms of mobility. In 

addition, these agents may be grouped or operate independently. 

1. Social Science 

a. Social Network – a network of static agents 
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2. Behavioral Science 

a. Virtual Design Team – communication within distinct groups of static agents 

3. Economic Science 

a. Bail-in, Bail-Out – communication between groups of static agents 

4. Biological/Ecological Sciences 

a. Brain Grid – dynamic agents jumping across a geometric space 

b. Conway’s Game of Life – a simple cellular automata based on static spaces 

c. Tuberculosis – dynamic agents migrating across a geometric space 

5. Urban Planning 

a. MATSim – dynamic agents migrating over a network of spaces 

2.2.1 Bail-in, Bail-out, Financial Simulation 

In 2015, Klimek et al., a group of economists and computer scientists, studied the problem of how 

to model and optimally resolve financial crises involving failing banks [15]. The most common 

method is a bailout using government funds and tax money to contribute to a loan to the failing 

banks, protecting the banks and creditors but at a cost to taxpayers. Bail-ins are an alternative crisis 

resolution in which the government cancels the failing banks’ debts to their depositors, converting 

that debt into equity for the bank, protecting the banks and taxpayers but at a cost to the creditors 

of those banks. To determine which option works better, Klimek et al. developed an agent-based 

modeling framework called the Mark I CRISIS model to simulate a closed economy of banks, 

firms, and households [15]. This model forms the basis of the “Bail-in, Bail-out” benchmark 

programs we wrote to study the performance of ABM libraries for financial applications. 

Our implementation of the model represents the firm owners, workers, firms, and banks as 

Agents. In this closed economy, all money must come from other agents in the simulation and the 
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banks cannot print money or bring it in from outside of the simulation. The households consist of 

firm owners and workers who also possess personal bank accounts, the firms have profits and 

losses and must take out loans from banks, and the banks must offer loans while maintaining their 

cash reserves. The model ends after any bank in the simulation has reached bankruptcy, but a 

secondary option allows the model to continue for a specified number of iterations. 

2.2.2 Brain Grid, Self-Organizing Neural Network 

To cover the problem space of neuroscience and neural networks, we designed and implemented 

a self-organizing neural network simulation called Brain Grid [14]. The Brain Grid model takes 

place in a two-dimensional space composed of cells. Each cell may start empty, or it may start 

with a neuron. From these initial neurons, each representing a soma, axons and dendrites grow 

outward. Somas that have formed synaptic connections between each other will relay neural 

signals to other somas through the connections. These signals are simulated by agents jumping 

across the geometric space that represents the neural network. The model ends after a specified 

number of iterations. 

2.2.3 Conway’s Game of Life 

We implemented the common Conway’s Game of Life cellular automata because of its ubiquity 

as a program and its compatibility with agent-based modeling [11]. In Game of Life, each cell 

switches between an “alive” or “dead” state, based on the number of living cells in its Moore 

neighborhood. When implemented as an agent-based model, static agents represent each cell and 

synchronously communicate with their surrounding agents to determine whether they are alive or 

dead. The cellular automata continues until it reaches a specified number of iterations. 
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2.2.4 Multi-Agent Transport Simulation (MATSim) 

The Multi-Agent Transport Simulation (MATSim) is an agent-based model framework for 

modeling the movement of vehicles and traffic flows using a queuing network of agents moving 

through a simulation space [13][26]. MATSim is a popular agent-based model framework because 

of its use in urban planning and city modelling, but it is limited to that application and does not 

support parallelization. We designed a simpler form of MATSim for use as a benchmark for 

comparing ABM libraries. Unlike the original MATSim which can model complex road 

geography, the benchmark version uses a simple adjacency list comprised of vertices representing 

intersections. Agents, representing cars, start on intersections on the outer edges of the simulation 

space, with the goal of moving to a predetermined target destination at the center. The path each 

car takes is precalculated based on an input file, so the model does not actively perform shortest-

path calculations. However, both vertices/intersections and edges/roads have limited capacities, so 

during each iteration, some cars will need to wait before they can proceed on their path. This forms 

a queueing network which requires agents and the simulation space to communicate to avoid 

collisions. The simulation ends when all agents have reached their destination. 

2.2.5 Social Network 

Researchers commonly use agent-based modeling for simulating human systems because agents 

can abstractly model people and their interactions and connections on a large scale [2]. These 

models provide insights to the social scientists who study human behavior in certain contexts and 

situations they may not be able to simulate otherwise [4]. Social networks are one of the most 

common structures of interactive and interconnected humans, so they are commonly modeled with 

agents. We designed and implemented a simple social network model which simulates interactions 
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between a network of thousands of people. Each Person is a vertex in the network that tracks an 

adjacency list of their first-degree friendships with other people. Each Person relays N messages 

to their first-degree friends, with each message containing a list of the Person’s friends at the Nth 

degree. By the end of the simulation, each Person outputs a comprehensive list of their friends at 

each degree up to a degree specified by the user. The following is an example of what this output 

may look like: 

• Agent 0's friends 

o Degree 1: 1, 5, 8, 10 

o Degree 2: 2, 3, 4, .... 21 

o Degree 3: 7, 11, 20, 30, 31, ...... 52 

2.2.6 Tuberculosis 

Researchers in the biological/ecological sciences also use agent-based modeling to model the 

behavior of organisms interacting with each other in ecosystems [19]. The models are most 

applicable to simple cellular organisms which, like agents, have simple behaviors but at a large-

scale can form complex ecosystems. Some biologists also use these models to design new 

treatments or even new novel cell functions. For example, in 2016, researchers in the field of 

synthetic biology proposed the use of these models to inform their design of synthetic biological 

systems that can perform computations, sense diseases, or produce drugs and chemicals [12]. 

However, most biologists use these models to simulate existing cellular organisms including 

viruses or diseases. 

In 2004, researchers writing for the Journal of Theoretical Biology proposed using an 

agent-based model to simulate Mycobacterium tuberculosis (Mtb) bacteria in a human lung, the 

cause of the Tuberculosis (TB) disease [19]. The adaptive immune response to Mtb causes 
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formations of multicellular structures, called granulomas, in the lungs of infected individuals. The 

formation of granulomas progresses the disease in infected individuals, so understanding this 

process guides understanding of the disease and its treatment. Modeling the process of granuloma 

formation involves simulating the spatial and temporal organization and interactions between the 

Mtb cells and the immune system cells. The model was originally implemented as a non-parallel, 

CPU-based model, but another group of researchers in 2009 implemented a GPU-based model to 

improve performance [8]. We implemented a simplified but parallelized version of the original 

CPU-based model as a benchmark for parallel agent-based modeling libraries. We simplified the 

immune system into macrophages, T-cells, and chemokines, and we modeled their generation, 

diffusion, and termination within the simulation space. The model ends after a specified number 

of iterations. 

2.2.7 Virtual Design Team (VDT) 

To cover the problem space of behavioral and organizational science, we developed 

implementations of the Virtual Design Team (VDT) model. VDT is a model first devised by 

Raymond Levitt in the late 1980s but iterated into the 2000s which sought to model 

organizations/teams as they performed routine design or product development work [16]. Levitt 

argues that through a similar process by which engineers design their products through modeling, 

analyzing, and evaluating virtual versions of their systems, organizations and teams can be 

designed and improved in the same way. 

Our implementation of VDT forecasts the productivity of multiple teams of engineers using 

separate organizational structures. Each team is composed of project leads, UX designers, senior 

developers, junior developers, and test engineers, with tasks assigned to that team flowing through 

the hierarchy in that same order. Each team is composed of 25 engineers, each of which is 
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represented by agents, and though the teams can be organized differently, they must all have at 

least one member in each role. Teams are assigned a list of tasks which may either be production 

tasks or collaborative tasks. Production tasks are passed down through the team hierarchy, with 

each engineer role taking a different amount of time to complete their part, whereas collaborative 

tasks involve multiple engineers simultaneously. Teams work independently of each other, but the 

engineers within each team work closely together, so this simulation exemplifies models focused 

on intra-group agent communication. The model ends after all teams have processed all tasks. 

2.2.8 Summary 

Table 2.1 provides an overview of the differences between each benchmark program in 

terms of how they manage their agents and space. 

Table 2.1. Comparison of benchmark model designs 

Benchmark 

Programs 

Domain Computational 

Model 

Entities Space 

Structure 

Agent 

Population 

Bail-in, Bail-out Economic Inter-group 

comm 

Grouped agents Groups Multi-groups of 

agents (m:1) 

Brain Grid Biological Agent jump over 

2D 

Agents on space 2D Agents on given 

cells (0-m:1) 

Game of Life Behavioral Cellular 

automata 

Space only 2D Cells in 2D 

(0:1) 

MATSim City Planning Agent move on 

net 

Agents on 

space 

Group Agents on given 

vertices (0-m:1) 

Social Network Social Networked 

agents 

Space only Graph Vertices in net 

(0:1) 

Tuberculosis Biological Agent move on 

2D 

Agents on 

space 

2D Agents on given 

cells (0-m:1) 

VDT Behavioral Intra-group 

comm 

Grouped agents Groups Multi-groups of 

agents (m:1) 

 
Benchmark 

Programs 

Classes of 

Agents 

Execution time 

Agent 

Management 

Inter-entity 

Communication 

Lock/unlock Collision 

control 

Bail-in, Bail-out Multiple Static Multicast Yes No 

Brain Grid Single Spawn, kill, 

move 

8 neighbors, 

multicast 

No Yes 

Game of Life Single Static 8 neighbors No No 

MATSim Single Move Adjacent roads Yes Yes 

Social Network Single Static Adjacent 

vertices 

No No 
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Tuberculosis Multiple Spawn, kill, 

move 

8 neighbors No Yes 

VDT Single Static Multicast Yes No 

We see that the selected benchmarks cover a variety of different application domains, as 

well as different ways of using entities. The set of chosen benchmarks is therefore comprehensive 

for the purpose of a general performance and programmability comparison. Due to the different 

characteristics of each application, some of them may lend themselves to a certain ABM library in 

terms of programmability. For example, the agent migration features supported in MASS C++ 

might make it the best choice for MATSim, which involves agent movement across space during 

execution time. 

 

Chapter 3. RELATED WORK 

As a result of the high number of agent-based modeling platforms, many researchers have 

performed surveys, reviews, and comparative analyses to assess them and determine which 

systems are best for which applications [1]. In the period between 2016-2019, three groups of 

researchers, one writing for the Journal of Supercomputing and two for the Computer Science 

Review, surveyed and reviewed the current state-of-the-art agent-based modeling software 

[1][17][18]. These studies examined RepastHPC and FLAME among several other agent-based 

modeling platforms. However, no studies have assessed the MASS C++ library since it has been 

in active development during the period these articles were written and published. 

A review written by Abar et al. in 2017 broadly compares a comprehensive list of agent-

based modeling tools and platforms [1]. This review does not attempt to compare the performance 

of each platform, and it is not limited to cluster-based, parallel ABM platforms. The survey briefly 

covers FLAME and RepastHPC, but only in limited detail and with only a manual code and 
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documentation review process. According to the review, FLAME has moderate programmability 

and is suited for large-scale simulations. In comparison, RepastHPC is said to have moderate to 

complex programmability and to be suited for extreme-scale simulations. The overall review is 

useful for a brief overview of the many ABM platforms, but more data is required to qualify and 

quantify the differences between them. The performance and programmability results of our study 

provide a more in-depth comparison of FLAME, RepastHPC, as well as MASS C++. 

A survey conducted by Rousset et al. in 2016 proposed a generic reference model by which 

specifically distributed/parallel agent-based modeling software can be compared [18]. The survey 

uses the reference model to compare the performance of FLAME, RepastHPC among other 

parallel ABM platforms. The performance results found that RepastHPC consistently performed 

faster than FLAME with the same model parameters and the same number of computing cores. 

Specifically, with 16 cores the RepastHPC implementation was 2.02 times faster than FLAME 

while at 128 cores it was 9.26 times faster. The survey notes that when the model was executed 

with smaller parameters, FLAME was able to perform faster than RepastHPC. By examining the 

memory consumption of the two implementations, the study found that FLAME uses significantly 

more memory than RepastHPC for the same parameters, indicating that RepastHPC has better 

scalability. However, the generic reference model is a simple mathematical model and does not 

represent realistic problems in the social, behavioral, or economic fields. Researchers seeking to 

develop a model may prefer an ABM platform that is suited for their specific field, so a generic 

reference model may not provide all the data they need to make an informed judgment. 

In 2019, Moreno et al. designed a benchmark based on the reference model proposed by 

Rousset et al., and used it to compare FLAME, FLAME GPU, RepastHPC, and EcoLab [17]. 

When comparing FLAME and RepastHPC, RepastHPC was once again found to scale better than 



 

 

25 

 

FLAME. The RepastHPC benchmark implementation showed a linear increase in execution time 

as the workload increased, whereas FLAME showed a quadratic increase. This is mostly a result 

of FLAME’s agent communication overhead compared to RepastHPC, with FLAME 

communicating at least 100 times more bytes. Interestingly, FLAME performed computations up 

to 10 times faster than RepastHPC, and with smaller workloads the model was faster than 

RepastHPC. However, the communication overhead caused FLAME to scale poorly as the 

workload increased compared to RepastHPC. These findings contextualize the results of our 

performance comparison, which supplements this generic benchmark with seven additional 

benchmarks and introduces MASS C++ into the comparison. 

Chapter 4. MEASUREMENT METHODS 

4.1 PERFORMANCE MEASUREMENT METHODS 

We measured the performance of the 21 benchmark programs by executing each benchmark a total 

of twelve times to obtain average execution times. Although each benchmark has its own set of 

parameters which affect its execution time, we only wanted to assess how performance changes as 

the number of computing nodes increases from one to eight nodes. Therefore, we calibrated all 

other parameters to achieve an approximately 20-minute execution time on a single node and only 

increased the number of nodes to decrease that execution time. For each number of nodes, we 

executed the benchmark three times to obtain an average execution time. With the same data, we 

also compared the relative performance of MASS C++, RepastHPC, and FLAME’s 

implementations of each benchmark. 

MASS C++, unlike RepastHPC and FLAME, has an option which allows for multi-

threading the processes running on each computing node. We ran each benchmark with 4 threads 



 

 

26 

 

to assess how this feature affects the performance of MASS C++ compared to the single-threaded 

MASS C++, RepastHPC, and FLAME. 

Benchmarks written for the FLAME library, due to how FLAME handles the instantiation 

of agents using pre-generated XML files, were unable to handle the higher numbers of agents 

which were used for the MASS C++ and RepastHPC benchmarks. We created another set of 

parameters with fewer agents that achieves an approximately 20-minute single-node execution 

time on FLAME so that a comparison could still be made between all three ABM libraries. This 

required that we also execute the MASS C++ and RepastHPC benchmarks using that second set 

of parameters. In this study, benchmarks executions using the set of higher/larger parameters tuned 

using MASS C++ are referred to as “using the higher parameters”, while executions using the 

smaller parameters tuned for FLAME are referred to as “using the smaller parameters”. Due to 

issues with the RepastHPC implementations of Social Network and Virtual Design Team which 

limit their scalability, they could not be compared in the performance assessment. The following 

is an overview of the two parameter sets used for each benchmark: 

1. Bail-In, Bail-Out 

a. Higher Parameters: 20,000 workers, 2,000 firms, 5 banks, and 22000 

turns/iterations 

b. Lower Parameters: 20,000 workers, 2,000 firms, 5 banks, and 1100 

turns/iterations 

2. Brain Grid 

a. Higher Parameters: 100 turns/iterations, 540 x 540 grid 

b. Lower Parameters: 100 turns/iterations, 180 x 180 grid 

3. Game of Life 

a. Higher Parameters: 250 turns/iterations, 1000 x 1000 grid 

b. Lower Parameters: 250 turns/iterations, 165 x 165 grid 

4. Multi-Agent Transport Simulation (MATSim) 

a. Higher Parameters: 110 x 110 grid, 1210 cars 

b. Lower Parameters: 40 x 40 grid, 160 cars 

5. Social Network 

a. Higher Parameters: 580,000 agents, 50 friends each, up to 3rd degree of friendship 

b. Lower Parameters: 21,500 agents, 50 friends each, up to 3rd degree of friendship 

6. Tuberculosis 
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a. Higher Parameters: 10 iterations, 48 x 48 grid 

b. Lower Parameters: 8 iterations, 16 x 16 grid 

7. Virtual Design Team (VDT) 

a. Higher Parameters: 1000 tasks, 400 teams 

b. Lower Parameters: 1000 tasks, 64 teams 

4.2 BENCHMARK SCRIPTS 

To improve the process of measuring performance across the 21 benchmark programs, we 

developed scripts which could compile and run each benchmark. We also standardized the scripts 

which were already written for some of them. This was necessary because all the benchmark 

programs were written at different times and often by different students, and therefore each 

required their own steps to compile and run. The “compile” shell scripts automate the process of 

exporting the necessary agent-based modeling libraries and compiling the benchmark code using 

g++ or Makefiles. Similarly, the “run” shell scripts simplify the process of executing each 

benchmark, although it does still require the user to know exactly which arguments they wish to 

pass to the program. These scripts simplify what would otherwise be several console commands 

into a single script execution. In addition, we wrote readme files for each benchmark which 

explains the process of executing these scripts. The benchmark runner program described in 

Section 5.3 uses these scripts and further simplifies the process of executing benchmarks. 

4.3 BENCHMARK RUNNER PROGRAM 

We developed a benchmark runner program, BenchmarkRunner, which leverages the compile and 

run scripts described in Section 5.2 to further simplify and automate the process of executing the 

benchmarks. Instead of navigating to each benchmark’s directory and running the scripts 

manually, users can execute the BenchmarkRunner from a central directory and specify the target 

benchmark from there. The process navigates to the directory of the target benchmark and then 
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runs the corresponding shell scripts. We designed BenchmarkRunner to allow users to specify 

prerecorded parameters into a text file that are then automatically entered into the corresponding 

scripts. 

We further simplified the BenchmarkRunner program by writing more shell scripts to run 

the BenchmarkRunner. Specifically, “compile_benches.sh” and “run_benches.sh will run 

BenchmarkRunner which compiles or runs the benchmarks, only requiring the user to specify the 

target benchmark. Another shell script, “automate.sh”, automates the process of running multiple 

benchmarks sequentially with different numbers of computing nodes. For example, it will run a 

benchmark with a single node three times, then it will run the same benchmark with two nodes 

three times, and so on until it has run all numbers of nodes with all specified benchmarks. This 

script, which allows for the execution of benchmarks overnight without monitoring, is the primary 

method by which we collected the benchmark performance measurements. 

We developed an additional functionality for BenchmarkRunner which allows multiple 

benchmarks to be executed simultaneously. This feature uses multiple execution threads, each of 

which remotely connects to other computing nodes with SSH2, navigates to the directories of a 

target benchmark, and then executes their scripts at the same time. This was implemented to allow 

for complete utilization of all 24 computing nodes in UW Bothell’s Linux machine network. On a 

single-threaded BenchmarkRunner instance, a single benchmark uses up to 8 out of the 24 

available computing nodes, leaving 16 nodes unused. With the multi-threaded BenchmarkRunner, 

a user could simultaneously run up to 24 single-node or three 8-node benchmarks. We did not use 

this feature for our performance measurements because of inconsistencies between the computing 

nodes themselves, causing benchmark execution to succeed on certain nodes and fail on others.  
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4.4 PROGRAMMABILITY ASSESSMENT METHODS 

We assessed the programmability of the ABM libraries by quantitatively analyzing each 

benchmark with static code analysis tools and performing a qualitative manual code review of each 

benchmark. 

4.4.1 Static Code Analysis 

We performed static code analysis to obtain quantitative metrics for each benchmark. 

Specifically, we used a program that counts the lines of code in each benchmark implementation 

and broke down the lines used for specific aspects of each model. For example, for each benchmark 

implementation we counted the lines of code dedicated to defining the behavior of agents and 

compared which library requires more. In the case of benchmarks written with the FLAME library, 

the tool must be used before the benchmarks are compiled. This is because FLAME’s compilation 

process automatically generates many files not written by the benchmark programmer and are 

therefore not part of the programmability assessment. We gathered these quantitative metrics to 

compare each library:  

• Lines of Code – the total lines of code for the entire program 

• Control Flow Statements –a count of all if statements, for loops, while loops, and switch 

statements. This acts as an approximate measurement of cyclomatic complexity 

• Lines of Boilerplate Code – the library code that sets up the parallel cluster but is not 

dedicated to the management of space or agents  

• Lines of Agent Code – lines of code concerning agent behavior and computations 

• Lines of Spatial Code – lines of code concerning the behavior of space 

• Lines of Model Design Code – total lines of agent and spatial code 
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• Lines of Model Management Code – lines of code concerning the management of the 

agents and space on a model 

4.4.2 Code Review 

The manual code review of each benchmark produces qualitative observations about how models 

are implemented for each ABM library. We can use these observations to assess the capabilities 

and limitations of each ABM library broadly. These qualitative metrics describe how each library 

handles specific aspects of each benchmark: 

• Computational Model – the approaches that the ABM library takes to different types of 

agent behavior and actions 

• Entities (Space and/or Agents) – whether the ABM library supports the definition of the 

agents as well as the space of the model 

• Space Structure – how the ABM library structures the simulation space that the model 

exists on 

• Agent Population – how the ABM library populates the simulation space 

• Multiple Classes of Agents – whether the ABM library supports multiple classes of agents 

or spaces 

• Runtime Agent Management – how the ABM library manages the agents in the model 

during runtime 

• Inter-Agent Communication – how the ABM library handles agents communicating with 

each other 

• Synchronization (Lock/Unlock) – how the ABM library manages synchronization of data 

between agents 
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• Collision Control – how the ABM library addresses the risk of agent collision 

Chapter 5. PERFORMANCE AND PROGRAMMABILITY 

EVALUATION 

Chapter 5 illustrates and discusses the results of the performance and programmability analyses 

for each benchmark model and each ABM library. The performance results are visualized using 

line plots. The specific average execution times in seconds are listed in the tables in Appendix A. 

In addition, the standard deviation and variance of each set of executions is listed in the tables in 

Appendix B. The programmability assessments explain how each ABM library implements each 

model to provide a qualitative comparison of the benchmark models and ABM libraries. Then, 

these implementations are measured quantitatively, comparing lines of code 

5.1 BAIL-IN, BAIL-OUT, FINANCIAL SIMULATION 

All implementations of the Bail-In, Bail-Out financial/bank simulation use a constant number of 

20,000 workers, 2,000 firms, and 5 banks, only changing the number iterations/turns to affect the 

execution time. On a single node, the MASS C++ model must process 22,000 iterations to reach 

the target average execution time of 20 minutes, so the “higher parameters” uses 22,000 iterations. 

The FLAME implementation of the model is unable to process that many iterations in a reasonable 

time, so we selected 1,100 iterations for the “smaller parameters”. 

5.1.1 Performance Results 

We executed MASS C++ with 22,000 iterations using both single-threaded and four-threaded 

execution. Figure 5.1 illustrates the difference in execution times as both the number of nodes and 

the number of threads increase. The MASS C++ implementation of the Bail-In, Bail-Out model 
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does not demonstrate a significant improvement in performance when the number of nodes is 

increased. This is a result of its usage of MASS C++’s “Place” construct to represent the model’s 

“FinancialMarket”. Each “FinancialMarket” Place acts as a form of shared memory, allowing local 

Agents (workers, banks, and firms) to communicate with each other. In addition, FinancialMarkets 

communicate with each other across the model to exchange transaction information. These 

communication processes incur a constant communication overhead per iteration which is 

dependent on the number of agents in the model, and so increasing the number of nodes does not 

significantly decrease execution time. The performance only worsens when using four threads 

because the added thread synchronization incurs an overhead of its own while not addressing the 

existing communication overhead. 

 
Figure 5.1. MASS C++ Bail-In, Bail-Out using the higher parameters, execution time in 

seconds as the number of nodes increases 

Figure 5.2 demonstrates that, unlike the MASS C++ model, the RepastHPC 

implementation of Bail-In, Bail-Out has improved performance when increasing the number of 

nodes. On a single node, it takes an average of 6,812 seconds to complete 22,000 iterations, while 

on eight nodes it takes 1,493 seconds. However, even at eight nodes the RepastHPC model 
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performs worse than the MASS C++ model. This is because of the model’s usage of RepastHPC’s 

“Observer” construct, which coordinates the agents on the model. Like the MASS C++ model, this 

coordination and communication incurs significant overhead. Unlike MASS C++, RepastHPC is 

better able to distribute this process across the cluster which improves performance as the number 

of nodes increases. The overhead still appears to be worse overall because of RepastHPC’s 

communication system which requires communicating agents to be copied at other nodes. 

 

Figure 5.2. Bail-In, Bail-Out models using the higher parameters, execution time in seconds 

as the number of nodes increases 
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While FLAME appears to be able to handle the number of agents in the model, it is still 

significantly slower than MASS C++ and RepastHPC so it must use a lower number of iterations 

to execute in a timely manner. Figure 5.3 shows the execution times of the MASS C++, 

RepastHPC, and FLAME models with 1,100 iterations. It takes FLAME approximately 1,212 

seconds to process 1,100 iterations, though this does decrease to 185 seconds when using a cluster 

of eight nodes. The FLAME model’s worse performance is due to its extremely high 

communication overhead, which is itself a consequence of FLAME’s broadcast-based, message 

board communication system [18]. The MASS C++ model performs much faster than the FLAME 

model, completing 1,100 iterations in less than 60 seconds. However, performance still does not 

improve with more nodes in the model. RepastHPC’s performance is better than the FLAME 

model, but worse than the MASS C++ model. 

 
Figure 5.3. Bail-In, Bail-Out models using the smaller parameters, execution time in seconds 

as the number of nodes increases 
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5.1.2 Programmability Assessment 

The MASS C++ model instantiates with several FinancialMarket Places, enough to contain one 

Firm Agent per Place. These individual FinancialMarket elements facilitate communication 

between the Agents in the simulation, acting as a sort of shared memory and messaging system for 

the model. The Bank, Firm, and Worker Agents are instantiated and associated with each other 

and with FinancialMarket Places. The Agents perform their various transactions, which are 

accordingly exchanged across the FinancialMarket with exchangeAll(). 

The RepastHPC model uses the Observer to manage the model, instantiating and 

coordinating all of its Bank, Firm, and Worker agents. The Agents and the Observer coordinate 

between each other using temporary Messenger agents which carry and exchange transaction 

information across the model. 

The FLAME model instantiates all Bank, Firm, and Worker agents into the initial 0.xml 

file. Their transactions between each other are coordinated through the message board which they 

all communicate on, but there is no central controller like MASS C++’s FinancialMarket or 

RepastHPC’s Observer. The FLAME model struggles with ending the model once bankruptcy has 

occurred, so for the sake of the comparison, all of the model implementations end after a certain 

number of iterations instead. 

Table 5.1 compares the lines of code used to write each ABM library’s implementation of 

the Bail-In, Bail-Out model. The MASS C++ model has the fewest lines of code overall, with 

almost half as many as RepastHPC. However, it uses a space construct as part of its model which 

makes its implementation slightly different from the RepastHPC and FLAME models. 
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Table 5.1. Quantitative comparison of benchmark implementations by library 

Library Lines 

of 

Code 

Control 

Flow 

Statements 

Boilerplate 

LoC 

Agent 

LoC 

Space 

LoC 

Model 

Design 

LoC 

Model 

Management 

LoC 

MASS C++ 688 69 123 331 186 517 48 

RepastHPC 1293 74 134 699 0 699 460 

FLAME 894 36 265 344 0 344 285 

5.2 BRAIN GRID, SELF-ORGANIZING NEURAL NETWORK 

For the Brain Grid Self-Organizing Neural Network model, the number of iterations and the size 

of the simulation space determine its execution time. For MASS C++, a 540 by 540 grid space 

running for 100 iterations takes 20 minutes, whereas for FLAME a 168 by 168 grid running for 

100 iterations takes 20 minutes. 

5.2.1 Performance Results 

Figure 5.4 shows that the MASS C++ Brain Grid model significantly improves in performance 

when the number of nodes increases, as well as when the number of threads increases. On single-

threaded models, the execution time drops from 1,191 seconds at one node to 170 seconds at eight 

nodes. On a single node, the execution time drops from 1,191 on one thread to 487 seconds on 

four threads. On both eight nodes and 4 threads, the execution time drops as low as 84 seconds. 

The MASS C++ model effectively utilizes parallelization to divide the simulation space across the 

cluster’s computing nodes, with each node using multiple threads to perform computations. 
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Figure 5.4. MASS C++ Brain Grid using the higher parameters, execution time in seconds as 

the number of nodes and the number of threads increase 

The RepastHPC implementation of Brain Grid uses Logo constructs to simulate the neural 

network grid. The neurons and signals are represented by Turtles, which are mobile agents. The 

grid spaces they travel across, known as BrainPlaces, are represented by Patches which are fixed 

agents. An Observer at each rank manages the model by coordinating the creation of new agents 

and movement of existing agents. Figure 5.5 shows that the RepastHPC model has worse 

performance than the MASS C++ model. Once again, the communication overhead of RepastHPC 

itself likely causes this worsened performance, especially with this many spawning, moving, 

communicating agents. 
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Figure 5.5. Brain Grid models using the higher parameters, execution time in seconds as the 

number of nodes increases 

Figure 5.6 shows that the FLAME model can handle a 168 by 168 simulation space running 

for 100 iterations. Figure 5.6 demonstrates that the MASS C++ Brain Grid model has significantly 

better performance than the FLAME version. In addition, while Figure 5.6 shows that RepastHPC 

also performs better, MASS C++ is still better than both. 

 
Figure 5.6. Brain Grid models using the smaller parameters, execution time in seconds as the 

number of nodes increases 
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5.2.2 Programmability Assessment 

The MASS C++ model starts as a grid of “BrainPlaces”, some of which begin as neurons. 

“GrowingEnd” agents move outwards from these starting neurons using neighbor information 

from exchangeBoundary(). These movements grow the network by changing unoccupied 

BrainPlaces into somas, dendrites, axons, and synaptic terminals. Once synaptic connections have 

been made between neurons, a soma BrainPlace starts sending signals to other somas via the 

connections, calling exchangeAll(). 

The RepastHPC model populates Neuron Agents over a two-dimensional 

SharedDiscreteSpace and diffuses them to neighboring coordinates to mimic the grow of neural 

network. RepastHPC natively supports the SharedDiscreteSpace structure, which allows for more 

robust control over the model. Rather than changing the state of existing spaces on the network, 

the model directly adds and removes Agents from the context using addAgent() and 

removeAgent(). Signal Agents jump from soma to soma with moveTo(). 

The FLAME model populates the network with pairs of Place Agents and Neuron Agents 

in 2D. The model uses Agents to mimic Places because FLAME only supports Agent constructs. 

Each Neuron sends a request-to-grow message to the corresponding remote Place that arbitrates 

multiple different requests to allow only one neuron to occupy that place. Once a neural connection 

is set up, a Neuron agent starts sending a signal to another. 

Table 5.2 compares the lines of code used to write each ABM library’s implementation of 

the Brain Grid model. The MASS C++ model has the fewest lines of code overall, while the 

FLAME model has the most. Unlike the RepastHPC and FLAME models which use agents, the 

MASS C++ model represents Persons in the social network using Places. 
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Table 5.2. Quantitative comparison of benchmark implementations by library 

Library Lines 

of 

Code 

Control 

Flow 

Statements 

Boilerplate 

LoC 

Agent 

LoC 

Space 

LoC 

Model 

Design 

LoC 

Model 

Management 

LoC 

MASS C++ 918 129 167 282 431 713 38 

RepastHPC 1184 118 152 514 154 668 364 

FLAME 1403 103 322 461 23 484 597 

5.3 CONWAY’S GAME OF LIFE 

For the Game of Life cellular automata model, the number of iterations and the size of the 

simulation space determine its execution time. The model is very simple, so all implementations 

can handle a much larger simulation size. A 250 by 250 grid space running for 250 iterations takes 

20 minutes for MASS C++, whereas a 165 by 165 grid running for 250 iterations takes 20 minutes 

for FLAME. 

5.3.1 Performance Results 

Figure 5.7 shows that, for the MASS C++ model, the performance increases as the number 

of nodes and the number of threads increase. With 8 nodes each running with 4 threads, the average 

time reaches as low as 69 seconds. RepastHPC and FLAME lack this multi-threading capability 

and cannot achieve similar performance improvements compared to a single node. 
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Figure 5.7. MASS C++ Game of Life using the higher parameters, execution time in seconds 

as the number of nodes and the number of threads increase 

Figure 5.8 shows that RepastHPC has worse performance as compared to MASS C++. 

Given the simplicity of the model in terms of what the programmer defines, the difference in 

performance must be attributed to the overhead of RepastHPC’s own processes. 

 
Figure 5.8. Game of Life models using the higher parameters, execution time in seconds as 

the number of nodes increases 
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Figure 5.9 shows the performance of the FLAME model with a 165 by 165 grid. In terms 

of scalability, this grid size is the closest out of all benchmarks to what MASS C++ and RepastHPC 

are capable of. However, the FLAME model is still significantly slower than the MASS C++ and 

RepastHPC versions. With the 165 by 165 grid used in the smaller parameters and with a single 

node, the MASS C++ model only takes 31 seconds to achieve what FLAME achieves in 20 

minutes. RepastHPC is also able to perform significantly faster than FLAME using the same 

parameters, but its execution times are slower than MASS C++. 

 
Figure 5.9. Game of Life models using the smaller parameters, execution time in seconds as 

the number of nodes increases 

5.3.2 Programmability Assessment 

The MASS C++ model creates a two-dimensional array of Places. Each Place exchanges its state 

with the Places in its Moore neighborhood through exchangeBoundary(). The state of each Place 

is determined when the main program executes callAll() on all Places. 
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The RepastHPC model creates static Patch agents in a two-dimensional space and controls 

them with two ask() methods. The first call of ask() to a Patch agent checks the states of its 

neighbors and the second call changes its state according to the state of the neighbors. 

The FLAME model creates agents representing the cells, each with i- and j-coordinates. In 

each iteration, the Agents repeat a series of actions: write_state to send their state to neighbors, 

read_state to receive neighbor information, and react calls to change their state. 

Table 5.3 compares the lines of code used to write each ABM library’s implementation of 

the Game of Life model. The FLAME model has the fewest lines of code overall, while the 

RepastHPC model has the most. The differences are minor, however, since the models are so 

simple. 

Table 5.3. Quantitative comparison of benchmark implementations by library 

Library Lines 

of 

Code 

Control 

Flow 

Statements 

Boilerplate 

LoC 

Agent 

LoC 

Space 

LoC 

Model 

Design 

LoC 

Model 

Management 

LoC 

MASS C++ 203 17 21 0 111 111 71 

RepastHPC 235 18 72 0 49 49 114 

FLAME 144 7 3 0 47 47 64 

5.4 MULTI-AGENT TRANSPORT SIMULATION (MATSIM) 

Each MatSim model utilizes the same input files to determine the size of the model. To achieve a 

20-minute execution time on MASS C++ on a single node, the intersection input file contains a 

110 by 110 grid, and the car input file contains 1210 cars and their routes. The FLAME intersection 

input file contains a 40 by 40 grid, and the car input file contains 160 cars and their routes. 

5.4.1 Performance Results 

Figure 5.10 shows the performance of the MASS C++ MATSim model using 1 thread. The 

four-threaded performance is unavailable because the model stops working with multi-threading 
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when multiple nodes are used, demonstrating that multi-threading is not always an option. This is 

caused by the unique shared file memory developed specifically for the MATSim model which 

does not work when multiple threads and nodes are contending for the shared memory. Multi-

threading can still be used on a single node for the MatSim model. This results in an execution 

time of 640 seconds, which is still an improvement over a single-threaded single node. This multi-

threaded, single node configuration may be useful if a user is only able to execute the model on a 

single node but seeks better performance. 

Figure 5.10 also shows that RepastHPC can achieve superior performance to MASS C++ 

for certain models. The key difference with this model is that the Observer contains less code 

dedicated to coordinating communication between agents. Instead, the Observer passes static 

instances of the intersections and roads to each agent, and the agents determine for themselves 

whether they can move from one location to the next. 

 
Figure 5.10. MATSim models using the higher parameters, execution time in seconds as the 

number of nodes increases 

Figure 5.11 shows the performance results of the FLAME MATSim model using the 40 by 

40 grid with 160 cars. Each car sends a message requesting to move for the upcoming iteration, 
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which slows the model’s performance. The results for the MASS C++ and RepastHPC models also 

demonstrate a phenomenon in which increasing the number of nodes decreases the performance 

when the execution times are already low. This is due to the increased overhead of managing 

multiple nodes and organizing the communication between agents. Regardless, the performance 

for both models is still much faster than the FLAME model. 

 
Figure 5.11. MATSim models using the smaller parameters, execution time in seconds as the 

number of nodes increases 

5.4.2 Programmability Assessment 

The MASS C++ model first reads the input file containing the list of intersections and roads 

connecting them, loading them into Places which form a shared memory for the model. These 

Intersections are then initialized as a network of Intersection Places, connected by Road objects. 

The input file containing the cars and their routes is also loaded into shared memory, and then the 

cars are initialized as Car Agents. Once the model has been fully initialized, the main program 

iteration loop tells the Car Agents to proceed along their routes towards their destination at the 
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center. To avoid collisions or locks caused by Cars blocking each other, all Cars moving North are 

told to move first, then all Cars moving East move, and so on for each iteration. 

The RepastHPC model uses the Observer to read the intersection/node and car/route input 

files. The Observer initializes the Point (intersection) objects, the Road objects connecting them, 

and the Agents representing the cars. The Observer then commands each Agent to move along its 

route, directly passing the Point and Road information in the command so that the Agent knows 

whether it can move. 

The FLAME model reads the intersection and car input files and formats them into Place 

Agents and Car Agents in the 0.xml input file. Using the message board, the Car Agents send 

requests to move along their route to the Place Agents, which approve or deny the requests 

according to their capacity. If the request has been approved, the Car Agent moves along the route. 

Table 5.4 compares the lines of code used to write each ABM library’s implementation of 

the MATSim model. The MASS C++ model has the fewest lines of code overall, while the 

FLAME model has the most. 

Table 5.4. Quantitative comparison of benchmark implementations by library 

Library Lines 

of 

Code 

Control 

Flow 

Statements 

Boilerplate 

LoC 

Agent 

LoC 

Space 

LoC 

Model 

Design 

LoC 

Model 

Management 

LoC 

MASS C++ 587 84 89 193 211 404 93 

RepastHPC 897 73 104 295 173 468 325 

FLAME 1025 103 322 461 23 484 597 

5.5 SOCIAL NETWORK 

MASS C++ can handle 580,000 people in the social network model, although they are represented 

by MASS C++’s “Place” spatial constructs rather than agents like RepastHPC and FLAME. An 

issue occurs when the MASS C++ Social Network model is executed with four threads. FLAME 

can reach 20 minutes with at most 21,500 people with all other parameters being the same. Due to 
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differences in implementation, RepastHPC can only achieve a 20-minute execution time with 1400 

agents. The differences in implementation may mean that the comparison between the three 

libraries for this specific benchmark model are not entirely valid. 

5.5.1 Performance Results 

Figure 5.12 shows the performance of the MASS C++ Social Network model using a single 

thread. The single-threaded and four-threaded figures have been separated because of irregularities 

with the four-threaded performance. The MASS C++ Social Network model does not properly 

execute with four threads, producing incorrect output. It is currently unclear what causes this issue 

to occur, though this is the only model and configuration it seems to occur on. This demonstrates 

a downside of the MASS C++ multithreading feature, which is that it is not guaranteed to work 

even when the single-threaded operation works normally. The RepastHPC implementation of the 

Social Network model cannot execute with either the larger or smaller parameters. Instead, to reach 

20 minutes, it can only execute up to 1400 agents. This implementation will need to be investigated 

and fixed to make it eligible for the performance comparison. 
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Figure 5.12. Social Network models using the higher parameters with one thread, execution 

time in seconds as the number of nodes increases 

Figure 5.13 shows that FLAME can execute the Social Network model with no issues, 

though it is limited in its scalability compared to MASS C++. The MASS C++ model can execute 

with the smaller parameters in 33 seconds on a single node or as fast as 5 seconds with eight nodes. 

 
Figure 5.13. Social Network model using the smaller parameters, execution time in seconds 

as the number of nodes increases 
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5.5.2 Programmability Assessment 

The MASS C++ model mimics a social network with a 1-dimensional array of Places, each 

representing a Person. Each of the Places maintains an adjacency list of other Places representing 

the Person’s friends. The main program orders each Place to disseminate their lists of friends as 

messages over the network with exchangeAll(). 

The RepastHPC model creates a SharedContext space over the MPI ranks and populates 

the context with Agents which each maintain a list of their first-degree friends. The model 

examines an Agent, prints that Agent’s first-degree friends, then examines each of the friends to 

print their first-degree friends, and so on until the target degree-of-friendship has been reached. 

There are no message exchanges because the agents exist in the same SharedContext. 

The FLAME model represents social network vertices with Person agents, each repetitively 

sending its list of 𝑁𝑡ℎ degree of friends to the message boards of its first degree of friends. 

Table 5.5 compares the lines of code used to write each ABM library’s implementation of 

the Social Network model. The MASS C++ model has the fewest lines of code overall, while the 

RepastHPC model has the most. Unlike the RepastHPC and FLAME models which use agents, 

the MASS C++ model represents Persons in the social network using Places. 

Table 5.5. Quantitative comparison of benchmark implementations by library 

Library Lines 

of 

Code 

Control 

Flow 

Statements 

Boilerplate 

LoC 

Agent 

LoC 

Space 

LoC 

Model 

Design 

LoC 

Model 

Management 

LoC 

MASS C++ 275 35 35 0 113 113 127 

RepastHPC 426 35 87 78 0 78 261 

FLAME 334 12 67 56 0 56 211 
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5.6 TUBERCULOSIS 

The relative complexity of the Tuberculosis model means that it reaches 20 minutes even 

with a much smaller grid size and number of iterations than other benchmarks. The MASS C++ 

and RepastHPC Tuberculosis models can both able to execute within 20 minutes with a 48 x 48 

grid and 10 iterations, while the FLAME model is limited to a 16 by 16 grid with 8 iterations. 

5.6.1 Performance Results 

Figure 5.14 demonstrates that for the MASS C++ Tuberculosis model, performance 

increases both as nodes increase and as threads increase. The performance of the Tuberculosis 

model is not noteworthy, since it predictably improves in performance with more nodes and more 

threads.  

 
Figure 5.14. Tuberculosis models using the higher parameters, execution time in seconds as 

the number of nodes and the number of threads increase 
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Figure 5.15 shows that the RepastHPC model executes with approximately double the 

execution time as compared to the MASS C++ model with the same parameters. 

 
Figure 5.15. Tuberculosis models using the higher parameters, execution time in seconds as 

the number of nodes increases 
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Figure 5.16 shows that with the lower parameters, the MASS C++ and RepastHPC models 

perform faster than the FLAME model. This indicates that even with a significantly smaller grid 

size and number of iterations FLAME still cannot perform as well as MASS C++ or RepastHPC. 

 
Figure 5.16. Tuberculosis models using the smaller parameters, execution time in seconds as 

the number of nodes increases 

5.6.2 Programmability Assessment 

The MASS C++ model creates a two-dimensional array of TB_Places, each of which can contain 

a single bacterium, up to one T-Cell and one Macrophage, and a chemokine (a trail left by infected 

Macrophages). The model begins with certain Places starting with bacteria, and with Macrophages 

starting in random Places. T-Cells enter the simulation through certain Places that are designated 

as “blood vessels”. The Agents in the MASS C++ model have autonomy of space navigation and 

action, allowing Macrophage agents to eat bacteria and T-Cell agents to activate/burst 

Macrophages as they encounter them. 

The RepastHPC model instantiates the TuberculosisObserver context, which creates a two-

dimensional space of LungPlace Patches. Each Patch is either healthy, a blood vessel entry point, 
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or occupied by bacteria. The Observer initially populates and continuously spawns Macrophage 

agents at given LungPlaces. It later spawns T-cell agents from the blood vessel entry points. Since 

agent-to-agent direct communication is hard to implement in RepastHPC, the Patches manage the 

agents’ interactions with each other. 

The FLAME model instantiates place Agents that simulates a two-dimensional space. Each 

Agent acts as a healthy place, a blood vessel entry point, or a place occupied by bacteria. 

Macrophage Agents are initially populated from the 0.xml file but are continuously spawned from 

blood vessel entry points. T-Cell agents are also later spawned from the blood vessel entry points. 

Both Macrophage and T-Cell agents exchange messages with the current and neighboring place 

Agents. The place Agents manage the other agents regarding collision avoidance, agent migration, 

and agent termination. 

Table 5.6 compares the lines of code used to write each ABM library’s implementation of 

the Tuberculosis model. The RepastHPC model has the fewest lines of code overall, while the 

FLAME model has the most. Interestingly, MASS C++ has very little code for managing the 

model, with the agents and Places largely managing themselves. In contrast, FLAME has the most 

code for coordinating the model. 

Table 5.6. Quantitative comparison of benchmark implementations by library 

Library Lines 

of 

Code 

Control 

Flow 

Statements 

Boilerplate 

LoC 

Agent 

LoC 

Space 

LoC 

Model 

Design 

LoC 

Model 

Management 

LoC 

MASS C++ 883 138 153 331 377 708 22 

RepastHPC 647 68 87 199 127 326 234 

FLAME 1140 60 411 172 114 286 443 

5.7 VIRTUAL DESIGN TEAM (VDT) 

The MASS C++ model can process 400 teams of engineers performing 1000 tasks in 20 minutes. 

The RepastHPC model is not completely implemented and currently only allows for a single team 
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per rank, which is far from the limit that RepastHPC can handle. The FLAME model can process 

64 teams performing 1000 tasks in 20 minutes. 

5.7.1 Performance Results 

Figure 5.17 and Figure 5.18 both show that the MASS C++ model’s performance generally 

increases as the number of nodes increases. Interestingly, the performance of the model decreases 

when the number of threads increases. This is because the Virtual Design Team model operates 

with a specific workflow where tasks are passed between team members with an emphasis on 

intra-group communication. The introduction of multi-threading results in increased overhead 

during this communication process which does not benefit from the multi-threading. 

 
Figure 5.17. MASS C++ VDT using the higher parameters, execution time in seconds as the 

number of nodes and the number of threads increase 
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Figure 5.18. VDT models using the higher parameters, execution time in seconds as the 

number of nodes and the number of threads increase 

Figure 5.19 shows the performance of the MASS C++, RepastHPC, and the FLAME VDT 

models with the smaller parameters. First, the FLAME model’s execution time decreases as the 

number of nodes increases, but the performance appears to worsen when increasing from 4 to 8 

nodes. The MASS VDT model also plateaus between 4 and 8 nodes with both the larger and 

smaller parameters, indicating that this is a normal pattern for the VDT model. Once again, this is 

the result of the increased communication overhead involved with increasing the number of 

processes in the model. 
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Figure 5.19. VDT models using the smaller parameters, execution time in seconds as the 

number of nodes increases 

 

5.7.2 Programmability Assessment 

The MASS C++ model instantiates Places as development teams, each containing 25 Engineer 

Agents. These Engineers continuously take new tasks from their supervisors (an Engineer higher 

in the hierarchy), spends time “working on the task”, and passes the task to the task tray of the 

next Engineer in the workflow. The task trays must be handled as critical sections due to MASS 

C++’s multithreaded computation. 

The RepastHPC model instantiates Observer contexts, each representing a team and 

populating Engineer Agents. Each Observer macroscopically manages task flows, centrally 

maintains task trays, and relays a task from one Agent to a lower-level Agent. Currently, since 

each Observer represents a team, the number of teams is limited to the number of Observers which 

is significantly limited compared to both MASS C++ and FLAME. This is incorrect behavior, so 

the performance of the RepastHPC model is not compared. 
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The FLAME model populates Member Agents, each with a different type and each with a 

given team ID. The FLAME model must use team IDs rather than other methods of grouping 

agents such as Places because of FLAME’s limitations in defining space. The simulation also 

instantiates Task Agents, with each one keeping track of which Member is currently processing it. 

Members with the same team ID check-in and check-out the shared task, coordinating with 

hierarchical communication using the FLAME message boards. 

Table 5.7 compares the lines of code used to write each ABM library’s implementation of 

the Virtual Design Team model. The MASS C++ model has the fewest lines of code overall, while 

the RepastHPC model has the most. However, it uses Places on the simulation space to represent 

teams of engineers unlike RepastHPC and FLAME which are entirely agent-based. 

Table 5.7. Quantitative comparison of benchmark implementations by library 

Library Lines 

of 

Code 

Control 

Flow 

Statements 

Boilerplate 

LoC 

Agent 

LoC 

Space 

LoC 

Model 

Design 

LoC 

Model 

Management 

LoC 

MASS C++ 593 86 68 72 227 299 227 

RepastHPC 847 91 65 298 0 298 484 

FLAME 842 48 155 405 0 405 282 

5.8 SUMMARY 

5.8.1 Performance Results 

The summaries of average execution times in both Table 5.8 and Table 5.9 indicate that 

the models written with MASS C++ generally had the best performance, especially when multi-

threaded. An exception to this is the MATSim model where the RepastHPC version had superior 

performance. In general, even the single-threaded performance of the MASS C++ model surpassed 

the performance of most RepastHPC models. FLAME had the demonstrably worst performance 

and scalability of the three ABM libraries, requiring its own set of smaller parameters to be able 

to be compared with the other two libraries. 
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Table 5.8. Average execution times in seconds for each benchmark implementation using the 

higher parameters 

# 

Computing 

Nodes 

Libraries Bail-in, 

Bail-out 

Brain 

Grid 

Game of 

Life 

MATSim Social 

Network* 

Tuber-

culosis 

VDT** 

1 node MASS 1 1,203.913 1,191.925 1,163.152 1,154.488 1,097.882 1,096.603 1,201.433 

MASS 4 1,773.623 487.305 393.635 640.961 6.428 421.006 2,047.137 

Repast 6,812.577 6,213.978 4,647.147 956.689 1,229.729 2,308.043 0.031 

2 nodes MASS 1 1,193.632 678.524 654.490 646.178 446.501 603.602 692.947 

MASS 4 1,819.960 244.897 199.043 N/A 4,343.893 197.195 950.932 

Repast 4,686.141 4,381.844 2,897.910 509.679 1,240.832 1,184.286 0.025 

4 nodes MASS 1 934.339 339.261 328.800 383.815 239.960 325.989 432.124 

MASS 4 1,610.938 182.016 133.070 N/A 231.046 116.044 776.380 

Repast 2,666.279 2,434.674 1,605.113 293.210 1,353.733 588.439 0.022 

8 nodes MASS 1 1,058.749 170.401 165.606 359.572 129.332 164.175 301.425 

MASS 4 1,705.560 84.277 69.896 N/A 56.908 59.250 494.800 

Repast 1,493.997 1,425.412 751.137 219.274 1,369.767 289.893 0.016 

* - RepastHPC Social Network was limited to significantly fewer agents than MASS C++ and FLAME 

** - RepastHPC VDT is incomplete and does not allow the correct number of teams in the simulation 

Table 5.9. Average execution times in seconds for each benchmark implementation using the 

smaller parameters 

# 

Computing 

Nodes 

Libraries Bail-in, 

Bail-out 

Brain 

Grid 

Game of 

Life 

MATSim Social 

Network 

Tuber-

culosis 

VDT** 

1 node MASS 1 58.471 55.107 31.605 17.873 32.959 11.042 188.599 

Repast 338.467 301.935 97.737 115.263 N/A 64.221 0.032 

FLAME 1,212.226 1,299.290 1,284.601 1,088.153 1,218.784 1,353.899 923.952 

2 nodes MASS 1 53.530 32.138 17.850 20.575 16.760 6.328 173.533 

Repast 235.230 210.374 66.027 83.897 N/A 41.694 0.027 

FLAME 614.553 651.991 643.789 661.172 609.535 682.920 436.744 

4 nodes MASS 1 48.445 17.943 8.750 26.287 8.925 3.482 142.275 

Repast 134.152 117.525 34.167 70.57 N/A 24.566 0.023 

FLAME 358.160 371.556 339.997 346.157 348.528 378.398 309.336 

8 nodes MASS 1 62.317 10.093 4.825 61.510 4.811 2.082 147.935 

Repast 75.369 67.963 17.523 116.816 N/A 15.935 0.017 

FLAME 185.779 186.437 175.628 174.576 174.643 197.075 362.019 

** - RepastHPC VDT is incomplete and does not allow the correct number of teams in the simulation 

5.8.2 Programmability Assessment 

Table 5.10 compares the programmability of MASS C++, RepastHPC, and FLAME using 

the averages of the quantitative measurements performed on each benchmark implementation. On 

average, MASS C++ appears to require the least lines of code, while FLAME requires the most. 

Particularly, MASS C++ requires the least boilerplate/setup code and the least code for defining 
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agents. However, MASS C++ requires more code for defining the model space because of its 

Places constructs, and therefore the most agent and space code in total. The agents and space 

behave more autonomously than in the other libraries, so it requires the least code dedicated to 

model management. RepastHPC generally requires fewer lines than FLAME but requires more 

than MASS C++. FLAME requires the most lines of code, but most of those lines are classed as 

boilerplate/setup code because of how the library requires users to write XML files.  

Table 5.10. Quantitative comparison of ABM libraries by averages of benchmark 

measurements 

Library Lines 

of 

Code 

Control 

Flow 

Statements 

Boilerplate 

LoC 

Agent 

LoC 

Space 

LoC 

Model 

Design 

LoC 

Model 

Management 

LoC 

MASS C++ 592.3 79.7 164 188.9 220.4 409 89 

RepastHPC 789.9 68.1 175.25 297.6 71.9 369 320 

FLAME 826.0 41.4 327 217.4 30.9 248 284 

 

Table 5.11 and Table 5.12 contain the findings of the manual code review we performed 

on each benchmark implementation. In Table 5.11, we assessed how each ABM library approaches 

each benchmark model and therefore different computational models. In Table 5.12, we 

determined the relative strengths and weaknesses of each parallel ABM library for different aspects 

of agent-based modeling. The autonomy of the Agents and Places means that MASS C++ requires 

less code for managing the model, though the Agents and Places themselves require more code. 

RepastHPC’s Observer allows the user to control the entire model and its agents more directly than 

MASS and FLAME, but this also means users must write more model management code. FLAME 

overall is the most limited in programmability because space cannot be directly defined, only 

mimicked by agents and because agent behavior is defined by states and message board 

communication. 
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Table 5.11. Comparison of each ABM library’s approach to each benchmark models 

Benchmark 

Model 

Computational 

Model 

MASS C++ RepastHPC FLAME 

Bail-In, Bail-Out Inter-Group 

Communication 

FinancialMarket Places 

act as shared memory for 

agents to communicate 

across model 

Observers exchange 

Messenger objects 

with each other 

All agents exchange 

transaction messages 

between each other. 

Brain Grid Agent Jump Agent keeps moving 

with each neuron tip and 

hops back to its soma 

Agents placed into 

the corresponding 

Observer. 

Place agents mimics 

a 2D mesh and 

arbitrates neurons. 

Game of Life Cellular 

Automata 

2D Places with von 

Neumann neighborhood. 

2D Patch with von 

Neumann 
neighborhood 

Each agent mimics a 

cell with von 
Neumann 

neighborhood. 

MATSim Agent Movement 

on Network 

Agents migrate, with 

collision arbitration by a 

neighbor place 

Observer maintains 

a traffic road and 

moves agents 

Place agents mimics 

a road network and 

arbitrates cars. 

Social Network Network of 

Agents 

1D array of Person 

Places, each with 

friendship lists 

Each Agent 

maintains friendship 

lists. 

Each Agent 

maintains friendship 

lists. 

Tuberculosis Agent Movement 

over 2D Space 

Agents migrate, with 

collision arbitration by 

destination place 

2D LungPlace patch 

adds to and takes 

agents from 

neighbors 

Place Agents mimic 

a 2D mesh and 

arbitrates mobile 

Agents. 

Virtual Design 

Team 

Intra-Group 

Communication 

Communication between 

Agents per Place via 

Place variables 

Task object passed 

from one Agent to 

another by Observer 

Task Agent 

communicates for 

Engineer Agents. 

 

Table 5.12. Qualitative comparison of library capabilities 

Metrics MASS C++ RepastHPC FLAME 

Computational 

Model 

+ Agents have autonomy of 

spawning, terminating, and 

migrating. 

+ Good global space 

view.  

– Agents are centrally 

controlled by observers 

– Space mimicked by 

agents have substantial 

semantic gaps. 

Entities (space 
and/or agents) 

+ Agents and places are 
separated. Quite intuitive. 

+ Agents and places 
separated. Its shared space 

gives best global view. 

– Space must be 
mimicked by agents 

Space structure – Network must be emulated by 

1D Places.  

+ Shared spaces such as 

patch and shared context 

are available 

– Agents must maintain 

adjacency lists. Difficult 

to view the structure. 

Agent population – Agents spawned, and then 

must hop to their initial place. 

+ Observer populates 

agents at initial location 

– No agent population on 

a place. Agents must be 

associated with place 

agents 

Multi-classes of 

agents 

+ As many classes of agents as 

needed. Multiple places are 

allowed. 

+ As many classes of 

agents as needed 

+ As many classes of 

agents as needed. 

Runtime agent 

management 

+ Agents have behavioral 

autonomy, all supported by the 

library. 

– Observer must control 

agents from the hawk’s 

viewpoint 

- State machines, message 

boards 



 

 

61 

 

Inter-agent 

communication 

+ exchangeAll to remote Places 

deliver messages to agents in a 

remote place. 

– Observers exchange 

Messenger objects with 

each other: can’t create 

teams. 

- Indirect communication, 

based on message types. 

Synchronization 

(lock/unlock) 

– Agents on the same place must 

use lock/unlock at user level. 

+ Observers centrally 

control agents 

+ Each place agent 

behaves as a critical 

section. 

Collision control + A destination place must 
arbitrate agent migration with 

exchangeBoundary. 

+ Observers centrally 
control agent collisions 

- Place agents must 
arbitrate other mobile 

agents through message 

exchange. 

Chapter 6. CONCLUSION 

6.1 SUMMARY 

We have performed a comparative analysis of three parallel agent-based modeling libraries: MASS 

C++, RepastHPC, and FLAME. This analysis compared the performance and programmability of 

the libraries using a set of seven benchmark programs that cover problems within the social, 

behavioral, and economic sciences. We implemented each benchmark program three times, once 

for each of the three libraries, for a total of 21 programs. To compare performance, we defined two 

sets of parameters, one tuned for MASS C++ and one tuned for FLAME. We executed each of the 

benchmark implementations with the two sets of parameters and obtained average execution times. 

To compare programmability, we used static code analysis and manual code review to obtain 

quantitative and qualitative metrics for each benchmark implementation and extrapolated those 

findings to assess the ABM libraries. 

Regarding the performance of the ABM libraries, we found that MASS C++ had the lowest 

average execution times across its benchmarks compared to RepastHPC and FLAME. The multi-

threaded executions of MASS C++ generally had even lower average execution times, 

demonstrating another advantage of MASS C++. RepastHPC was able to handle the parameter set 

that was based on MASS C++ but was slower in all but one benchmark and more inconsistent 
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overall. However, some benchmark implementations written for RepastHPC were incomplete and 

thus could not be completely compared. On the other hand, FLAME was entirely unable to handle 

the MASS C++ parameter set, and this necessitated a second parameter set based on FLAME’s 

capabilities. The benchmarks for MASS C++ and RepastHPC executed this second parameter set 

faster than FLAME. Therefore, FLAME had definitively the worst performance of the three 

libraries. 

In terms of programmability, each ABM library presents its own unique benefits and 

downsides which ABM researchers may prioritize differently. Therefore, no library can be said to 

be definitively the “most programmable” as this will depend on the user’s needs and abilities. 

However, the quantitative and qualitative data can broadly indicate the strengths and weaknesses 

of each library. MASS C++ was found to generally require the fewest lines of code to program the 

benchmark models. Users must define agents and places in greater detail because of the focus on 

agent autonomy, but this autonomy means less code dedicated to managing the model. RepastHPC 

generally requires more lines than MASS C++ but fewer than FLAME. The RepastHPC Observer 

offers an improved view and control over the model at the cost of some autonomy. FLAME 

requires the most lines of code, but most of those lines are boilerplate/setup code from the XML 

file format that FLAME uses. FLAME overall is the most limited in programmability because 

space cannot be defined and must be mimicked by agents, and because agent behavior is defined 

by states and message board communication. 

6.2 REFLECTION 

The results of the performance and programmability comparison are promising for the Distributed 

Systems Lab and the MASS project. They indicate that researchers seeking to develop agent-based 
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models with parallelization can use MASS C++ as a valid alternative to RepastHPC and FLAME 

which have been previously used in the industry. 

Four different students in the Distributed Systems Lab implemented the benchmark 

programs, each at different times. This resulted in inconsistencies in coding style and 

documentation in the benchmark implementations. We attempted to minimize these 

inconsistencies before the performance and programmability measurements in case they affected 

the results, but time constraints limited this process. Ultimately, this resulted in two RepastHPC 

benchmark implementations which were incomplete or flawed (Social Network and VDT). In 

retrospect, some of the time spent on developing tools for the performance measurements should 

have been redirected towards ensuring code correctness and code consistency. 

6.3 FUTURE DEVELOPMENT AND STUDY 

The tools and methods used for this study can be adapted for future studies of the same libraries, 

or the studies can be expanded to include other parallel ABM libraries. In addition, measuring 

resource usage like CPU usage, memory usage, and network traffic while executing these models 

would provide more detailed and actionable performance metrics. Another useful way to utilize 

the existing tools and methods would be to determine the exact spatial and temporal limits of these 

ABM libraries. For the sake of limiting the time spent on measurements, we used parameters that 

reached a target execution time of twenty minutes on a single node. However, all three libraries 

can run models that are significantly larger, though they would take an extremely long time to 

complete. 

The benchmark programs designed and implemented for this study can be further refined 

in terms of consistency and optimization to act as a testing suite for the three ABM libraries. For 
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example, future researchers in the Distributed Systems Lab can use the MASS C++ benchmark 

implementations to measure performance improvements as they develop MASS C++.  
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APPENDIX A. DETAILED PERFORMANCE RESULTS 

Appendix Table A-1. Bail-in, Bail-out simulation, average execution times in seconds for the 

higher parameters 

# Computing Nodes MASS C++ 

(1 thread) 

MASS C++ 

(4 threads) 

RepastHPC 

1 node 1,203.913 1,714.182 6,812.577 

2 nodes 1,193.632 1,819.960 4,686.141 

4 nodes 934.339 1,610.938 2,666.279 

8 nodes 1,058.749 1,705.560 1,493.997 

 

Appendix Table A-2. Bail-in, Bail-out simulation, average execution times in seconds for the 

smaller parameters 

# Computing Nodes MASS C++ (1 

thread) 

RepastHPC FLAME 

1 node 58.471 338.467 1,212.226 

2 nodes 53.530 235.230 614.553 

4 nodes 48.445 134.152 358.160 

8 nodes 62.317 75.369 185.779 

 
Appendix Table A-3. Brain Grid simulation, average execution times in seconds for the 

smaller parameters 

# Computing Nodes MASS C++ 

(1 thread) 

MASS C++ 

(4 threads) 

RepastHPC 

1 node 1,191.925 487.305 6,213.978 

2 nodes 678.524 244.897 4,381.844 

4 nodes 339.261 182.016 2,434.674 

8 nodes 170.401 91.943 1,425.412 

 

Appendix Table A-4. Brain Grid simulation, average execution times in seconds for the 

smaller parameters 

# Computing Nodes MASS C++ (1 

thread) 

RepastHPC FLAME 

1 node 55.107 301.935 1,299.290 

2 nodes 32.138 210.374 651.991 

4 nodes 17.943 117.525 371.556 

8 nodes 10.093 67.963 186.437 
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Appendix Table A-5. Game of Life simulation, average execution times in seconds for the 

higher parameters 

# Computing Nodes MASS C++ 

(1 thread) 

MASS C++ 

(4 threads) 

RepastHPC 

1 node 1,163.152 393.635 4,647.147 

2 nodes 654.490 199.043 2,897.910 

4 nodes 328.800 133.070 1,605.113 

8 nodes 165.606 69.896 751.137 

 

Appendix Table A-6. Game of Life simulation, average execution times in seconds for the 

smaller parameters 

# Computing Nodes MASS C++ (1 

thread) 

RepastHPC FLAME 

1 node 31.605 97.737 1,284.601 

2 nodes 17.850 66.027 643.789 

4 nodes 8.750 34.167 339.997 

8 nodes 4.825 17.523 175.628 

 

Appendix Table A-7. MATSim, average execution times in seconds for the higher 

parameters 

# Computing Nodes MASS C++ 

(1 thread) 

MASS C++ 

(4 threads) 

RepastHPC 

1 node 1,154.488 640.961 956.689 

2 nodes 646.178 N/A 509.679 

4 nodes 383.815 N/A 293.210 

8 nodes 359.572 N/A 219.274 

 

Appendix Table A-8. MATSim, average execution times in seconds for the smaller 

parameters 

# Computing Nodes MASS C++ (1 

thread) 

RepastHPC FLAME 

1 node 17.873 115.263 1,188.153 

2 nodes 20.575 83.897 661.172 

4 nodes 26.287 70.57 346.157 

8 nodes 61.510 116.816 174.576 

 

Appendix Table A-9. Social Network simulation, average execution times in seconds for the 

higher parameters 

# Computing Nodes MASS C++ MASS C++ RepastHPC 
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(1 thread) (4 threads) 

1 node 1,102.592 N/A N/A 

2 nodes 446.501 N/A N/A 

4 nodes 239.960 N/A N/A 

8 nodes 129.332 N/A N/A 

 

Appendix Table A-10. Social Network simulation, average execution times in seconds for the 

smaller parameters 

# Computing Nodes MASS C++ (1 

thread) 

RepastHPC FLAME 

1 node 32.959 N/A 1,218.784 

2 nodes 16.760 N/A 609.535 

4 nodes 8.925 N/A 348.528 

8 nodes 4.811 N/A 174.643 

 

Appendix Table A-11. Tuberculosis simulation, average execution times in seconds for the 

higher parameters 

# Computing Nodes MASS C++ 

(1 thread) 

MASS C++ 

(4 threads) 

RepastHPC 

1 node 1,096.603 421.006 2,308.043 

2 nodes 603.602 197.195 1,184.286 

4 nodes 325.989 116.044 588.439 

8 nodes 164.175 59.250 289.893 

 

Appendix Table A-12. Tuberculosis simulation, average execution times in seconds for the 

smaller parameters 

# Computing Nodes MASS C++ (1 

thread) 

RepastHPC FLAME 

1 node 11.042 64.221 1,353.899 

2 nodes 6.328 41.694 682.920 

4 nodes 3.482 24.566 378.398 

8 nodes 2.082 15.935 197.075 

 

Appendix Table A-13. Virtual Design Team simulation, average execution times in seconds 

for the higher parameters 

# Computing Nodes MASS C++ 

(1 thread) 

MASS C++ 

(4 threads) 

RepastHPC 

1 node 1,201.433 2,047.137 N/A 

2 nodes 692.947 950.932 N/A 

4 nodes 432.124 776.380 N/A 
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8 nodes 301.425 494.800 N/A 

 

Appendix Table A-14. Virtual Design Team simulation, average execution times in seconds 

for the smaller parameters 

# Computing Nodes MASS C++ (1 

thread) 

RepastHPC FLAME 

1 node 188.599 N/A 923.952 

2 nodes 173.533 N/A 436.744 

4 nodes 142.275 N/A 309.336 

8 nodes 147.935 N/A 362.019 

APPENDIX B. STANDARD DEVIATION AND VARIANCE 

Appendix Table B-1. Bail-in, Bail-out simulation, standard deviation and variance for the 

higher parameters 

# Computing 

Nodes 
MASS C++ (1 thread) MASS C++ (4 

threads) 

RepastHPC 

1 node 5.970088999 35.64196266 5.253119675 27.59526632 6.831736309 46.672621 

2 nodes 52.36718442 2742.322004 4.376489403 19.15365949 8.787145744 77.21393033 

4 nodes 12.11449717 146.7610417 27.10323111 734.5851368 4.817508312 23.20838633 

8 nodes 22.66815992 513.8454739 21.62904528 467.8155999 8.154871264 66.50192533 

Appendix Table B-2. Bail-in, Bail-out simulation, standard deviation and variance for the 

smaller parameters 

# 

Computing 

Nodes 

MASS C++ (1 thread) RepastHPC FLAME 

1 node 0.5652411451 0.3194975521 2.101749509 4.417351 1.689101635 2.853064333 

2 nodes 0.155705755 0.02424428213 1.095840013 1.200865333 1.222392327 1.494243 

4 nodes 0.133563036 0.01783908459 0.636858697 0.405589 0.3052982149 0.093207 

8 nodes 0.2141813947 0.04587366983 0.3854983787 0.148609 0.01096965511 0.0001203333333 

Appendix Table B-3. Brain Grid simulation, standard deviation and variance for the higher 

parameters 

# Computing 

Nodes 
MASS C++ (1 thread) MASS C++ (4 threads) RepastHPC 

1 node 4.412164685 19.4671972 0.6221648791 0.3870891368 7.145312893 51.05549633 

2 nodes 2.488905298 6.194649582 1.309405783 1.714543504 18.10771356 327.8892903 

4 nodes 1.080930051 1.168409776 4.963443476 24.63577114 5.424810534 29.42856933 

8 nodes 0.6246955695 0.3902445546 4.474295412 20.01931943 5.749930811 33.06170433 

Appendix Table B-4. Brain Grid simulation, standard deviation and variance for the smaller 

parameters 

# Computing 

Nodes 
MASS C++ (1 thread) RepastHPC FLAME 

1 node 0.4629389292 0.2143124522 2.885132984 8.323992333 3.171322174 10.05728433 

2 nodes 0.03497020575 0.00122291529 1.76594479 3.118561 0.7149442869 0.5111453333 
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4 nodes 0.1961560423 0.03847719292 3.424716193 11.728681 0.1311830782 0.017209 

8 nodes 0.2146711772 0.0460837143 0.5553488393 0.3084123333 0.3115300949 0.097051 

Appendix Table B-5. Game of Life simulation, standard deviation and variance for the higher 

parameters 

# Computing 

Nodes 
MASS C++ (1 thread) MASS C++ (4 threads) RepastHPC 

1 node 9.106575763 82.92972213 0.6761025061 0.4571145988 14.71000453 216.3842333 

2 nodes 6.416661219 41.1735412 1.108475627 1.228718217 11.38415126 129.5989 

4 nodes 4.993694924 24.936989 7.453765516 55.55862036 9.03848623 81.69423333 

8 nodes 1.505706589 2.267152331 10.41005865 108.369321 43.55155604 1896.738033 

Appendix Table B-6. Game of Life simulation, standard deviation and variance for the 

smaller parameters 

# Computing 

Nodes 
MASS C++ (1 thread) RepastHPC FLAME 

1 node 0.1638079534 0.02683304561 0.5650073746 0.3192333333 60.27898545 3633.556086 

2 nodes 0.05108569897 0.002609748639 0.6213158081 0.3860333333 7.029246712 49.41030933 

4 nodes 0.02968798101 0.0008813762163 0.1795364401 0.03223333333 4.45150615 19.815907 

8 nodes 0.05551084486 0.003081453897 0.1193035345 0.01423333333 4.00778559 16.06234533 

Appendix Table B-7. MATSim simulation, standard deviation and variance for the higher 

parameters 

# Computing 

Nodes 
MASS C++ (1 thread) MASS C++ (4 

threads) 

RepastHPC 

1 node 1.620669373 2.626569218 2.108060172 4.443917691 0.4218850554 0.177987 

2 nodes 4.699179335 22.08228642 N/A N/A 1.085740761 1.178833 

4 nodes 2.110590892 4.454593915 N/A N/A 0.5664594719 0.3208763333 

8 nodes 1.427274454 2.037112367 N/A N/A 1.9705687 3.883141 

Appendix Table B-8. MATSim simulation, standard deviation and variance for the smaller 

parameters 

# Computing 

Nodes 
MASS C++ (1 thread) RepastHPC FLAME 

1 node 0.1648442855 0.02717363845 0.04398105653 0.001934333333 13.21586661 174.6591303 

2 nodes 0.2754138019 0.07585276225 0.1694963126 0.028729 10.42059619 108.588825 

4 nodes 1.059111423 1.121717007 0.030022214 0.0009013333333 3.951618951 15.61529233 

8 nodes 2.410084464 5.808507123 2.211415911 4.890360333 8.204870444 67.319899 

Appendix Table B-9. Social Network simulation, standard deviation and variance for the 

higher parameters 

# Computing Nodes MASS C++ (1 thread) MASS C++ (4 threads) RepastHPC 
1 node 6.66119973 44.37158184 N/A N/A N/A N/A 

2 nodes 1.23076902 1.51479238 N/A N/A N/A N/A 

4 nodes 1.799761904 3.239142912 N/A N/A N/A N/A 

8 nodes 1.118547032 1.251147464 N/A N/A N/A N/A 

Appendix Table B-10. Social Network simulation, standard deviation and variance for the 

smaller parameters 

# Computing Nodes MASS C++ (1 thread) RepastHPC FLAME 
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1 node 0.05737695302 0.003292114737 N/A N/A 0.1512789917 0.02288533333 

2 nodes 0.07082887327 0.005016729289 N/A N/A 0.2204699526 0.048607 

4 nodes 0.04779433433 0.002284298394 N/A N/A 0.4361299501 0.1902093333 

8 nodes 0.007991702697 0.000063867312 N/A N/A 0.1882454072 0.03543633333 

Appendix Table B-11. Tuberculosis simulation, standard deviation and variance for the 

higher parameters 

# 

Computing 

Nodes 

MASS C++ (1 thread) MASS C++ (4 threads) RepastHPC 

1 node 23.65394405 559.5090692 47.69546615 2274.857491 3.218975199 10.36180133 

2 nodes 3.685092543 13.57990705 0.9805936773 0.9615639599 6.271533385 39.332131 

4 nodes 1.81599069 3.297822187 0.470364652 0.2212429059 2.728694254 7.445772333 

8 nodes 0.9522600244 0.9067991541 0.1544113453 0.02384286354 3.478106525 12.097225 

Appendix Table B-12. Tuberculosis simulation, standard deviation and variance for the 

smaller parameters 

# Computing 

Nodes 
MASS C++ (1 thread) RepastHPC FLAME 

1 node 0.08314539536 0.00691315677 1.683804027 2.835196 7.91522137 62.65072933 

2 nodes 0.01891779084 0.0003578828103 1.054995893 1.113016333 4.986712344 24.8673 

4 nodes 0.03942357807 0.001554218508 0.725265009 0.5260093333 22.19212879 492.4905803 

8 nodes 0.03769246649 0.00142072203 0.7717592457 0.5956123333 4.373916132 19.13114233 

Appendix Table B-13. Virtual Design Team simulation, standard deviation and variance for 

the higher parameters 

# Computing Nodes MASS C++ (1 thread) MASS C++ (4 threads) RepastHPC 
1 node 2.214982268 4.906146449 15.87306039 251.9540462 N/A N/A 

2 nodes 1.313847138 1.726194301 7.32752875 53.69267757 N/A N/A 

4 nodes 0.4167677557 0.1736953622 4.294514685 18.44285638 N/A N/A 

8 nodes 0.9343829168 0.8730714353 4.090750121 16.73423655 N/A N/A 

Appendix Table B-14. Virtual Design Team simulation, standard deviation and variance for 

the smaller parameters 

# Computing Nodes MASS C++ (1 thread) RepastHPC FLAME 
1 node 1.052885528 1.108567935 N/A N/A 49.45034435 2445.336556 

2 nodes 0.1599111162 0.02557156508 N/A N/A 50.52742452 2553.020629 

4 nodes 0.1305386936 0.01704035052 N/A N/A 28.22941121 796.8996573 

8 nodes 0.02227391102 0.0004961271123 N/A N/A 103.3355151 10678.22868 

 


