

© Copyright 2022

Kevin Wang

Performance and Programmability Comparison of Parallel Agent-Based Modeling

(ABM) Libraries

Kevin Wang

A paper

submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Computer Science & Software Engineering

University of Washington

2022

Reading Committee:

Munehiro Fukuda, Chair

William Erdly

Robert Dimpsey

Program Authorized to Offer Degree:

Computer Science & Software Engineering

University of Washington

Abstract

 Programmability and Parallelization Comparison of Parallel Agent-Based Modeling (ABM)

Libraries

Kevin Wang

Chair of the Supervisory Committee:

Professor Munehiro Fukuda

Computer Science & Software Engineering

Agent-based modeling (ABM) allows researchers in the social, behavioral, and economic (SBE)

sciences to use software to model complex problems and environments that involve thousands to

millions of interacting agents. These models require significant computing power and memory to

handle the high numbers of agents. Various research groups have implemented parallelized ABM

libraries which allow models to utilize multiple computing nodes to improve performance with

higher problem sizes. However, it is not clear which of these libraries provides the best-performing

models and which is the easiest to develop a model with. The goal of this project is to compare the

performance and programmability of three current parallel ABM libraries, MASS C++,

RepastHPC, and FLAME. The Distributed Systems Lab at the University of Washington Bothell

developed Multi-Agent Spatial Simulation (MASS) C++ as a C++-based ABM library. Different

research groups developed RepastHPC and FLAME before MASS C++, and SBE researchers have

successfully used these libraries to create agent-based models. To measure performance, we

designed a set of seven benchmark programs covering various problems in the SBE sciences, and

implemented each of them three times using MASS C++, RepastHPC, and FLAME. We compared

the average execution times of the three implementations for each benchmark to determine which

library performed the best. We found that models written with MASS C++ generally performed

the best with MASS C++ compared to RepastHPC. On the other hand, FLAME had the worst

performance across all benchmarks since it could not handle the same parameters given to the

MASS C++ and RepastHPC implementations. To measure programmability, we performed a static

code analysis and manual code review of each benchmark implementation to assess the three

libraries quantitatively and qualitatively. We found that in terms of quantitative metrics, MASS

C++ was slightly more programmable than the others. However, regarding qualitative differences,

MASS C++ and RepastHPC had different approaches which present different benefits, while

FLAME had the most limitations.

i

TABLE OF CONTENTS

List of Figures ... iv

List of Tables .. vi

Chapter 1. Introduction ...8

Chapter 2. Background .. 11

2.1 Parallel Agent-Based Modeling Libraries... 11

2.1.1 MASS C++ .. 13

2.1.2 RepastHPC .. 14

2.1.3 FLAME ... 15

2.2 Parallel ABM Benchmark Programs .. 16

2.2.1 Bail-in, Bail-out, Financial Simulation ... 17

2.2.2 Brain Grid, Self-Organizing Neural Network ... 18

2.2.3 Conway’s Game of Life ... 18

2.2.4 Multi-Agent Transport Simulation (MATSim) ... 19

2.2.5 Social Network .. 19

2.2.6 Tuberculosis .. 20

2.2.7 Virtual Design Team (VDT) .. 21

2.2.8 Summary ... 22

Chapter 3. Related Work ... 23

Chapter 4. Measurement Methods ... 25

4.1 Performance Measurement Methods .. 25

4.2 Benchmark Scripts ... 27

ii

4.3 Benchmark Runner Program .. 27

4.4 Programmability Assessment Methods .. 29

4.4.1 Static Code Analysis .. 29

4.4.2 Code Review ... 30

Chapter 5. Performance and Programmability Evaluation .. 31

5.1 Bail-in, Bail-out, Financial Simulation ... 31

5.1.1 Performance Results .. 31

5.1.2 Programmability Assessment ... 35

5.2 Brain Grid, Self-Organizing Neural Network ... 36

5.2.1 Performance Results .. 36

5.2.2 Programmability Assessment ... 39

5.3 Conway’s Game of Life ... 40

5.3.1 Performance Results .. 40

5.3.2 Programmability Assessment ... 42

5.4 Multi-Agent Transport Simulation (MATSim) ... 43

5.4.1 Performance Results .. 43

5.4.2 Programmability Assessment ... 45

5.5 Social Network .. 46

5.5.1 Performance Results .. 47

5.5.2 Programmability Assessment ... 49

5.6 Tuberculosis .. 50

5.6.1 Performance Results .. 50

5.6.2 Programmability Assessment ... 52

iii

5.7 Virtual Design Team (VDT) .. 53

5.7.1 Performance Results .. 54

5.7.2 Programmability Assessment ... 56

5.8 Summary ... 57

5.8.1 Performance Results .. 57

5.8.2 Programmability Assessment ... 58

Chapter 6. Conclusion ... 61

6.1 Summary ... 61

6.2 Reflection .. 62

6.3 Future Development and Study .. 63

Bibliography ... 65

iv

LIST OF FIGURES

Figure 5.1. MASS C++ Bail-In, Bail-Out using the higher parameters, execution time in seconds

as the number of nodes increases ... 32

Figure 5.2. Bail-In, Bail-Out models using the higher parameters, execution time in seconds as

the number of nodes increases ... 33

Figure 5.3. Bail-In, Bail-Out models using the smaller parameters, execution time in seconds as

the number of nodes increases ... 34

Figure 5.4. MASS C++ Brain Grid using the higher parameters, execution time in seconds as the

number of nodes and the number of threads increase ... 37

Figure 5.5. Brain Grid models using the higher parameters, execution time in seconds as the

number of nodes increases ... 38

Figure 5.6. Brain Grid models using the smaller parameters, execution time in seconds as the

number of nodes increases ... 38

Figure 5.7. MASS C++ Game of Life using the higher parameters, execution time in seconds as

the number of nodes and the number of threads increase .. 41

Figure 5.8. Game of Life models using the higher parameters, execution time in seconds as the

number of nodes increases ... 41

Figure 5.9. Game of Life models using the smaller parameters, execution time in seconds as the

number of nodes increases ... 42

Figure 5.10. MATSim models using the higher parameters, execution time in seconds as the

number of nodes increases ... 44

Figure 5.11. MATSim models using the smaller parameters, execution time in seconds as the

number of nodes increases ... 45

Figure 5.12. Social Network models using the higher parameters with one thread, execution time

in seconds as the number of nodes increases .. 48

Figure 5.13. Social Network model using the smaller parameters, execution time in seconds as

the number of nodes increases ... 48

Figure 5.14. Tuberculosis models using the higher parameters, execution time in seconds as the

number of nodes and the number of threads increase ... 50

v

Figure 5.15. Tuberculosis models using the higher parameters, execution time in seconds as the

number of nodes increases ... 51

Figure 5.16. Tuberculosis models using the smaller parameters, execution time in seconds as the

number of nodes increases ... 52

Figure 5.17. MASS C++ VDT using the higher parameters, execution time in seconds as the

number of nodes and the number of threads increase ... 54

Figure 5.18. VDT models using the higher parameters, execution time in seconds as the number

of nodes and the number of threads increase .. 55

Figure 5.19. VDT models using the smaller parameters, execution time in seconds as the number

of nodes increases .. 56

vi

LIST OF TABLES

Table 2.1. Comparison of benchmark model designs ... 22

Table 5.1. Quantitative comparison of benchmark implementations by library 36

Table 5.2. Quantitative comparison of benchmark implementations by library 40

Table 5.3. Quantitative comparison of benchmark implementations by library 43

Table 5.4. Quantitative comparison of benchmark implementations by library 46

Table 5.5. Quantitative comparison of benchmark implementations by library 49

Table 5.6. Quantitative comparison of benchmark implementations by library 53

Table 5.7. Quantitative comparison of benchmark implementations by library 57

Table 5.8. Average execution times in seconds for each benchmark implementation using the

higher parameters .. 58

Table 5.9. Average execution times in seconds for each benchmark implementation using the

smaller parameters ... 58

Table 5.10. Quantitative comparison of ABM libraries by averages of benchmark measurements

 .. 59

Table 5.11. Comparison of each ABM library’s approach to each benchmark models ... 60

Table 5.12. Qualitative comparison of library capabilities ... 60

vii

ACKNOWLEDGEMENTS

Thank you to Rithvik Koppolu, who helped perform the performance measurements as part

of his internship with the University of Washington Bothell, sponsored by the IEEE Diversity and

Inclusion Fund.

8

8

Chapter 1. INTRODUCTION

Researchers across all disciplines, particularly those studying Social, Behavioral, and

Economic (SBE) sciences, use conceptual modeling to assess and simulate problems so that they

can better understand and predict them [20][21]. For problems that involve several entities

interacting with each other and their environment or ecosystem, researchers use agent-based

modeling (ABM), also known as agent-based modeling and simulation (ABMS) [17]. In agent-

based modeling, systems are represented as collections of autonomous, dynamic agents operating

within a designated simulation space. These agents may have simple computational capabilities,

but their behavior as a collective can form accurate models [4]. The models become more accurate

to real-world systems and populations when given a larger simulation space and a higher number

of agents. However, the problem size that a model can handle is limited by the model’s scalability,

its ability to handle increased problem sizes without compromising its execution time [21].

The scalability of agent-based models is a critical consideration in their design and

implementation, because high numbers of entities are required for accurate simulations. On a

single process, an ABM can simulate the activities of up to millions of simple entities, but such

simulations can take hours to complete, and more entities or higher complexity will increase the

execution time [6][21]. Therefore, agent-based models may use parallel computing to minimize

the execution time even with a large workload. Parallel agent-based modeling distributes the

simulation space across these processes and coordinates the agents such that they can still operate

as if it was a single process.

Researchers can parallelize agent-based models on a single machine by using

multithreading or multiprocessing, but this still limits the model to the machine’s memory and

9

processing power [21]. By distributing the model across a cluster of computing nodes, the model

is no longer limited to the capabilities of a single machine. This addresses the scalability limitations

of ABMs by providing more memory for the simulations to operate on. More memory allows for

much higher entity counts, and the decreased load on each node can also allow simulations to be

completed faster. Researchers may create their agent-based model entirely from the ground up and

implement cluster-based parallelization themselves. However, this is costly and complex, so most

ABM researchers will only implement sequential (non-parallelized) models [21]. Alternatively,

researchers may build their model using an existing cluster-based ABM library as a basis.

However, it is unclear which parallel ABM libraries are best for which models, or whether one

library is better for developing models in general. Current research compares parallel agent-based

models based, but they only implemented a single, generic mathematical model rather than models

relevant to the SBE sciences [18].

Our research project analyzes and compares three different C/C++-based implementations

of generalized, cluster-based ABM libraries: Multi-Agent Spatial Simulation (MASS) C++,

RepastHPC, and FLAME. MASS C++ was written by the Distributed Systems Lab (DSLab) at the

University of Washington Bothell [10]. Assessing the capability of MASS C++ compared to other

cluster-based ABM libraries will guide further development for the MASS library and demonstrate

its potential to ABM researchers. To compare the three libraries, the DSLab wrote seven

benchmark programs for each library for a total of 21 benchmark programs. These benchmarks

provide objective criteria for a comparative analysis on the bases of performance and

programmability. Professor Munehiro Fukuda selected the seven benchmark programs in 2017 as

a set of comprehensive and realistic applications for agent-based modeling which could adequately

test MASS C++ and other ABM platforms such as RepastHPC and FLAME [21]. The benchmarks

10

simulate applications in the social, behavioral, and economic (SBE) sciences as well as tasks in

biology, ecology, and city-planning. The selected benchmarks are as follows:

• Social Network - a simulation of online communities and their interactions and activities.

Each agent acts as an individual within the network, interacting with its neighbors [2].

• Tuberculosis - a simulation of the movement and growth of tuberculosis bacteria [8].

• Conway’s Game of Life - a simple and predictable cellular automaton [11].

• MATSim - a simulation of transport organization based on a queuing network [13][22].

• Brain Grid - a simulation of a neural network modeling electrical connections along

synapses between neurons [20].

• Bail-in/out - a simulation involving clusters of agents with each cluster representing firms,

banks, or households and modeling how they interact [15].

• Virtual Design Team - a simulation of a design team for modeling productivity [16]. The

team is represented as a hierarchical structure that moves through product phases.

To perform an accurate comparative analysis of the three libraries, we developed a testing

methodology using the 21 benchmark programs. We defined consistent sets of parameters that

would demonstrate the relative performance of each benchmark with a given number of computing

nodes. In addition, we developed driver programs and shell scripts for executing the benchmarks,

making the testing process easier and more replicable for future study. Finally, we performed a

static code analysis and manual code review on each benchmark implementation to assess the

overall programmability of each ABM library based on both qualitative and quantitative

characteristics.

The structure of this paper is as follows: Chapter 2 covers the background behind the three

parallel agent-based modeling libraries and the seven benchmark programs; Chapter 3 discusses

11

previous efforts to compare agent-based modeling libraries; Chapter 4 details the methods by

which this study compared the three libraries; Chapter 5 shows and evaluates the results of the

comparison; and Chapter 6 summarizes and concludes the findings of this paper and discusses

future opportunities for study.

Chapter 2. BACKGROUND

Section 2.1 describes and compares the design and implementation of the MASS C++, RepastHPC,

and FLAME parallel ABM libraries. Section 2.2 describes the set of seven parallel ABM

benchmark programs we designed and implemented for the three ABM libraries

2.1 PARALLEL AGENT-BASED MODELING LIBRARIES

MASS C++, RepastHPC, and FLAME are libraries which allow for a general implementation of

parallelized agent-based modeling (ABM). However, agent-based modeling does not inherently

require parallel computing, with most models executing as a sequential program rather than using

parallel processes [21]. Some of these sequential models might utilize multithreading to improve

performance, but the memory and processing power is still limited to that of a single machine.

These memory and processing power limits represent the spatial and temporal scalability of a

program respectively. Sequential models work for small problem sizes but lack the spatial and

temporal scalability to address realistic problem sizes which better represent real scenarios.

Parallel computing greatly increases the temporal and spatial scalability of agent-based models

[17]. Parallelization with ABMs is based on a shared-memory programming paradigm where

processes and threads share memory for the agents to execute on, increasing the model’s spatial

scalability. In addition, the multiple computing nodes effectively share their computing power to

process the agents together, increasing the model’s temporal scalability.

12

Researchers interested in agent-based modeling may use simpler, GUI-based but non-

parallel methods for agent-based modeling [21]. These methods include interpretive platforms

such as NetLogo, Repast Simphony, and MASON, which are easy to use but are less scalable with

the high problem sizes that are often required for realistic agent-based modeling [3][23][24]. These

platforms are also based on interpretive languages such as Java and Logo, which inherently have

slower code interpretation than native execution with compiled languages such as C/C++. Rather

than using these platforms, researchers may also decide to create bespoke agent-based models for

a specific problem, as is the case with MATSim which is designed for traffic simulations [13].

These solutions are tailor-made for the problem but must be developed in-house and from the

ground up, which is complex and costly. Researchers are therefore less likely to implement

parallelization for these custom models because that would add further complexity.

Considering the limitations of interpretive platforms and application-specific agent-based

models, there remains a need for generalized parallel ABM platforms which are highly scalable

for realistic problem sizes while also being easily programmable for a variety of applications. To

address this need, we developed the Multi-Agent Spatial Simulation (MASS) C++ library as a

general parallel ABM platform. RepastHPC and FLAME are two other implementations which

have been used in the industry for scalable agent-based modeling. We compared the performance

and scalability of these three parallel ABM libraries to determine which of them best satisfies the

general needs of agent-based model researchers.

Sections 2.1, 2.2, and 2.3 describe the designs of MASS C++, RepastHPC, and FLAME

and cover the similarities and differences between them.

13

2.1.1 MASS C++

The Distributed Systems Laboratory (DSLab) at the University of Washington Bothell developed

the Multi-Agent Spatial Simulation (MASS) library for the C++ compiled language. MASS is

defined by its use of “Places” as well as its migrating Agents [5][9][21]. “Places” are agent-

navigable spaces that are dynamically allocated over a cluster of computing nodes to form a

network. Places can interact with the Agents that exist on or migrate to them and can exchange

information with other Places. Agents in MASS migrate between Places to obtain or change

information about those Places and interact with the Agents at their current Place.

We implemented parallelization for MASS C++ using intercommunicating processes that

are forked over a cluster of computing nodes. These processes communicate to each other directly

through TCP sockets rather than through the Message-Passing Interface (MPI) that RepastHPC

and FLAME use. MASS C++ also features multi-threading, which allows for parallelization of

Place and Agent functions and message exchanges. This multi-threading can be used on a single

node or on multiple nodes, with each node’s process managing its local threads. The

multithreading is designed to improve the performance compared to a single-threaded process but

may not be compatible with all models because of issues caused by thread synchronization.

Developers seeking to create agent-based models with MASS C++ must define the

behavior of their application’s Places and Agents by extending the base classes with new functions

[5]. In their main program, they must place code that tells MASS to dynamically load Places and

Agents. Then, within a loop, they must coordinate the function invocations, message exchanges,

and the dynamic creation/termination/migration of agents that occurs in each iteration of the

model.

14

2.1.2 RepastHPC

The Argonne National Laboratory has developed a parallel simulation platform for agent-

based modeling known as RepastHPC. RepastHPC is defined by its execution environment, known

as a “Context”, that populates the shared simulation spaces within it, known as “Projection”

instances, with “Agents” [7][21][25]. The Context also manages the removal and movement of

Agents over the shared space. RepastHPC Agents are implemented as extensible C++ objects, with

users defining Agent behavior through its functions. Contexts and Projections act as spaces for

Agents to exist on, but they do not perform any computations of their own. RepastHPC utilizes a

dynamic discrete-event scheduler with conservative synchronization to organize its Agents. The

order of Agent actions is determined through the scheduling of their Events which occur at specific

ticks in the scheduler.

In addition to the Repast-specific constructs, RepastHPC also uses constructs from Logo,

a programming language primarily used for education [7]. The designers of RepastHPC propose

that it is easier to conceive of and design models using these constructs. In particular, “Turtles”

represent mobile agents, “Patches” represent fixed agents, “Links” connect Turtles to form

networks, and an “Observer” provides overall model management. Not all models require these

Logo-like constructs, and so it is possible to develop models strictly using RepastHPC-specific

constructs. We developed the RepastHPC benchmark implementations using elements from both.

Parallelization for RepastHPC is achieved using the Message-Passing Interface (MPI)

which facilitates the communication between nodes on the cluster. Agents in one node on the

cluster are unable to directly communicate with agents on other clusters. Instead, a copy of an

agent must be created on the other node which retrieves up-to-date information about the original

agent as needed [17]. This process causes communication overhead, and the agent copies add

15

memory costs. RepastHPC models operate within “ghost spaces”, in which Agents can view the

simulation boundary of adjacent MPI ranks. This allows agents in each rank to see the information

of nearby spaces, such as their Agent occupancy. Ghost spaces are read-only, so there is a

possibility of collisions when multiple Agents end up in the same logical position, and this is

something users of the library must be aware of.

RepastHPC and MASS C++ are both implementations of parallel agent-based modeling,

but they have fundamental differences in design which can affect their relative performance and

programmability. RepastHPC’s contexts, projections, and agents are analogues to MASS’

processes, places, and agents respectively, but they have different capabilities. For example,

RepastHPC is unable to handle collisions on a system level. Unlike RepastHPC’s Contexts and

Projections, Places in MASS C++ can act upon the Agents that are on them and can perform

computations of their own [21]. However, RepastHPC features more robust multi-dimensional

spaces and graphing topologies for developers to use as compared to MASS, which can only use

its Places arrays to emulate graph structures.

2.1.3 FLAME

The University of Sheffield, UK has developed FLAME as a C-based agent-based modeling

platform [9]. A key aspect of FLAME is that it does not instantiate any simulation space on

memory, with its processes retaining only environmental variables for its Agents to use. The

Agents themselves, including their initial data and functions, are declared in XML files which act

like C++ header files.

FLAME’s parallelization is based on the Message-Passing Interface (MPI) like

RepastHPC. Because FLAME’s Agents do not share a simulation space, they communicate with

each other through message broadcasts and exchanges on message boards at each MPI rank. This

16

results in significant communication overhead as agents wait to receive messages. FLAME does

not support the movement of agents like MASS or RepastHPC, instead statically mapping its

Agents on MPI ranks and relying on message broadcasts to transmit and change Agent states.

FLAME’s lack of a managed simulation space means that collisions can only be avoided if every

Agent broadcasts their location to all other Agents. Each agent must then process every incoming

message to determine which messages are relevant before it can change its state. The overhead of

this process is computationally costly and so agent migration is impractical on FLAME.

Despite FLAME’s significant limitations, it may still be chosen for programming agent-

based models that do not require agent migration. The code surrounding the allocation and

deallocation of memory for agents and the code for inter-agent communication are generated

automatically, allowing developers to focus on defining agent behavior, which both simplifies and

limits programmability.

2.2 PARALLEL ABM BENCHMARK PROGRAMS

We selected seven agent-based models based on systems and problems in the social, behavioral,

and economic (SBE) sciences as benchmarks for a comparative analysis between ABM libraries

[20][21]. These models cover a range of distinct agent behaviors which perform and must be

programmed differently, allowing for a more comprehensive performance and programmability

analysis than a single, generic model. Agent-based models feature either static or dynamic agents,

based on whether the agents have mobility across the simulation space. Depending on the model

and the organization of the simulation space, they may have different forms of mobility. In

addition, these agents may be grouped or operate independently.

1. Social Science

a. Social Network – a network of static agents

17

2. Behavioral Science

a. Virtual Design Team – communication within distinct groups of static agents

3. Economic Science

a. Bail-in, Bail-Out – communication between groups of static agents

4. Biological/Ecological Sciences

a. Brain Grid – dynamic agents jumping across a geometric space

b. Conway’s Game of Life – a simple cellular automata based on static spaces

c. Tuberculosis – dynamic agents migrating across a geometric space

5. Urban Planning

a. MATSim – dynamic agents migrating over a network of spaces

2.2.1 Bail-in, Bail-out, Financial Simulation

In 2015, Klimek et al., a group of economists and computer scientists, studied the problem of how

to model and optimally resolve financial crises involving failing banks [15]. The most common

method is a bailout using government funds and tax money to contribute to a loan to the failing

banks, protecting the banks and creditors but at a cost to taxpayers. Bail-ins are an alternative crisis

resolution in which the government cancels the failing banks’ debts to their depositors, converting

that debt into equity for the bank, protecting the banks and taxpayers but at a cost to the creditors

of those banks. To determine which option works better, Klimek et al. developed an agent-based

modeling framework called the Mark I CRISIS model to simulate a closed economy of banks,

firms, and households [15]. This model forms the basis of the “Bail-in, Bail-out” benchmark

programs we wrote to study the performance of ABM libraries for financial applications.

Our implementation of the model represents the firm owners, workers, firms, and banks as

Agents. In this closed economy, all money must come from other agents in the simulation and the

18

banks cannot print money or bring it in from outside of the simulation. The households consist of

firm owners and workers who also possess personal bank accounts, the firms have profits and

losses and must take out loans from banks, and the banks must offer loans while maintaining their

cash reserves. The model ends after any bank in the simulation has reached bankruptcy, but a

secondary option allows the model to continue for a specified number of iterations.

2.2.2 Brain Grid, Self-Organizing Neural Network

To cover the problem space of neuroscience and neural networks, we designed and implemented

a self-organizing neural network simulation called Brain Grid [14]. The Brain Grid model takes

place in a two-dimensional space composed of cells. Each cell may start empty, or it may start

with a neuron. From these initial neurons, each representing a soma, axons and dendrites grow

outward. Somas that have formed synaptic connections between each other will relay neural

signals to other somas through the connections. These signals are simulated by agents jumping

across the geometric space that represents the neural network. The model ends after a specified

number of iterations.

2.2.3 Conway’s Game of Life

We implemented the common Conway’s Game of Life cellular automata because of its ubiquity

as a program and its compatibility with agent-based modeling [11]. In Game of Life, each cell

switches between an “alive” or “dead” state, based on the number of living cells in its Moore

neighborhood. When implemented as an agent-based model, static agents represent each cell and

synchronously communicate with their surrounding agents to determine whether they are alive or

dead. The cellular automata continues until it reaches a specified number of iterations.

19

2.2.4 Multi-Agent Transport Simulation (MATSim)

The Multi-Agent Transport Simulation (MATSim) is an agent-based model framework for

modeling the movement of vehicles and traffic flows using a queuing network of agents moving

through a simulation space [13][26]. MATSim is a popular agent-based model framework because

of its use in urban planning and city modelling, but it is limited to that application and does not

support parallelization. We designed a simpler form of MATSim for use as a benchmark for

comparing ABM libraries. Unlike the original MATSim which can model complex road

geography, the benchmark version uses a simple adjacency list comprised of vertices representing

intersections. Agents, representing cars, start on intersections on the outer edges of the simulation

space, with the goal of moving to a predetermined target destination at the center. The path each

car takes is precalculated based on an input file, so the model does not actively perform shortest-

path calculations. However, both vertices/intersections and edges/roads have limited capacities, so

during each iteration, some cars will need to wait before they can proceed on their path. This forms

a queueing network which requires agents and the simulation space to communicate to avoid

collisions. The simulation ends when all agents have reached their destination.

2.2.5 Social Network

Researchers commonly use agent-based modeling for simulating human systems because agents

can abstractly model people and their interactions and connections on a large scale [2]. These

models provide insights to the social scientists who study human behavior in certain contexts and

situations they may not be able to simulate otherwise [4]. Social networks are one of the most

common structures of interactive and interconnected humans, so they are commonly modeled with

agents. We designed and implemented a simple social network model which simulates interactions

20

between a network of thousands of people. Each Person is a vertex in the network that tracks an

adjacency list of their first-degree friendships with other people. Each Person relays N messages

to their first-degree friends, with each message containing a list of the Person’s friends at the Nth

degree. By the end of the simulation, each Person outputs a comprehensive list of their friends at

each degree up to a degree specified by the user. The following is an example of what this output

may look like:

• Agent 0's friends

o Degree 1: 1, 5, 8, 10

o Degree 2: 2, 3, 4, 21

o Degree 3: 7, 11, 20, 30, 31, 52

2.2.6 Tuberculosis

Researchers in the biological/ecological sciences also use agent-based modeling to model the

behavior of organisms interacting with each other in ecosystems [19]. The models are most

applicable to simple cellular organisms which, like agents, have simple behaviors but at a large-

scale can form complex ecosystems. Some biologists also use these models to design new

treatments or even new novel cell functions. For example, in 2016, researchers in the field of

synthetic biology proposed the use of these models to inform their design of synthetic biological

systems that can perform computations, sense diseases, or produce drugs and chemicals [12].

However, most biologists use these models to simulate existing cellular organisms including

viruses or diseases.

In 2004, researchers writing for the Journal of Theoretical Biology proposed using an

agent-based model to simulate Mycobacterium tuberculosis (Mtb) bacteria in a human lung, the

cause of the Tuberculosis (TB) disease [19]. The adaptive immune response to Mtb causes

21

formations of multicellular structures, called granulomas, in the lungs of infected individuals. The

formation of granulomas progresses the disease in infected individuals, so understanding this

process guides understanding of the disease and its treatment. Modeling the process of granuloma

formation involves simulating the spatial and temporal organization and interactions between the

Mtb cells and the immune system cells. The model was originally implemented as a non-parallel,

CPU-based model, but another group of researchers in 2009 implemented a GPU-based model to

improve performance [8]. We implemented a simplified but parallelized version of the original

CPU-based model as a benchmark for parallel agent-based modeling libraries. We simplified the

immune system into macrophages, T-cells, and chemokines, and we modeled their generation,

diffusion, and termination within the simulation space. The model ends after a specified number

of iterations.

2.2.7 Virtual Design Team (VDT)

To cover the problem space of behavioral and organizational science, we developed

implementations of the Virtual Design Team (VDT) model. VDT is a model first devised by

Raymond Levitt in the late 1980s but iterated into the 2000s which sought to model

organizations/teams as they performed routine design or product development work [16]. Levitt

argues that through a similar process by which engineers design their products through modeling,

analyzing, and evaluating virtual versions of their systems, organizations and teams can be

designed and improved in the same way.

Our implementation of VDT forecasts the productivity of multiple teams of engineers using

separate organizational structures. Each team is composed of project leads, UX designers, senior

developers, junior developers, and test engineers, with tasks assigned to that team flowing through

the hierarchy in that same order. Each team is composed of 25 engineers, each of which is

22

represented by agents, and though the teams can be organized differently, they must all have at

least one member in each role. Teams are assigned a list of tasks which may either be production

tasks or collaborative tasks. Production tasks are passed down through the team hierarchy, with

each engineer role taking a different amount of time to complete their part, whereas collaborative

tasks involve multiple engineers simultaneously. Teams work independently of each other, but the

engineers within each team work closely together, so this simulation exemplifies models focused

on intra-group agent communication. The model ends after all teams have processed all tasks.

2.2.8 Summary

Table 2.1 provides an overview of the differences between each benchmark program in

terms of how they manage their agents and space.

Table 2.1. Comparison of benchmark model designs

Benchmark

Programs

Domain Computational

Model

Entities Space

Structure

Agent

Population

Bail-in, Bail-out Economic Inter-group

comm

Grouped agents Groups Multi-groups of

agents (m:1)

Brain Grid Biological Agent jump over

2D

Agents on space 2D Agents on given

cells (0-m:1)

Game of Life Behavioral Cellular

automata

Space only 2D Cells in 2D

(0:1)

MATSim City Planning Agent move on

net

Agents on

space

Group Agents on given

vertices (0-m:1)

Social Network Social Networked

agents

Space only Graph Vertices in net

(0:1)

Tuberculosis Biological Agent move on

2D

Agents on

space

2D Agents on given

cells (0-m:1)

VDT Behavioral Intra-group

comm

Grouped agents Groups Multi-groups of

agents (m:1)

Benchmark

Programs

Classes of

Agents

Execution time

Agent

Management

Inter-entity

Communication

Lock/unlock Collision

control

Bail-in, Bail-out Multiple Static Multicast Yes No

Brain Grid Single Spawn, kill,

move

8 neighbors,

multicast

No Yes

Game of Life Single Static 8 neighbors No No

MATSim Single Move Adjacent roads Yes Yes

Social Network Single Static Adjacent

vertices

No No

23

Tuberculosis Multiple Spawn, kill,

move

8 neighbors No Yes

VDT Single Static Multicast Yes No

We see that the selected benchmarks cover a variety of different application domains, as

well as different ways of using entities. The set of chosen benchmarks is therefore comprehensive

for the purpose of a general performance and programmability comparison. Due to the different

characteristics of each application, some of them may lend themselves to a certain ABM library in

terms of programmability. For example, the agent migration features supported in MASS C++

might make it the best choice for MATSim, which involves agent movement across space during

execution time.

Chapter 3. RELATED WORK

As a result of the high number of agent-based modeling platforms, many researchers have

performed surveys, reviews, and comparative analyses to assess them and determine which

systems are best for which applications [1]. In the period between 2016-2019, three groups of

researchers, one writing for the Journal of Supercomputing and two for the Computer Science

Review, surveyed and reviewed the current state-of-the-art agent-based modeling software

[1][17][18]. These studies examined RepastHPC and FLAME among several other agent-based

modeling platforms. However, no studies have assessed the MASS C++ library since it has been

in active development during the period these articles were written and published.

A review written by Abar et al. in 2017 broadly compares a comprehensive list of agent-

based modeling tools and platforms [1]. This review does not attempt to compare the performance

of each platform, and it is not limited to cluster-based, parallel ABM platforms. The survey briefly

covers FLAME and RepastHPC, but only in limited detail and with only a manual code and

24

documentation review process. According to the review, FLAME has moderate programmability

and is suited for large-scale simulations. In comparison, RepastHPC is said to have moderate to

complex programmability and to be suited for extreme-scale simulations. The overall review is

useful for a brief overview of the many ABM platforms, but more data is required to qualify and

quantify the differences between them. The performance and programmability results of our study

provide a more in-depth comparison of FLAME, RepastHPC, as well as MASS C++.

A survey conducted by Rousset et al. in 2016 proposed a generic reference model by which

specifically distributed/parallel agent-based modeling software can be compared [18]. The survey

uses the reference model to compare the performance of FLAME, RepastHPC among other

parallel ABM platforms. The performance results found that RepastHPC consistently performed

faster than FLAME with the same model parameters and the same number of computing cores.

Specifically, with 16 cores the RepastHPC implementation was 2.02 times faster than FLAME

while at 128 cores it was 9.26 times faster. The survey notes that when the model was executed

with smaller parameters, FLAME was able to perform faster than RepastHPC. By examining the

memory consumption of the two implementations, the study found that FLAME uses significantly

more memory than RepastHPC for the same parameters, indicating that RepastHPC has better

scalability. However, the generic reference model is a simple mathematical model and does not

represent realistic problems in the social, behavioral, or economic fields. Researchers seeking to

develop a model may prefer an ABM platform that is suited for their specific field, so a generic

reference model may not provide all the data they need to make an informed judgment.

In 2019, Moreno et al. designed a benchmark based on the reference model proposed by

Rousset et al., and used it to compare FLAME, FLAME GPU, RepastHPC, and EcoLab [17].

When comparing FLAME and RepastHPC, RepastHPC was once again found to scale better than

25

FLAME. The RepastHPC benchmark implementation showed a linear increase in execution time

as the workload increased, whereas FLAME showed a quadratic increase. This is mostly a result

of FLAME’s agent communication overhead compared to RepastHPC, with FLAME

communicating at least 100 times more bytes. Interestingly, FLAME performed computations up

to 10 times faster than RepastHPC, and with smaller workloads the model was faster than

RepastHPC. However, the communication overhead caused FLAME to scale poorly as the

workload increased compared to RepastHPC. These findings contextualize the results of our

performance comparison, which supplements this generic benchmark with seven additional

benchmarks and introduces MASS C++ into the comparison.

Chapter 4. MEASUREMENT METHODS

4.1 PERFORMANCE MEASUREMENT METHODS

We measured the performance of the 21 benchmark programs by executing each benchmark a total

of twelve times to obtain average execution times. Although each benchmark has its own set of

parameters which affect its execution time, we only wanted to assess how performance changes as

the number of computing nodes increases from one to eight nodes. Therefore, we calibrated all

other parameters to achieve an approximately 20-minute execution time on a single node and only

increased the number of nodes to decrease that execution time. For each number of nodes, we

executed the benchmark three times to obtain an average execution time. With the same data, we

also compared the relative performance of MASS C++, RepastHPC, and FLAME’s

implementations of each benchmark.

MASS C++, unlike RepastHPC and FLAME, has an option which allows for multi-

threading the processes running on each computing node. We ran each benchmark with 4 threads

26

to assess how this feature affects the performance of MASS C++ compared to the single-threaded

MASS C++, RepastHPC, and FLAME.

Benchmarks written for the FLAME library, due to how FLAME handles the instantiation

of agents using pre-generated XML files, were unable to handle the higher numbers of agents

which were used for the MASS C++ and RepastHPC benchmarks. We created another set of

parameters with fewer agents that achieves an approximately 20-minute single-node execution

time on FLAME so that a comparison could still be made between all three ABM libraries. This

required that we also execute the MASS C++ and RepastHPC benchmarks using that second set

of parameters. In this study, benchmarks executions using the set of higher/larger parameters tuned

using MASS C++ are referred to as “using the higher parameters”, while executions using the

smaller parameters tuned for FLAME are referred to as “using the smaller parameters”. Due to

issues with the RepastHPC implementations of Social Network and Virtual Design Team which

limit their scalability, they could not be compared in the performance assessment. The following

is an overview of the two parameter sets used for each benchmark:

1. Bail-In, Bail-Out

a. Higher Parameters: 20,000 workers, 2,000 firms, 5 banks, and 22000

turns/iterations

b. Lower Parameters: 20,000 workers, 2,000 firms, 5 banks, and 1100

turns/iterations

2. Brain Grid

a. Higher Parameters: 100 turns/iterations, 540 x 540 grid

b. Lower Parameters: 100 turns/iterations, 180 x 180 grid

3. Game of Life

a. Higher Parameters: 250 turns/iterations, 1000 x 1000 grid

b. Lower Parameters: 250 turns/iterations, 165 x 165 grid

4. Multi-Agent Transport Simulation (MATSim)

a. Higher Parameters: 110 x 110 grid, 1210 cars

b. Lower Parameters: 40 x 40 grid, 160 cars

5. Social Network

a. Higher Parameters: 580,000 agents, 50 friends each, up to 3rd degree of friendship

b. Lower Parameters: 21,500 agents, 50 friends each, up to 3rd degree of friendship

6. Tuberculosis

27

a. Higher Parameters: 10 iterations, 48 x 48 grid

b. Lower Parameters: 8 iterations, 16 x 16 grid

7. Virtual Design Team (VDT)

a. Higher Parameters: 1000 tasks, 400 teams

b. Lower Parameters: 1000 tasks, 64 teams

4.2 BENCHMARK SCRIPTS

To improve the process of measuring performance across the 21 benchmark programs, we

developed scripts which could compile and run each benchmark. We also standardized the scripts

which were already written for some of them. This was necessary because all the benchmark

programs were written at different times and often by different students, and therefore each

required their own steps to compile and run. The “compile” shell scripts automate the process of

exporting the necessary agent-based modeling libraries and compiling the benchmark code using

g++ or Makefiles. Similarly, the “run” shell scripts simplify the process of executing each

benchmark, although it does still require the user to know exactly which arguments they wish to

pass to the program. These scripts simplify what would otherwise be several console commands

into a single script execution. In addition, we wrote readme files for each benchmark which

explains the process of executing these scripts. The benchmark runner program described in

Section 5.3 uses these scripts and further simplifies the process of executing benchmarks.

4.3 BENCHMARK RUNNER PROGRAM

We developed a benchmark runner program, BenchmarkRunner, which leverages the compile and

run scripts described in Section 5.2 to further simplify and automate the process of executing the

benchmarks. Instead of navigating to each benchmark’s directory and running the scripts

manually, users can execute the BenchmarkRunner from a central directory and specify the target

benchmark from there. The process navigates to the directory of the target benchmark and then

28

runs the corresponding shell scripts. We designed BenchmarkRunner to allow users to specify

prerecorded parameters into a text file that are then automatically entered into the corresponding

scripts.

We further simplified the BenchmarkRunner program by writing more shell scripts to run

the BenchmarkRunner. Specifically, “compile_benches.sh” and “run_benches.sh will run

BenchmarkRunner which compiles or runs the benchmarks, only requiring the user to specify the

target benchmark. Another shell script, “automate.sh”, automates the process of running multiple

benchmarks sequentially with different numbers of computing nodes. For example, it will run a

benchmark with a single node three times, then it will run the same benchmark with two nodes

three times, and so on until it has run all numbers of nodes with all specified benchmarks. This

script, which allows for the execution of benchmarks overnight without monitoring, is the primary

method by which we collected the benchmark performance measurements.

We developed an additional functionality for BenchmarkRunner which allows multiple

benchmarks to be executed simultaneously. This feature uses multiple execution threads, each of

which remotely connects to other computing nodes with SSH2, navigates to the directories of a

target benchmark, and then executes their scripts at the same time. This was implemented to allow

for complete utilization of all 24 computing nodes in UW Bothell’s Linux machine network. On a

single-threaded BenchmarkRunner instance, a single benchmark uses up to 8 out of the 24

available computing nodes, leaving 16 nodes unused. With the multi-threaded BenchmarkRunner,

a user could simultaneously run up to 24 single-node or three 8-node benchmarks. We did not use

this feature for our performance measurements because of inconsistencies between the computing

nodes themselves, causing benchmark execution to succeed on certain nodes and fail on others.

29

4.4 PROGRAMMABILITY ASSESSMENT METHODS

We assessed the programmability of the ABM libraries by quantitatively analyzing each

benchmark with static code analysis tools and performing a qualitative manual code review of each

benchmark.

4.4.1 Static Code Analysis

We performed static code analysis to obtain quantitative metrics for each benchmark.

Specifically, we used a program that counts the lines of code in each benchmark implementation

and broke down the lines used for specific aspects of each model. For example, for each benchmark

implementation we counted the lines of code dedicated to defining the behavior of agents and

compared which library requires more. In the case of benchmarks written with the FLAME library,

the tool must be used before the benchmarks are compiled. This is because FLAME’s compilation

process automatically generates many files not written by the benchmark programmer and are

therefore not part of the programmability assessment. We gathered these quantitative metrics to

compare each library:

• Lines of Code – the total lines of code for the entire program

• Control Flow Statements –a count of all if statements, for loops, while loops, and switch

statements. This acts as an approximate measurement of cyclomatic complexity

• Lines of Boilerplate Code – the library code that sets up the parallel cluster but is not

dedicated to the management of space or agents

• Lines of Agent Code – lines of code concerning agent behavior and computations

• Lines of Spatial Code – lines of code concerning the behavior of space

• Lines of Model Design Code – total lines of agent and spatial code

30

• Lines of Model Management Code – lines of code concerning the management of the

agents and space on a model

4.4.2 Code Review

The manual code review of each benchmark produces qualitative observations about how models

are implemented for each ABM library. We can use these observations to assess the capabilities

and limitations of each ABM library broadly. These qualitative metrics describe how each library

handles specific aspects of each benchmark:

• Computational Model – the approaches that the ABM library takes to different types of

agent behavior and actions

• Entities (Space and/or Agents) – whether the ABM library supports the definition of the

agents as well as the space of the model

• Space Structure – how the ABM library structures the simulation space that the model

exists on

• Agent Population – how the ABM library populates the simulation space

• Multiple Classes of Agents – whether the ABM library supports multiple classes of agents

or spaces

• Runtime Agent Management – how the ABM library manages the agents in the model

during runtime

• Inter-Agent Communication – how the ABM library handles agents communicating with

each other

• Synchronization (Lock/Unlock) – how the ABM library manages synchronization of data

between agents

31

• Collision Control – how the ABM library addresses the risk of agent collision

Chapter 5. PERFORMANCE AND PROGRAMMABILITY

EVALUATION

Chapter 5 illustrates and discusses the results of the performance and programmability analyses

for each benchmark model and each ABM library. The performance results are visualized using

line plots. The specific average execution times in seconds are listed in the tables in Appendix A.

In addition, the standard deviation and variance of each set of executions is listed in the tables in

Appendix B. The programmability assessments explain how each ABM library implements each

model to provide a qualitative comparison of the benchmark models and ABM libraries. Then,

these implementations are measured quantitatively, comparing lines of code

5.1 BAIL-IN, BAIL-OUT, FINANCIAL SIMULATION

All implementations of the Bail-In, Bail-Out financial/bank simulation use a constant number of

20,000 workers, 2,000 firms, and 5 banks, only changing the number iterations/turns to affect the

execution time. On a single node, the MASS C++ model must process 22,000 iterations to reach

the target average execution time of 20 minutes, so the “higher parameters” uses 22,000 iterations.

The FLAME implementation of the model is unable to process that many iterations in a reasonable

time, so we selected 1,100 iterations for the “smaller parameters”.

5.1.1 Performance Results

We executed MASS C++ with 22,000 iterations using both single-threaded and four-threaded

execution. Figure 5.1 illustrates the difference in execution times as both the number of nodes and

the number of threads increase. The MASS C++ implementation of the Bail-In, Bail-Out model

32

does not demonstrate a significant improvement in performance when the number of nodes is

increased. This is a result of its usage of MASS C++’s “Place” construct to represent the model’s

“FinancialMarket”. Each “FinancialMarket” Place acts as a form of shared memory, allowing local

Agents (workers, banks, and firms) to communicate with each other. In addition, FinancialMarkets

communicate with each other across the model to exchange transaction information. These

communication processes incur a constant communication overhead per iteration which is

dependent on the number of agents in the model, and so increasing the number of nodes does not

significantly decrease execution time. The performance only worsens when using four threads

because the added thread synchronization incurs an overhead of its own while not addressing the

existing communication overhead.

Figure 5.1. MASS C++ Bail-In, Bail-Out using the higher parameters, execution time in

seconds as the number of nodes increases

Figure 5.2 demonstrates that, unlike the MASS C++ model, the RepastHPC

implementation of Bail-In, Bail-Out has improved performance when increasing the number of

nodes. On a single node, it takes an average of 6,812 seconds to complete 22,000 iterations, while

on eight nodes it takes 1,493 seconds. However, even at eight nodes the RepastHPC model

33

performs worse than the MASS C++ model. This is because of the model’s usage of RepastHPC’s

“Observer” construct, which coordinates the agents on the model. Like the MASS C++ model, this

coordination and communication incurs significant overhead. Unlike MASS C++, RepastHPC is

better able to distribute this process across the cluster which improves performance as the number

of nodes increases. The overhead still appears to be worse overall because of RepastHPC’s

communication system which requires communicating agents to be copied at other nodes.

Figure 5.2. Bail-In, Bail-Out models using the higher parameters, execution time in seconds

as the number of nodes increases

34

While FLAME appears to be able to handle the number of agents in the model, it is still

significantly slower than MASS C++ and RepastHPC so it must use a lower number of iterations

to execute in a timely manner. Figure 5.3 shows the execution times of the MASS C++,

RepastHPC, and FLAME models with 1,100 iterations. It takes FLAME approximately 1,212

seconds to process 1,100 iterations, though this does decrease to 185 seconds when using a cluster

of eight nodes. The FLAME model’s worse performance is due to its extremely high

communication overhead, which is itself a consequence of FLAME’s broadcast-based, message

board communication system [18]. The MASS C++ model performs much faster than the FLAME

model, completing 1,100 iterations in less than 60 seconds. However, performance still does not

improve with more nodes in the model. RepastHPC’s performance is better than the FLAME

model, but worse than the MASS C++ model.

Figure 5.3. Bail-In, Bail-Out models using the smaller parameters, execution time in seconds

as the number of nodes increases

35

5.1.2 Programmability Assessment

The MASS C++ model instantiates with several FinancialMarket Places, enough to contain one

Firm Agent per Place. These individual FinancialMarket elements facilitate communication

between the Agents in the simulation, acting as a sort of shared memory and messaging system for

the model. The Bank, Firm, and Worker Agents are instantiated and associated with each other

and with FinancialMarket Places. The Agents perform their various transactions, which are

accordingly exchanged across the FinancialMarket with exchangeAll().

The RepastHPC model uses the Observer to manage the model, instantiating and

coordinating all of its Bank, Firm, and Worker agents. The Agents and the Observer coordinate

between each other using temporary Messenger agents which carry and exchange transaction

information across the model.

The FLAME model instantiates all Bank, Firm, and Worker agents into the initial 0.xml

file. Their transactions between each other are coordinated through the message board which they

all communicate on, but there is no central controller like MASS C++’s FinancialMarket or

RepastHPC’s Observer. The FLAME model struggles with ending the model once bankruptcy has

occurred, so for the sake of the comparison, all of the model implementations end after a certain

number of iterations instead.

Table 5.1 compares the lines of code used to write each ABM library’s implementation of

the Bail-In, Bail-Out model. The MASS C++ model has the fewest lines of code overall, with

almost half as many as RepastHPC. However, it uses a space construct as part of its model which

makes its implementation slightly different from the RepastHPC and FLAME models.

36

Table 5.1. Quantitative comparison of benchmark implementations by library

Library Lines

of

Code

Control

Flow

Statements

Boilerplate

LoC

Agent

LoC

Space

LoC

Model

Design

LoC

Model

Management

LoC

MASS C++ 688 69 123 331 186 517 48

RepastHPC 1293 74 134 699 0 699 460

FLAME 894 36 265 344 0 344 285

5.2 BRAIN GRID, SELF-ORGANIZING NEURAL NETWORK

For the Brain Grid Self-Organizing Neural Network model, the number of iterations and the size

of the simulation space determine its execution time. For MASS C++, a 540 by 540 grid space

running for 100 iterations takes 20 minutes, whereas for FLAME a 168 by 168 grid running for

100 iterations takes 20 minutes.

5.2.1 Performance Results

Figure 5.4 shows that the MASS C++ Brain Grid model significantly improves in performance

when the number of nodes increases, as well as when the number of threads increases. On single-

threaded models, the execution time drops from 1,191 seconds at one node to 170 seconds at eight

nodes. On a single node, the execution time drops from 1,191 on one thread to 487 seconds on

four threads. On both eight nodes and 4 threads, the execution time drops as low as 84 seconds.

The MASS C++ model effectively utilizes parallelization to divide the simulation space across the

cluster’s computing nodes, with each node using multiple threads to perform computations.

37

Figure 5.4. MASS C++ Brain Grid using the higher parameters, execution time in seconds as

the number of nodes and the number of threads increase

The RepastHPC implementation of Brain Grid uses Logo constructs to simulate the neural

network grid. The neurons and signals are represented by Turtles, which are mobile agents. The

grid spaces they travel across, known as BrainPlaces, are represented by Patches which are fixed

agents. An Observer at each rank manages the model by coordinating the creation of new agents

and movement of existing agents. Figure 5.5 shows that the RepastHPC model has worse

performance than the MASS C++ model. Once again, the communication overhead of RepastHPC

itself likely causes this worsened performance, especially with this many spawning, moving,

communicating agents.

38

Figure 5.5. Brain Grid models using the higher parameters, execution time in seconds as the

number of nodes increases

Figure 5.6 shows that the FLAME model can handle a 168 by 168 simulation space running

for 100 iterations. Figure 5.6 demonstrates that the MASS C++ Brain Grid model has significantly

better performance than the FLAME version. In addition, while Figure 5.6 shows that RepastHPC

also performs better, MASS C++ is still better than both.

Figure 5.6. Brain Grid models using the smaller parameters, execution time in seconds as the

number of nodes increases

39

5.2.2 Programmability Assessment

The MASS C++ model starts as a grid of “BrainPlaces”, some of which begin as neurons.

“GrowingEnd” agents move outwards from these starting neurons using neighbor information

from exchangeBoundary(). These movements grow the network by changing unoccupied

BrainPlaces into somas, dendrites, axons, and synaptic terminals. Once synaptic connections have

been made between neurons, a soma BrainPlace starts sending signals to other somas via the

connections, calling exchangeAll().

The RepastHPC model populates Neuron Agents over a two-dimensional

SharedDiscreteSpace and diffuses them to neighboring coordinates to mimic the grow of neural

network. RepastHPC natively supports the SharedDiscreteSpace structure, which allows for more

robust control over the model. Rather than changing the state of existing spaces on the network,

the model directly adds and removes Agents from the context using addAgent() and

removeAgent(). Signal Agents jump from soma to soma with moveTo().

The FLAME model populates the network with pairs of Place Agents and Neuron Agents

in 2D. The model uses Agents to mimic Places because FLAME only supports Agent constructs.

Each Neuron sends a request-to-grow message to the corresponding remote Place that arbitrates

multiple different requests to allow only one neuron to occupy that place. Once a neural connection

is set up, a Neuron agent starts sending a signal to another.

Table 5.2 compares the lines of code used to write each ABM library’s implementation of

the Brain Grid model. The MASS C++ model has the fewest lines of code overall, while the

FLAME model has the most. Unlike the RepastHPC and FLAME models which use agents, the

MASS C++ model represents Persons in the social network using Places.

40

Table 5.2. Quantitative comparison of benchmark implementations by library

Library Lines

of

Code

Control

Flow

Statements

Boilerplate

LoC

Agent

LoC

Space

LoC

Model

Design

LoC

Model

Management

LoC

MASS C++ 918 129 167 282 431 713 38

RepastHPC 1184 118 152 514 154 668 364

FLAME 1403 103 322 461 23 484 597

5.3 CONWAY’S GAME OF LIFE

For the Game of Life cellular automata model, the number of iterations and the size of the

simulation space determine its execution time. The model is very simple, so all implementations

can handle a much larger simulation size. A 250 by 250 grid space running for 250 iterations takes

20 minutes for MASS C++, whereas a 165 by 165 grid running for 250 iterations takes 20 minutes

for FLAME.

5.3.1 Performance Results

Figure 5.7 shows that, for the MASS C++ model, the performance increases as the number

of nodes and the number of threads increase. With 8 nodes each running with 4 threads, the average

time reaches as low as 69 seconds. RepastHPC and FLAME lack this multi-threading capability

and cannot achieve similar performance improvements compared to a single node.

41

Figure 5.7. MASS C++ Game of Life using the higher parameters, execution time in seconds

as the number of nodes and the number of threads increase

Figure 5.8 shows that RepastHPC has worse performance as compared to MASS C++.

Given the simplicity of the model in terms of what the programmer defines, the difference in

performance must be attributed to the overhead of RepastHPC’s own processes.

Figure 5.8. Game of Life models using the higher parameters, execution time in seconds as

the number of nodes increases

42

Figure 5.9 shows the performance of the FLAME model with a 165 by 165 grid. In terms

of scalability, this grid size is the closest out of all benchmarks to what MASS C++ and RepastHPC

are capable of. However, the FLAME model is still significantly slower than the MASS C++ and

RepastHPC versions. With the 165 by 165 grid used in the smaller parameters and with a single

node, the MASS C++ model only takes 31 seconds to achieve what FLAME achieves in 20

minutes. RepastHPC is also able to perform significantly faster than FLAME using the same

parameters, but its execution times are slower than MASS C++.

Figure 5.9. Game of Life models using the smaller parameters, execution time in seconds as

the number of nodes increases

5.3.2 Programmability Assessment

The MASS C++ model creates a two-dimensional array of Places. Each Place exchanges its state

with the Places in its Moore neighborhood through exchangeBoundary(). The state of each Place

is determined when the main program executes callAll() on all Places.

43

The RepastHPC model creates static Patch agents in a two-dimensional space and controls

them with two ask() methods. The first call of ask() to a Patch agent checks the states of its

neighbors and the second call changes its state according to the state of the neighbors.

The FLAME model creates agents representing the cells, each with i- and j-coordinates. In

each iteration, the Agents repeat a series of actions: write_state to send their state to neighbors,

read_state to receive neighbor information, and react calls to change their state.

Table 5.3 compares the lines of code used to write each ABM library’s implementation of

the Game of Life model. The FLAME model has the fewest lines of code overall, while the

RepastHPC model has the most. The differences are minor, however, since the models are so

simple.

Table 5.3. Quantitative comparison of benchmark implementations by library

Library Lines

of

Code

Control

Flow

Statements

Boilerplate

LoC

Agent

LoC

Space

LoC

Model

Design

LoC

Model

Management

LoC

MASS C++ 203 17 21 0 111 111 71

RepastHPC 235 18 72 0 49 49 114

FLAME 144 7 3 0 47 47 64

5.4 MULTI-AGENT TRANSPORT SIMULATION (MATSIM)

Each MatSim model utilizes the same input files to determine the size of the model. To achieve a

20-minute execution time on MASS C++ on a single node, the intersection input file contains a

110 by 110 grid, and the car input file contains 1210 cars and their routes. The FLAME intersection

input file contains a 40 by 40 grid, and the car input file contains 160 cars and their routes.

5.4.1 Performance Results

Figure 5.10 shows the performance of the MASS C++ MATSim model using 1 thread. The

four-threaded performance is unavailable because the model stops working with multi-threading

44

when multiple nodes are used, demonstrating that multi-threading is not always an option. This is

caused by the unique shared file memory developed specifically for the MATSim model which

does not work when multiple threads and nodes are contending for the shared memory. Multi-

threading can still be used on a single node for the MatSim model. This results in an execution

time of 640 seconds, which is still an improvement over a single-threaded single node. This multi-

threaded, single node configuration may be useful if a user is only able to execute the model on a

single node but seeks better performance.

Figure 5.10 also shows that RepastHPC can achieve superior performance to MASS C++

for certain models. The key difference with this model is that the Observer contains less code

dedicated to coordinating communication between agents. Instead, the Observer passes static

instances of the intersections and roads to each agent, and the agents determine for themselves

whether they can move from one location to the next.

Figure 5.10. MATSim models using the higher parameters, execution time in seconds as the

number of nodes increases

Figure 5.11 shows the performance results of the FLAME MATSim model using the 40 by

40 grid with 160 cars. Each car sends a message requesting to move for the upcoming iteration,

45

which slows the model’s performance. The results for the MASS C++ and RepastHPC models also

demonstrate a phenomenon in which increasing the number of nodes decreases the performance

when the execution times are already low. This is due to the increased overhead of managing

multiple nodes and organizing the communication between agents. Regardless, the performance

for both models is still much faster than the FLAME model.

Figure 5.11. MATSim models using the smaller parameters, execution time in seconds as the

number of nodes increases

5.4.2 Programmability Assessment

The MASS C++ model first reads the input file containing the list of intersections and roads

connecting them, loading them into Places which form a shared memory for the model. These

Intersections are then initialized as a network of Intersection Places, connected by Road objects.

The input file containing the cars and their routes is also loaded into shared memory, and then the

cars are initialized as Car Agents. Once the model has been fully initialized, the main program

iteration loop tells the Car Agents to proceed along their routes towards their destination at the

46

center. To avoid collisions or locks caused by Cars blocking each other, all Cars moving North are

told to move first, then all Cars moving East move, and so on for each iteration.

The RepastHPC model uses the Observer to read the intersection/node and car/route input

files. The Observer initializes the Point (intersection) objects, the Road objects connecting them,

and the Agents representing the cars. The Observer then commands each Agent to move along its

route, directly passing the Point and Road information in the command so that the Agent knows

whether it can move.

The FLAME model reads the intersection and car input files and formats them into Place

Agents and Car Agents in the 0.xml input file. Using the message board, the Car Agents send

requests to move along their route to the Place Agents, which approve or deny the requests

according to their capacity. If the request has been approved, the Car Agent moves along the route.

Table 5.4 compares the lines of code used to write each ABM library’s implementation of

the MATSim model. The MASS C++ model has the fewest lines of code overall, while the

FLAME model has the most.

Table 5.4. Quantitative comparison of benchmark implementations by library

Library Lines

of

Code

Control

Flow

Statements

Boilerplate

LoC

Agent

LoC

Space

LoC

Model

Design

LoC

Model

Management

LoC

MASS C++ 587 84 89 193 211 404 93

RepastHPC 897 73 104 295 173 468 325

FLAME 1025 103 322 461 23 484 597

5.5 SOCIAL NETWORK

MASS C++ can handle 580,000 people in the social network model, although they are represented

by MASS C++’s “Place” spatial constructs rather than agents like RepastHPC and FLAME. An

issue occurs when the MASS C++ Social Network model is executed with four threads. FLAME

can reach 20 minutes with at most 21,500 people with all other parameters being the same. Due to

47

differences in implementation, RepastHPC can only achieve a 20-minute execution time with 1400

agents. The differences in implementation may mean that the comparison between the three

libraries for this specific benchmark model are not entirely valid.

5.5.1 Performance Results

Figure 5.12 shows the performance of the MASS C++ Social Network model using a single

thread. The single-threaded and four-threaded figures have been separated because of irregularities

with the four-threaded performance. The MASS C++ Social Network model does not properly

execute with four threads, producing incorrect output. It is currently unclear what causes this issue

to occur, though this is the only model and configuration it seems to occur on. This demonstrates

a downside of the MASS C++ multithreading feature, which is that it is not guaranteed to work

even when the single-threaded operation works normally. The RepastHPC implementation of the

Social Network model cannot execute with either the larger or smaller parameters. Instead, to reach

20 minutes, it can only execute up to 1400 agents. This implementation will need to be investigated

and fixed to make it eligible for the performance comparison.

48

Figure 5.12. Social Network models using the higher parameters with one thread, execution

time in seconds as the number of nodes increases

Figure 5.13 shows that FLAME can execute the Social Network model with no issues,

though it is limited in its scalability compared to MASS C++. The MASS C++ model can execute

with the smaller parameters in 33 seconds on a single node or as fast as 5 seconds with eight nodes.

Figure 5.13. Social Network model using the smaller parameters, execution time in seconds

as the number of nodes increases

49

5.5.2 Programmability Assessment

The MASS C++ model mimics a social network with a 1-dimensional array of Places, each

representing a Person. Each of the Places maintains an adjacency list of other Places representing

the Person’s friends. The main program orders each Place to disseminate their lists of friends as

messages over the network with exchangeAll().

The RepastHPC model creates a SharedContext space over the MPI ranks and populates

the context with Agents which each maintain a list of their first-degree friends. The model

examines an Agent, prints that Agent’s first-degree friends, then examines each of the friends to

print their first-degree friends, and so on until the target degree-of-friendship has been reached.

There are no message exchanges because the agents exist in the same SharedContext.

The FLAME model represents social network vertices with Person agents, each repetitively

sending its list of 𝑁𝑡ℎ degree of friends to the message boards of its first degree of friends.

Table 5.5 compares the lines of code used to write each ABM library’s implementation of

the Social Network model. The MASS C++ model has the fewest lines of code overall, while the

RepastHPC model has the most. Unlike the RepastHPC and FLAME models which use agents,

the MASS C++ model represents Persons in the social network using Places.

Table 5.5. Quantitative comparison of benchmark implementations by library

Library Lines

of

Code

Control

Flow

Statements

Boilerplate

LoC

Agent

LoC

Space

LoC

Model

Design

LoC

Model

Management

LoC

MASS C++ 275 35 35 0 113 113 127

RepastHPC 426 35 87 78 0 78 261

FLAME 334 12 67 56 0 56 211

50

5.6 TUBERCULOSIS

The relative complexity of the Tuberculosis model means that it reaches 20 minutes even

with a much smaller grid size and number of iterations than other benchmarks. The MASS C++

and RepastHPC Tuberculosis models can both able to execute within 20 minutes with a 48 x 48

grid and 10 iterations, while the FLAME model is limited to a 16 by 16 grid with 8 iterations.

5.6.1 Performance Results

Figure 5.14 demonstrates that for the MASS C++ Tuberculosis model, performance

increases both as nodes increase and as threads increase. The performance of the Tuberculosis

model is not noteworthy, since it predictably improves in performance with more nodes and more

threads.

Figure 5.14. Tuberculosis models using the higher parameters, execution time in seconds as

the number of nodes and the number of threads increase

51

Figure 5.15 shows that the RepastHPC model executes with approximately double the

execution time as compared to the MASS C++ model with the same parameters.

Figure 5.15. Tuberculosis models using the higher parameters, execution time in seconds as

the number of nodes increases

52

Figure 5.16 shows that with the lower parameters, the MASS C++ and RepastHPC models

perform faster than the FLAME model. This indicates that even with a significantly smaller grid

size and number of iterations FLAME still cannot perform as well as MASS C++ or RepastHPC.

Figure 5.16. Tuberculosis models using the smaller parameters, execution time in seconds as

the number of nodes increases

5.6.2 Programmability Assessment

The MASS C++ model creates a two-dimensional array of TB_Places, each of which can contain

a single bacterium, up to one T-Cell and one Macrophage, and a chemokine (a trail left by infected

Macrophages). The model begins with certain Places starting with bacteria, and with Macrophages

starting in random Places. T-Cells enter the simulation through certain Places that are designated

as “blood vessels”. The Agents in the MASS C++ model have autonomy of space navigation and

action, allowing Macrophage agents to eat bacteria and T-Cell agents to activate/burst

Macrophages as they encounter them.

The RepastHPC model instantiates the TuberculosisObserver context, which creates a two-

dimensional space of LungPlace Patches. Each Patch is either healthy, a blood vessel entry point,

53

or occupied by bacteria. The Observer initially populates and continuously spawns Macrophage

agents at given LungPlaces. It later spawns T-cell agents from the blood vessel entry points. Since

agent-to-agent direct communication is hard to implement in RepastHPC, the Patches manage the

agents’ interactions with each other.

The FLAME model instantiates place Agents that simulates a two-dimensional space. Each

Agent acts as a healthy place, a blood vessel entry point, or a place occupied by bacteria.

Macrophage Agents are initially populated from the 0.xml file but are continuously spawned from

blood vessel entry points. T-Cell agents are also later spawned from the blood vessel entry points.

Both Macrophage and T-Cell agents exchange messages with the current and neighboring place

Agents. The place Agents manage the other agents regarding collision avoidance, agent migration,

and agent termination.

Table 5.6 compares the lines of code used to write each ABM library’s implementation of

the Tuberculosis model. The RepastHPC model has the fewest lines of code overall, while the

FLAME model has the most. Interestingly, MASS C++ has very little code for managing the

model, with the agents and Places largely managing themselves. In contrast, FLAME has the most

code for coordinating the model.

Table 5.6. Quantitative comparison of benchmark implementations by library

Library Lines

of

Code

Control

Flow

Statements

Boilerplate

LoC

Agent

LoC

Space

LoC

Model

Design

LoC

Model

Management

LoC

MASS C++ 883 138 153 331 377 708 22

RepastHPC 647 68 87 199 127 326 234

FLAME 1140 60 411 172 114 286 443

5.7 VIRTUAL DESIGN TEAM (VDT)

The MASS C++ model can process 400 teams of engineers performing 1000 tasks in 20 minutes.

The RepastHPC model is not completely implemented and currently only allows for a single team

54

per rank, which is far from the limit that RepastHPC can handle. The FLAME model can process

64 teams performing 1000 tasks in 20 minutes.

5.7.1 Performance Results

Figure 5.17 and Figure 5.18 both show that the MASS C++ model’s performance generally

increases as the number of nodes increases. Interestingly, the performance of the model decreases

when the number of threads increases. This is because the Virtual Design Team model operates

with a specific workflow where tasks are passed between team members with an emphasis on

intra-group communication. The introduction of multi-threading results in increased overhead

during this communication process which does not benefit from the multi-threading.

Figure 5.17. MASS C++ VDT using the higher parameters, execution time in seconds as the

number of nodes and the number of threads increase

55

Figure 5.18. VDT models using the higher parameters, execution time in seconds as the

number of nodes and the number of threads increase

Figure 5.19 shows the performance of the MASS C++, RepastHPC, and the FLAME VDT

models with the smaller parameters. First, the FLAME model’s execution time decreases as the

number of nodes increases, but the performance appears to worsen when increasing from 4 to 8

nodes. The MASS VDT model also plateaus between 4 and 8 nodes with both the larger and

smaller parameters, indicating that this is a normal pattern for the VDT model. Once again, this is

the result of the increased communication overhead involved with increasing the number of

processes in the model.

56

Figure 5.19. VDT models using the smaller parameters, execution time in seconds as the

number of nodes increases

5.7.2 Programmability Assessment

The MASS C++ model instantiates Places as development teams, each containing 25 Engineer

Agents. These Engineers continuously take new tasks from their supervisors (an Engineer higher

in the hierarchy), spends time “working on the task”, and passes the task to the task tray of the

next Engineer in the workflow. The task trays must be handled as critical sections due to MASS

C++’s multithreaded computation.

The RepastHPC model instantiates Observer contexts, each representing a team and

populating Engineer Agents. Each Observer macroscopically manages task flows, centrally

maintains task trays, and relays a task from one Agent to a lower-level Agent. Currently, since

each Observer represents a team, the number of teams is limited to the number of Observers which

is significantly limited compared to both MASS C++ and FLAME. This is incorrect behavior, so

the performance of the RepastHPC model is not compared.

57

The FLAME model populates Member Agents, each with a different type and each with a

given team ID. The FLAME model must use team IDs rather than other methods of grouping

agents such as Places because of FLAME’s limitations in defining space. The simulation also

instantiates Task Agents, with each one keeping track of which Member is currently processing it.

Members with the same team ID check-in and check-out the shared task, coordinating with

hierarchical communication using the FLAME message boards.

Table 5.7 compares the lines of code used to write each ABM library’s implementation of

the Virtual Design Team model. The MASS C++ model has the fewest lines of code overall, while

the RepastHPC model has the most. However, it uses Places on the simulation space to represent

teams of engineers unlike RepastHPC and FLAME which are entirely agent-based.

Table 5.7. Quantitative comparison of benchmark implementations by library

Library Lines

of

Code

Control

Flow

Statements

Boilerplate

LoC

Agent

LoC

Space

LoC

Model

Design

LoC

Model

Management

LoC

MASS C++ 593 86 68 72 227 299 227

RepastHPC 847 91 65 298 0 298 484

FLAME 842 48 155 405 0 405 282

5.8 SUMMARY

5.8.1 Performance Results

The summaries of average execution times in both Table 5.8 and Table 5.9 indicate that

the models written with MASS C++ generally had the best performance, especially when multi-

threaded. An exception to this is the MATSim model where the RepastHPC version had superior

performance. In general, even the single-threaded performance of the MASS C++ model surpassed

the performance of most RepastHPC models. FLAME had the demonstrably worst performance

and scalability of the three ABM libraries, requiring its own set of smaller parameters to be able

to be compared with the other two libraries.

58

Table 5.8. Average execution times in seconds for each benchmark implementation using the

higher parameters

Computing

Nodes

Libraries Bail-in,

Bail-out

Brain

Grid

Game of

Life

MATSim Social

Network*

Tuber-

culosis

VDT**

1 node MASS 1 1,203.913 1,191.925 1,163.152 1,154.488 1,097.882 1,096.603 1,201.433

MASS 4 1,773.623 487.305 393.635 640.961 6.428 421.006 2,047.137

Repast 6,812.577 6,213.978 4,647.147 956.689 1,229.729 2,308.043 0.031

2 nodes MASS 1 1,193.632 678.524 654.490 646.178 446.501 603.602 692.947

MASS 4 1,819.960 244.897 199.043 N/A 4,343.893 197.195 950.932

Repast 4,686.141 4,381.844 2,897.910 509.679 1,240.832 1,184.286 0.025

4 nodes MASS 1 934.339 339.261 328.800 383.815 239.960 325.989 432.124

MASS 4 1,610.938 182.016 133.070 N/A 231.046 116.044 776.380

Repast 2,666.279 2,434.674 1,605.113 293.210 1,353.733 588.439 0.022

8 nodes MASS 1 1,058.749 170.401 165.606 359.572 129.332 164.175 301.425

MASS 4 1,705.560 84.277 69.896 N/A 56.908 59.250 494.800

Repast 1,493.997 1,425.412 751.137 219.274 1,369.767 289.893 0.016

* - RepastHPC Social Network was limited to significantly fewer agents than MASS C++ and FLAME

** - RepastHPC VDT is incomplete and does not allow the correct number of teams in the simulation

Table 5.9. Average execution times in seconds for each benchmark implementation using the

smaller parameters

Computing

Nodes

Libraries Bail-in,

Bail-out

Brain

Grid

Game of

Life

MATSim Social

Network

Tuber-

culosis

VDT**

1 node MASS 1 58.471 55.107 31.605 17.873 32.959 11.042 188.599

Repast 338.467 301.935 97.737 115.263 N/A 64.221 0.032

FLAME 1,212.226 1,299.290 1,284.601 1,088.153 1,218.784 1,353.899 923.952

2 nodes MASS 1 53.530 32.138 17.850 20.575 16.760 6.328 173.533

Repast 235.230 210.374 66.027 83.897 N/A 41.694 0.027

FLAME 614.553 651.991 643.789 661.172 609.535 682.920 436.744

4 nodes MASS 1 48.445 17.943 8.750 26.287 8.925 3.482 142.275

Repast 134.152 117.525 34.167 70.57 N/A 24.566 0.023

FLAME 358.160 371.556 339.997 346.157 348.528 378.398 309.336

8 nodes MASS 1 62.317 10.093 4.825 61.510 4.811 2.082 147.935

Repast 75.369 67.963 17.523 116.816 N/A 15.935 0.017

FLAME 185.779 186.437 175.628 174.576 174.643 197.075 362.019

** - RepastHPC VDT is incomplete and does not allow the correct number of teams in the simulation

5.8.2 Programmability Assessment

Table 5.10 compares the programmability of MASS C++, RepastHPC, and FLAME using

the averages of the quantitative measurements performed on each benchmark implementation. On

average, MASS C++ appears to require the least lines of code, while FLAME requires the most.

Particularly, MASS C++ requires the least boilerplate/setup code and the least code for defining

59

agents. However, MASS C++ requires more code for defining the model space because of its

Places constructs, and therefore the most agent and space code in total. The agents and space

behave more autonomously than in the other libraries, so it requires the least code dedicated to

model management. RepastHPC generally requires fewer lines than FLAME but requires more

than MASS C++. FLAME requires the most lines of code, but most of those lines are classed as

boilerplate/setup code because of how the library requires users to write XML files.

Table 5.10. Quantitative comparison of ABM libraries by averages of benchmark

measurements

Library Lines

of

Code

Control

Flow

Statements

Boilerplate

LoC

Agent

LoC

Space

LoC

Model

Design

LoC

Model

Management

LoC

MASS C++ 592.3 79.7 164 188.9 220.4 409 89

RepastHPC 789.9 68.1 175.25 297.6 71.9 369 320

FLAME 826.0 41.4 327 217.4 30.9 248 284

Table 5.11 and Table 5.12 contain the findings of the manual code review we performed

on each benchmark implementation. In Table 5.11, we assessed how each ABM library approaches

each benchmark model and therefore different computational models. In Table 5.12, we

determined the relative strengths and weaknesses of each parallel ABM library for different aspects

of agent-based modeling. The autonomy of the Agents and Places means that MASS C++ requires

less code for managing the model, though the Agents and Places themselves require more code.

RepastHPC’s Observer allows the user to control the entire model and its agents more directly than

MASS and FLAME, but this also means users must write more model management code. FLAME

overall is the most limited in programmability because space cannot be directly defined, only

mimicked by agents and because agent behavior is defined by states and message board

communication.

60

Table 5.11. Comparison of each ABM library’s approach to each benchmark models

Benchmark

Model

Computational

Model

MASS C++ RepastHPC FLAME

Bail-In, Bail-Out Inter-Group

Communication

FinancialMarket Places

act as shared memory for

agents to communicate

across model

Observers exchange

Messenger objects

with each other

All agents exchange

transaction messages

between each other.

Brain Grid Agent Jump Agent keeps moving

with each neuron tip and

hops back to its soma

Agents placed into

the corresponding

Observer.

Place agents mimics

a 2D mesh and

arbitrates neurons.

Game of Life Cellular

Automata

2D Places with von

Neumann neighborhood.

2D Patch with von

Neumann
neighborhood

Each agent mimics a

cell with von
Neumann

neighborhood.

MATSim Agent Movement

on Network

Agents migrate, with

collision arbitration by a

neighbor place

Observer maintains

a traffic road and

moves agents

Place agents mimics

a road network and

arbitrates cars.

Social Network Network of

Agents

1D array of Person

Places, each with

friendship lists

Each Agent

maintains friendship

lists.

Each Agent

maintains friendship

lists.

Tuberculosis Agent Movement

over 2D Space

Agents migrate, with

collision arbitration by

destination place

2D LungPlace patch

adds to and takes

agents from

neighbors

Place Agents mimic

a 2D mesh and

arbitrates mobile

Agents.

Virtual Design

Team

Intra-Group

Communication

Communication between

Agents per Place via

Place variables

Task object passed

from one Agent to

another by Observer

Task Agent

communicates for

Engineer Agents.

Table 5.12. Qualitative comparison of library capabilities

Metrics MASS C++ RepastHPC FLAME

Computational

Model

+ Agents have autonomy of

spawning, terminating, and

migrating.

+ Good global space

view.

– Agents are centrally

controlled by observers

– Space mimicked by

agents have substantial

semantic gaps.

Entities (space
and/or agents)

+ Agents and places are
separated. Quite intuitive.

+ Agents and places
separated. Its shared space

gives best global view.

– Space must be
mimicked by agents

Space structure – Network must be emulated by

1D Places.

+ Shared spaces such as

patch and shared context

are available

– Agents must maintain

adjacency lists. Difficult

to view the structure.

Agent population – Agents spawned, and then

must hop to their initial place.

+ Observer populates

agents at initial location

– No agent population on

a place. Agents must be

associated with place

agents

Multi-classes of

agents

+ As many classes of agents as

needed. Multiple places are

allowed.

+ As many classes of

agents as needed

+ As many classes of

agents as needed.

Runtime agent

management

+ Agents have behavioral

autonomy, all supported by the

library.

– Observer must control

agents from the hawk’s

viewpoint

- State machines, message

boards

61

Inter-agent

communication

+ exchangeAll to remote Places

deliver messages to agents in a

remote place.

– Observers exchange

Messenger objects with

each other: can’t create

teams.

- Indirect communication,

based on message types.

Synchronization

(lock/unlock)

– Agents on the same place must

use lock/unlock at user level.

+ Observers centrally

control agents

+ Each place agent

behaves as a critical

section.

Collision control + A destination place must
arbitrate agent migration with

exchangeBoundary.

+ Observers centrally
control agent collisions

- Place agents must
arbitrate other mobile

agents through message

exchange.

Chapter 6. CONCLUSION

6.1 SUMMARY

We have performed a comparative analysis of three parallel agent-based modeling libraries: MASS

C++, RepastHPC, and FLAME. This analysis compared the performance and programmability of

the libraries using a set of seven benchmark programs that cover problems within the social,

behavioral, and economic sciences. We implemented each benchmark program three times, once

for each of the three libraries, for a total of 21 programs. To compare performance, we defined two

sets of parameters, one tuned for MASS C++ and one tuned for FLAME. We executed each of the

benchmark implementations with the two sets of parameters and obtained average execution times.

To compare programmability, we used static code analysis and manual code review to obtain

quantitative and qualitative metrics for each benchmark implementation and extrapolated those

findings to assess the ABM libraries.

Regarding the performance of the ABM libraries, we found that MASS C++ had the lowest

average execution times across its benchmarks compared to RepastHPC and FLAME. The multi-

threaded executions of MASS C++ generally had even lower average execution times,

demonstrating another advantage of MASS C++. RepastHPC was able to handle the parameter set

that was based on MASS C++ but was slower in all but one benchmark and more inconsistent

62

overall. However, some benchmark implementations written for RepastHPC were incomplete and

thus could not be completely compared. On the other hand, FLAME was entirely unable to handle

the MASS C++ parameter set, and this necessitated a second parameter set based on FLAME’s

capabilities. The benchmarks for MASS C++ and RepastHPC executed this second parameter set

faster than FLAME. Therefore, FLAME had definitively the worst performance of the three

libraries.

In terms of programmability, each ABM library presents its own unique benefits and

downsides which ABM researchers may prioritize differently. Therefore, no library can be said to

be definitively the “most programmable” as this will depend on the user’s needs and abilities.

However, the quantitative and qualitative data can broadly indicate the strengths and weaknesses

of each library. MASS C++ was found to generally require the fewest lines of code to program the

benchmark models. Users must define agents and places in greater detail because of the focus on

agent autonomy, but this autonomy means less code dedicated to managing the model. RepastHPC

generally requires more lines than MASS C++ but fewer than FLAME. The RepastHPC Observer

offers an improved view and control over the model at the cost of some autonomy. FLAME

requires the most lines of code, but most of those lines are boilerplate/setup code from the XML

file format that FLAME uses. FLAME overall is the most limited in programmability because

space cannot be defined and must be mimicked by agents, and because agent behavior is defined

by states and message board communication.

6.2 REFLECTION

The results of the performance and programmability comparison are promising for the Distributed

Systems Lab and the MASS project. They indicate that researchers seeking to develop agent-based

63

models with parallelization can use MASS C++ as a valid alternative to RepastHPC and FLAME

which have been previously used in the industry.

Four different students in the Distributed Systems Lab implemented the benchmark

programs, each at different times. This resulted in inconsistencies in coding style and

documentation in the benchmark implementations. We attempted to minimize these

inconsistencies before the performance and programmability measurements in case they affected

the results, but time constraints limited this process. Ultimately, this resulted in two RepastHPC

benchmark implementations which were incomplete or flawed (Social Network and VDT). In

retrospect, some of the time spent on developing tools for the performance measurements should

have been redirected towards ensuring code correctness and code consistency.

6.3 FUTURE DEVELOPMENT AND STUDY

The tools and methods used for this study can be adapted for future studies of the same libraries,

or the studies can be expanded to include other parallel ABM libraries. In addition, measuring

resource usage like CPU usage, memory usage, and network traffic while executing these models

would provide more detailed and actionable performance metrics. Another useful way to utilize

the existing tools and methods would be to determine the exact spatial and temporal limits of these

ABM libraries. For the sake of limiting the time spent on measurements, we used parameters that

reached a target execution time of twenty minutes on a single node. However, all three libraries

can run models that are significantly larger, though they would take an extremely long time to

complete.

The benchmark programs designed and implemented for this study can be further refined

in terms of consistency and optimization to act as a testing suite for the three ABM libraries. For

64

example, future researchers in the Distributed Systems Lab can use the MASS C++ benchmark

implementations to measure performance improvements as they develop MASS C++.

65

BIBLIOGRAPHY

[1] Sameera Abar, Georgios K. Theodoropoulos, Pierre Lemarinier, and Gregory M.P.

O’Hare. 2017. Agent Based Modelling and Simulation tools: A review of the state-of-art

software. Comput Sci Rev 24, (May 2017), 13–33.

DOI:https://doi.org/10.1016/J.COSREV.2017.03.001

[2] Chee Siang Ang and Panayiotis Zaphiris. 2009. Simulating social networks of online

communities: Simulation as a method for sociability design. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics) 5727 LNCS, PART 2 (2009), 443–456. DOI:https://doi.org/10.1007/978-

3-642-03658-3_48/COVER

[3] Argonne National Laboratory. Repast Simphony. Retrieved November 18, 2022 from

https://repast.github.io/repast_simphony.html

[4] Eric Bonabeau. 2002. Agent-based modeling: Methods and techniques for simulating

human systems. Proc Natl Acad Sci U S A 99, SUPPL. 3 (May 2002), 7280–7287.

DOI:https://doi.org/10.1073/PNAS.082080899/ASSET/15AB2074-4729-491A-B9E6-

292A9C40AE31/ASSETS/GRAPHIC/PQ0820808004.JPEG

[5] Christopher Bowzer, Benjamin Phan, Kasey Cohen, and Munehiro Fukuda. Collision-Free

Agent Migration in Spatial Simulation.

[6] Dennis L. Chao, M. Elizabeth Halloran, Valerie J. Obenchain, and Ira M. Longini. 2010.

FluTE, a Publicly Available Stochastic Influenza Epidemic Simulation Model. PLoS

Comput Biol 6, 1 (2010), e1000656.

DOI:https://doi.org/10.1371/JOURNAL.PCBI.1000656

[7] Nick Collier. 2013. Repast HPC Manual. (2013). Retrieved November 18, 2022 from

http://boost.org

[8] Roshan D’Souza, Mikola Lysenko, Simeone Marino, and Denise Kirschner. 2009. Data-

parallel algorithms for agent-based model simulation of tuberculosis on graphics

processing units. DOI:https://doi.org/10.1145/1639809.1639831

[9] John Emau, Timothy Chuang, and Munehiro Fukuda. A Multi-Process Library for Multi-

Agent and Spatial Simulation *.

[10] Munehiro Fukuda. MASS: A Parallelizing Library for Multi-Agent Spatial Simulation.

Retrieved November 5, 2022 from http://depts.washington.edu/dslab/MASS/index.html

[11] Martin Gardner. 1970. MATHEMATICAL GAMES The fantastic combinations of John

Conway’s new solitaire game “life.” Sci Am 223, (1970), 120–123. Retrieved October 22,

2022 from http://ddi.cs.uni-

potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.

htm

[12] Thomas E Gorochowski. 2016. Agent-based modelling in synthetic biology. Essays

Biochem 60, (2016), 325–336. DOI:https://doi.org/10.1042/EBC20160037

[13] Andreas Horni, Kai Nagel, and Kay W Axhausen. The Multi-Agent Transport Simulation

MATSim edited by. DOI:https://doi.org/10.5334/baw

[14] Fumitaka Kawasaki. 2012. Accelerating large-scale simulations of cortical neuronal

network development. (September 2012). Retrieved November 19, 2022 from

https://digital.lib.washington.edu:443/researchworks/handle/1773/20913

66

[15] Peter Klimek, Sebastian Poledna, J. Doyne Farmer, and Stefan Thurner. 2015. To bail-out

or to bail-in? Answers from an agent-based model. J Econ Dyn Control 50, (January

2015), 144–154. DOI:https://doi.org/10.1016/J.JEDC.2014.08.020

[16] Raymond Levitt. 2000. VDT Computational Emulation Models of Organizations: State of

the Art and Practice. (November 2000).

[17] Andreu Moreno, Juan J Rodríguez, · Daniel Beltrán, Anna Sikora, · Josep Jorba, and ·

Eduardo César. 2019. Designing a benchmark for the performance evaluation of agent-

based simulation applications on HPC. J Supercomput 75, (2019), 1524–1550.

DOI:https://doi.org/10.1007/s11227-018-2688-8

[18] Alban Rousset, Bénédicte Herrmann, Christophe Lang, and Laurent Philippe. 2016. A

survey on parallel and distributed multi-agent systems for high performance computing

simulations. Comput Sci Rev 22, (November 2016), 27–46.

DOI:https://doi.org/10.1016/J.COSREV.2016.08.001

[19] Jose L. Segovia-Juarez, Suman Ganguli, and Denise Kirschner. 2004. Identifying control

mechanisms of granuloma formation during M. tuberculosis infection using an agent-

based model. J Theor Biol 231, 3 (December 2004), 357–376.

DOI:https://doi.org/10.1016/J.JTBI.2004.06.031

[20] Craig Shih. Benchmarking and Evaluating ABM Parallel-Programming Features in Social,

Behavioral and Economic Sciences.

[21] Craig Shih, Caleb Yang, and Munehiro Fukuda. Benchmarking the Agent Descriptivity of

Parallel Multi-Agent Simulators. Retrieved November 5, 2022 from

http://depts.washington.edu/dslab/MASS/index.html

[22] The Multi-Agent Transport Simulation MATSim on JSTOR. Retrieved October 22, 2022

from https://www.jstor.org/stable/j.ctv3t5r7p

[23] NetLogo 6.3.0 User Manual. Retrieved October 22, 2022 from

http://ccl.northwestern.edu/netlogo/docs/

[24] MASON Multiagent Simulation Toolkit. Retrieved October 22, 2022 from

https://cs.gmu.edu/~eclab/projects/mason/

[25] Repast Suite Documentation. Retrieved November 18, 2022 from

https://repast.github.io/repast_hpc.html

[26] MATSim.org. Retrieved November 19, 2022 from https://www.matsim.org/

67

APPENDIX A. DETAILED PERFORMANCE RESULTS

Appendix Table A-1. Bail-in, Bail-out simulation, average execution times in seconds for the

higher parameters

Computing Nodes MASS C++

(1 thread)

MASS C++

(4 threads)

RepastHPC

1 node 1,203.913 1,714.182 6,812.577

2 nodes 1,193.632 1,819.960 4,686.141

4 nodes 934.339 1,610.938 2,666.279

8 nodes 1,058.749 1,705.560 1,493.997

Appendix Table A-2. Bail-in, Bail-out simulation, average execution times in seconds for the

smaller parameters

Computing Nodes MASS C++ (1

thread)

RepastHPC FLAME

1 node 58.471 338.467 1,212.226

2 nodes 53.530 235.230 614.553

4 nodes 48.445 134.152 358.160

8 nodes 62.317 75.369 185.779

Appendix Table A-3. Brain Grid simulation, average execution times in seconds for the

smaller parameters

Computing Nodes MASS C++

(1 thread)

MASS C++

(4 threads)

RepastHPC

1 node 1,191.925 487.305 6,213.978

2 nodes 678.524 244.897 4,381.844

4 nodes 339.261 182.016 2,434.674

8 nodes 170.401 91.943 1,425.412

Appendix Table A-4. Brain Grid simulation, average execution times in seconds for the

smaller parameters

Computing Nodes MASS C++ (1

thread)

RepastHPC FLAME

1 node 55.107 301.935 1,299.290

2 nodes 32.138 210.374 651.991

4 nodes 17.943 117.525 371.556

8 nodes 10.093 67.963 186.437

68

Appendix Table A-5. Game of Life simulation, average execution times in seconds for the

higher parameters

Computing Nodes MASS C++

(1 thread)

MASS C++

(4 threads)

RepastHPC

1 node 1,163.152 393.635 4,647.147

2 nodes 654.490 199.043 2,897.910

4 nodes 328.800 133.070 1,605.113

8 nodes 165.606 69.896 751.137

Appendix Table A-6. Game of Life simulation, average execution times in seconds for the

smaller parameters

Computing Nodes MASS C++ (1

thread)

RepastHPC FLAME

1 node 31.605 97.737 1,284.601

2 nodes 17.850 66.027 643.789

4 nodes 8.750 34.167 339.997

8 nodes 4.825 17.523 175.628

Appendix Table A-7. MATSim, average execution times in seconds for the higher

parameters

Computing Nodes MASS C++

(1 thread)

MASS C++

(4 threads)

RepastHPC

1 node 1,154.488 640.961 956.689

2 nodes 646.178 N/A 509.679

4 nodes 383.815 N/A 293.210

8 nodes 359.572 N/A 219.274

Appendix Table A-8. MATSim, average execution times in seconds for the smaller

parameters

Computing Nodes MASS C++ (1

thread)

RepastHPC FLAME

1 node 17.873 115.263 1,188.153

2 nodes 20.575 83.897 661.172

4 nodes 26.287 70.57 346.157

8 nodes 61.510 116.816 174.576

Appendix Table A-9. Social Network simulation, average execution times in seconds for the

higher parameters

Computing Nodes MASS C++ MASS C++ RepastHPC

69

(1 thread) (4 threads)

1 node 1,102.592 N/A N/A

2 nodes 446.501 N/A N/A

4 nodes 239.960 N/A N/A

8 nodes 129.332 N/A N/A

Appendix Table A-10. Social Network simulation, average execution times in seconds for the

smaller parameters

Computing Nodes MASS C++ (1

thread)

RepastHPC FLAME

1 node 32.959 N/A 1,218.784

2 nodes 16.760 N/A 609.535

4 nodes 8.925 N/A 348.528

8 nodes 4.811 N/A 174.643

Appendix Table A-11. Tuberculosis simulation, average execution times in seconds for the

higher parameters

Computing Nodes MASS C++

(1 thread)

MASS C++

(4 threads)

RepastHPC

1 node 1,096.603 421.006 2,308.043

2 nodes 603.602 197.195 1,184.286

4 nodes 325.989 116.044 588.439

8 nodes 164.175 59.250 289.893

Appendix Table A-12. Tuberculosis simulation, average execution times in seconds for the

smaller parameters

Computing Nodes MASS C++ (1

thread)

RepastHPC FLAME

1 node 11.042 64.221 1,353.899

2 nodes 6.328 41.694 682.920

4 nodes 3.482 24.566 378.398

8 nodes 2.082 15.935 197.075

Appendix Table A-13. Virtual Design Team simulation, average execution times in seconds

for the higher parameters

Computing Nodes MASS C++

(1 thread)

MASS C++

(4 threads)

RepastHPC

1 node 1,201.433 2,047.137 N/A

2 nodes 692.947 950.932 N/A

4 nodes 432.124 776.380 N/A

70

8 nodes 301.425 494.800 N/A

Appendix Table A-14. Virtual Design Team simulation, average execution times in seconds

for the smaller parameters

Computing Nodes MASS C++ (1

thread)

RepastHPC FLAME

1 node 188.599 N/A 923.952

2 nodes 173.533 N/A 436.744

4 nodes 142.275 N/A 309.336

8 nodes 147.935 N/A 362.019

APPENDIX B. STANDARD DEVIATION AND VARIANCE

Appendix Table B-1. Bail-in, Bail-out simulation, standard deviation and variance for the

higher parameters

Computing

Nodes
MASS C++ (1 thread) MASS C++ (4

threads)

RepastHPC

1 node 5.970088999 35.64196266 5.253119675 27.59526632 6.831736309 46.672621

2 nodes 52.36718442 2742.322004 4.376489403 19.15365949 8.787145744 77.21393033

4 nodes 12.11449717 146.7610417 27.10323111 734.5851368 4.817508312 23.20838633

8 nodes 22.66815992 513.8454739 21.62904528 467.8155999 8.154871264 66.50192533

Appendix Table B-2. Bail-in, Bail-out simulation, standard deviation and variance for the

smaller parameters

Computing

Nodes

MASS C++ (1 thread) RepastHPC FLAME

1 node 0.5652411451 0.3194975521 2.101749509 4.417351 1.689101635 2.853064333

2 nodes 0.155705755 0.02424428213 1.095840013 1.200865333 1.222392327 1.494243

4 nodes 0.133563036 0.01783908459 0.636858697 0.405589 0.3052982149 0.093207

8 nodes 0.2141813947 0.04587366983 0.3854983787 0.148609 0.01096965511 0.0001203333333

Appendix Table B-3. Brain Grid simulation, standard deviation and variance for the higher

parameters

Computing

Nodes
MASS C++ (1 thread) MASS C++ (4 threads) RepastHPC

1 node 4.412164685 19.4671972 0.6221648791 0.3870891368 7.145312893 51.05549633

2 nodes 2.488905298 6.194649582 1.309405783 1.714543504 18.10771356 327.8892903

4 nodes 1.080930051 1.168409776 4.963443476 24.63577114 5.424810534 29.42856933

8 nodes 0.6246955695 0.3902445546 4.474295412 20.01931943 5.749930811 33.06170433

Appendix Table B-4. Brain Grid simulation, standard deviation and variance for the smaller

parameters

Computing

Nodes
MASS C++ (1 thread) RepastHPC FLAME

1 node 0.4629389292 0.2143124522 2.885132984 8.323992333 3.171322174 10.05728433

2 nodes 0.03497020575 0.00122291529 1.76594479 3.118561 0.7149442869 0.5111453333

71

4 nodes 0.1961560423 0.03847719292 3.424716193 11.728681 0.1311830782 0.017209

8 nodes 0.2146711772 0.0460837143 0.5553488393 0.3084123333 0.3115300949 0.097051

Appendix Table B-5. Game of Life simulation, standard deviation and variance for the higher

parameters

Computing

Nodes
MASS C++ (1 thread) MASS C++ (4 threads) RepastHPC

1 node 9.106575763 82.92972213 0.6761025061 0.4571145988 14.71000453 216.3842333

2 nodes 6.416661219 41.1735412 1.108475627 1.228718217 11.38415126 129.5989

4 nodes 4.993694924 24.936989 7.453765516 55.55862036 9.03848623 81.69423333

8 nodes 1.505706589 2.267152331 10.41005865 108.369321 43.55155604 1896.738033

Appendix Table B-6. Game of Life simulation, standard deviation and variance for the

smaller parameters

Computing

Nodes
MASS C++ (1 thread) RepastHPC FLAME

1 node 0.1638079534 0.02683304561 0.5650073746 0.3192333333 60.27898545 3633.556086

2 nodes 0.05108569897 0.002609748639 0.6213158081 0.3860333333 7.029246712 49.41030933

4 nodes 0.02968798101 0.0008813762163 0.1795364401 0.03223333333 4.45150615 19.815907

8 nodes 0.05551084486 0.003081453897 0.1193035345 0.01423333333 4.00778559 16.06234533

Appendix Table B-7. MATSim simulation, standard deviation and variance for the higher

parameters

Computing

Nodes
MASS C++ (1 thread) MASS C++ (4

threads)

RepastHPC

1 node 1.620669373 2.626569218 2.108060172 4.443917691 0.4218850554 0.177987

2 nodes 4.699179335 22.08228642 N/A N/A 1.085740761 1.178833

4 nodes 2.110590892 4.454593915 N/A N/A 0.5664594719 0.3208763333

8 nodes 1.427274454 2.037112367 N/A N/A 1.9705687 3.883141

Appendix Table B-8. MATSim simulation, standard deviation and variance for the smaller

parameters

Computing

Nodes
MASS C++ (1 thread) RepastHPC FLAME

1 node 0.1648442855 0.02717363845 0.04398105653 0.001934333333 13.21586661 174.6591303

2 nodes 0.2754138019 0.07585276225 0.1694963126 0.028729 10.42059619 108.588825

4 nodes 1.059111423 1.121717007 0.030022214 0.0009013333333 3.951618951 15.61529233

8 nodes 2.410084464 5.808507123 2.211415911 4.890360333 8.204870444 67.319899

Appendix Table B-9. Social Network simulation, standard deviation and variance for the

higher parameters

Computing Nodes MASS C++ (1 thread) MASS C++ (4 threads) RepastHPC
1 node 6.66119973 44.37158184 N/A N/A N/A N/A

2 nodes 1.23076902 1.51479238 N/A N/A N/A N/A

4 nodes 1.799761904 3.239142912 N/A N/A N/A N/A

8 nodes 1.118547032 1.251147464 N/A N/A N/A N/A

Appendix Table B-10. Social Network simulation, standard deviation and variance for the

smaller parameters

Computing Nodes MASS C++ (1 thread) RepastHPC FLAME

72

1 node 0.05737695302 0.003292114737 N/A N/A 0.1512789917 0.02288533333

2 nodes 0.07082887327 0.005016729289 N/A N/A 0.2204699526 0.048607

4 nodes 0.04779433433 0.002284298394 N/A N/A 0.4361299501 0.1902093333

8 nodes 0.007991702697 0.000063867312 N/A N/A 0.1882454072 0.03543633333

Appendix Table B-11. Tuberculosis simulation, standard deviation and variance for the

higher parameters

Computing

Nodes

MASS C++ (1 thread) MASS C++ (4 threads) RepastHPC

1 node 23.65394405 559.5090692 47.69546615 2274.857491 3.218975199 10.36180133

2 nodes 3.685092543 13.57990705 0.9805936773 0.9615639599 6.271533385 39.332131

4 nodes 1.81599069 3.297822187 0.470364652 0.2212429059 2.728694254 7.445772333

8 nodes 0.9522600244 0.9067991541 0.1544113453 0.02384286354 3.478106525 12.097225

Appendix Table B-12. Tuberculosis simulation, standard deviation and variance for the

smaller parameters

Computing

Nodes
MASS C++ (1 thread) RepastHPC FLAME

1 node 0.08314539536 0.00691315677 1.683804027 2.835196 7.91522137 62.65072933

2 nodes 0.01891779084 0.0003578828103 1.054995893 1.113016333 4.986712344 24.8673

4 nodes 0.03942357807 0.001554218508 0.725265009 0.5260093333 22.19212879 492.4905803

8 nodes 0.03769246649 0.00142072203 0.7717592457 0.5956123333 4.373916132 19.13114233

Appendix Table B-13. Virtual Design Team simulation, standard deviation and variance for

the higher parameters

Computing Nodes MASS C++ (1 thread) MASS C++ (4 threads) RepastHPC
1 node 2.214982268 4.906146449 15.87306039 251.9540462 N/A N/A

2 nodes 1.313847138 1.726194301 7.32752875 53.69267757 N/A N/A

4 nodes 0.4167677557 0.1736953622 4.294514685 18.44285638 N/A N/A

8 nodes 0.9343829168 0.8730714353 4.090750121 16.73423655 N/A N/A

Appendix Table B-14. Virtual Design Team simulation, standard deviation and variance for

the smaller parameters

Computing Nodes MASS C++ (1 thread) RepastHPC FLAME
1 node 1.052885528 1.108567935 N/A N/A 49.45034435 2445.336556

2 nodes 0.1599111162 0.02557156508 N/A N/A 50.52742452 2553.020629

4 nodes 0.1305386936 0.01704035052 N/A N/A 28.22941121 796.8996573

8 nodes 0.02227391102 0.0004961271123 N/A N/A 103.3355151 10678.22868

