
 
 

 
AN INCREMENTAL ENHANCEMENT OF AGENT-BASED 

GRAPH DATABASE 

 
SHENYAN CAO 

 

 

A Capstone Project Term Report 

submitted in partial fulfillment of the  

requirements of the degree of 

 

Master of Science in Computer Science and Software Engineering 

 

University of Washington 

Dec 13, 2023 

 

 

Project Committee: 

Professor Munehiro Fukuda, Committee Chair 

Professor Clark Olson, Committee Member 

Professor Wooyoung Kim, Committee Member 

  



1. Project Overview 
With the rise of big data and the need to analyze interconnected data, graph databases have gained 
popularity as a valuable tool for managing and exploring large and complex datasets (Robinson et al., 
2013). A graph database is a type of database that uses graph structures to represent and store data. In 
a graph database, data is organized as nodes and edges (Robinson et al., 2013). Nodes represent 
entities, and edges represent the relationships between those entities (Robinson et al., 2013). This graph-
based representation allows for efficient querying and analysis of complex relationships and connections 
within the data. Graph databases support the storage of large-scale graphs with billions of nodes and 
edges, and they often provide specialized query languages (such as Cypher for Neo4j) that facilitate 
expressive and efficient traversal of the graph to discover patterns, identify paths, and perform graph 
algorithms (Raj, 2015; Robinson et al., 2013). 
Traditional methods in the field of big data analytics have heavily relied on data streaming tools like 
Hadoop MapReduce, and Apache Spark to handle and analyze vast amounts of data (Eadline, 2018). 
These tools have been instrumental in enabling real-time data processing and building scalable analytics 
pipelines (Eadline, 2018). Their support for big-data computing and data sciences, with data formats 
primarily in text, has made them widely adopted tools (Eadline, 2018). However, it is important to note 
that these data streaming tools may face limitations when it comes to analyzing complex data structures 
such as graphs. Data streaming tools often operate based on the principle of dividing data into smaller 
chunks and processing them individually (Eadline, 2018). This approach may not be ideal for complex 
data structures like graphs, as they consist of interconnected nodes and edges. Decomposing and 
streaming such structures through memory can lead to challenges in maintaining the integrity of 
relationships and may require additional processing steps to reconstruct the complete structure.  
When dealing with a structured dataset like a graph in big-data computing, it is more logical to retain the 
structure in memory and deploy agents within it, as opposed to breaking down the structure and 
streaming its data to traditional analytical tools like Spark (Li & Fukuda, 2023). Agents hold significant 
potential in supporting the analysis of data structures due to their ability to be deployed repetitively within 
data structures mapped over distributed memory. This capability becomes particularly promising in 
domains such as graph databases, where the construction of graphs over distributed disks or, preferably, 
distributed memory is required. With agent-based graph database, it can achieve efficient graph 
construction and analysis, facilitating the processing of highly interconnected data (Hong & Fukuda, 
2022). 
Throughout previous years, the Distributed Systems Laboratory (DSL) at University of Washington has 
come up with an Agent Based Graph Database Model, which is based on the MASS (multi-agent spatial 
simulation) Java framework and makes full use of the comprehensive features provided by the MASS 
library. Their approach builds graphs over a cluster system, deploy numerous reactive agents to datasets, 
and task these agents with computing data attributes or shapes (Mohan et al., 2022). Nevertheless, the 
current database system is structured to accommodate nodes and edges with specific properties. Each 
node in the graph is defined by its unique identifier, and edges are characterized by the identifiers of 
connected nodes along with a weight associated with the relationship. This simplicity in attribute structure 
may be suitable for scenarios where the relationships between entities can be adequately represented 
using only these three attributes. However, it's essential to recognize that more complex data models 
with additional attributes may be required for applications where richer information about nodes and 
relationships is necessary. This capstone project seeks to reengineer the existing system to enhance its 
capability to handle data with richer information about nodes and relationships in accordance with the 
Property Graph Model. Property Graph Model is well-suited for various use cases, including social 
networking, recommendation engines, knowledge graphs, fraud detection, and any application where 
understanding and leveraging relationships are crucial. 



But even with this enhancement, our graph database model will still be in the form of diagrams. Diagrams 
are great for describing graphs outside of any technology context, but when it comes to using a database, 
we need some other mechanism for creating, manipulating, and querying data. We need a query 
language. OpenCypher is an open query language specifically designed for querying graph databases. 
It was initially developed by Neo4j, a popular graph database management system, but has since gained 
broader adoption and is used by various graph database systems (Raj, 2015; Robinson et al., 2013). 
OpenCypher provides a standardized syntax and set of operations for querying and manipulating graph 
data (openCypher, 2017). This capstone project seeks to integrate OpenCypher with MASS-based graph 
database by implementing Create, Match, Return and Delete clauses. With these enhancements, the 
agent-based graph database will become more feature-rich, offering users with a broader range of query 
options and empowering agents to effectively match user queries with relevant vertices and edges in the 
MASS-based graph database system. The implementation of the enhancements requires a deep 
understanding of graph databases, query languages, and distributed computing. By successfully 
implementing the enhancements, it showcases my proficiency in these areas and the ability to work with 
complex technologies. 

2. Goals 
Goal 1: Reengineer the existing system to enhance its capability to handle data with various property 
information about nodes and relationships in accordance with the Property Graph Model.  
The Property Graph Model is a type of graph database model that represents data as a graph, consisting 
of nodes, relationships, and properties (Raj, 2015; Robinson et al., 2013). In this model: 

o Nodes are the entities in the graph. 
o Nodes can be tagged with labels, representing their different roles in your domain. (For example, 

Employee in Figure 1). 
o Nodes can hold any number of key-value pairs, or properties. (For example, name in Figure 1) 
o Relationships provide directed, named, connections between two node entities (e.g. Person 

LOVES Person). 
o Relationships always have a direction, a type, a start node, and an end node, and they can have 

properties, just like nodes. 
o Nodes can have any number or type of relationships without sacrificing performance. 
o Although relationships are always directed, they can be navigated efficiently in any direction.  

 
Figure 1: Node and Rela1onship demonstra1on in Property Graph Data Model. 

For domains with inherently connected and interdependent data, such as social networks, supply chains, 
or hierarchical structures, the Property Graph Model provides a natural and efficient way to model and 
represent complex relationships between entities. Nodes, relationships, and properties allow for a fine-
grained representation of the real-world scenario. 
Goal 2: Integrate OpenCypher into MASS-based graph database by implementing Create, Match, Return 
and Delete clauses.  



OpenCypher stands out as a graph database query language that is both expressive and concise. While 
it is tailored for Neo4j, its alignment with our tendency to depict graphs through diagrams makes it 
exceptionally well-suited for accurately and programmatically describing graphs (Robinson et al., 2013). 
Integrating OpenCypher with MASS-based property graph database allows for a consistent and widely 
adopted query interface. It simplifies the learning curve for users and promotes interoperability, as they 
can leverage their existing knowledge of OpenCypher to interact with the property graph database within 
the MASS framework. 
The cypher clauses to be implemented are: 

o CREATE: Creates nodes and relationships in the graph. 
o MATCH: Specifies the pattern to search for in the graph (example as shown in Figure 2). 
o DELETE: Removes nodes, relationships, or properties from the graph. 
o RETURN: Specifies what data to include in the query results.  

 
Figure 2: Example of Match cypher clause. 

Goal 3: Conduct comprehensive testing on the enhanced MASS-based Property Graph Database 
Management System to ensure its functionality, performance, and reliability meet the desired standards.  

3. Achievements 
3.1 Main Design for the whole project 
As shown in Figure 3, the main design of the whole project follows the three-tier architecture patter, with 
presentation layer, logic layer and data access layer.  

• Presentation Layer (Tier 1): 
o This is the main program of the interface that users interact with. 
o Users have no direct access to the underlying graph data or knowledge of the database 

structure. 
o Users make requests to the system through the GraphManager component. 

• Logic Layer (Tier 2): 
o This layer serves as an intermediary between the presentation layer and the data access 

layer.  
o This layer contains the GraphManager class, which exposes CRUD methods (Create, Read, 

Update, Delete) to users, providing a high-level interface for interaction with the MASS-
based property graph database. 

• Data Access Layer (Tier 3): 
o This is where the actual MASS-based property graph database resides. 
o Users, through the GraphManager in the application layer, interact with the database using 

standard CRUD operations. 
o Graph Database is the underlying database that stores the graph data. 
o Query Handler is responsible for handling OpenCypher queries. It interprets CRUD requests 

received from the GraphManager class and translates them into appropriate OpenCypher 
queries to be executed against the graph database. 



o PropertyGraphCypherQueryContext provides the interface for Query Handler to executed 
queires and interact with GraphHandler. 

o The underlying structures of the graph database and query handler are abstracted from users, 
ensuring they only need to be concerned with the high-level CRUD operations, while the 
Graph Database and Cypher Handler manages the low-level details of graph database and 
query parsing and execution. 

The 3-tier architecture provides modularity, scalability, and a clear separation of concerns, allowing for 
easier maintenance and development of the system. 

 
Figure 3: Main design for the whole project. 

 
3.2 Design and Implementation for enhancing the existing MASS-based graph database 
The existing MASS-based graph database mainly consists of GraphPlaces class and VertexPlace class, 
as shown in Figure 4. GraphPlaces extends MASS Places while VertexPlace extends MASS Place. The 
VertexPlace stores the node information of Vertex ID, Neighbor Vertex ID, and relationship weight. 
GraphPlaces stores a vector of VertexPlace, which serves as the lower-level graph database 
management interface.  
To enhance the capacity of the existing system in accordance with the property graph model, the 
PropertyGraphPlaces class is designed and implemented to extend GraphPlaces, while 
PropertyVertexPlace class is designed and implemented to extend VertexPlace. The variables declared 
in PropertyVertexPlace and PropertyGraphPlaces are shown in Figure 5. In PropertyVertexPlace, the 
variable labels uses a Set to store node labels, which the variable nodeProperties uses a Map to store 
node property type-value pairs. The toRelationship stores the outgoing neighbor relationship information 
with Map<neighbor ItemID, relationshipInformation>. The relationshipInformation is an Object array 
which stores the relationship types in Set and relationship properties in Map. The fromRelationship stores 
the incoming relationship information with the similar way as toRelationship. These enhancements 
provide a more property graph-oriented structure, allowing for the storage and retrieval of properties 
associated with nodes and relationships in property graph model. 



 
Figure 4: Exis1ng MASS-based graph database framework based on MASS 1.4.3-SNAPSHOT version (develop branch). 

 
Figure 5: PropertyVertexPlace variables. 

 

3.3 Design and Implementation for integrating OpenCypher with MASS-based Property Graph 
Database 

The process to integrate OpenCypher with MASS-based Property Graph Database is shown in Figure 6. 
Query text is first parsed to AST structure, and then executed with execution plan, and finally get query 
results.  

 
Figure 6: Query flow process. 

3.3.1 Parser generator 
To seamlessly integrate Cypher with the MASS-based Property Graph Database, the initial and pivotal 
step is to select an adept language parser for translating Cypher queries into a Java-compatible format. 
Given the inherent complexity of the OpenCypher query grammar, the parsing strategy employed 
becomes crucial. In this context, ANTLR4 (ANother Tool for Language Recognition, fourth version) 
emerges as an optimal choice. ANTLR4 is a powerful parser generator, and its parsing strategy is 
renowned for its exceptional flexibility, making it well-suited for handling the intricate structures of the 
OpenCypher language (Parr, 2013). Beyond its technical merits, ANTLR4 boasts a broad adoption across 
diverse language communities, attesting to its reliability and versatility. Most importantly, there is an 
existing ANTLR4 grammar file for OpenCypher (i.e. Cypher.g4). The first step to building a language 
application is always to create a grammar that describes a language’s syntactic rules. ANTLR4 uses 
grammars defined in .g4 files to generate lexer and parser code for a particular language (Parr, 2013). 
The Cypher grammar file (i.e. Cypher.g4) in ANTLR4 can be readily used to generate lexer and parser 
code for Cypher queries. Furthermore, as we are using Maven in our project, we can use the ANTLR4 



Maven Plugin to integrate ANTLR4 into our project. From Cypher.g4, once we build the application with 
ANTLR4 plugin, then ANTLR automatically generates lots of code files corresponding to Cypher.g4, as 
shown in Figure 7. These code files are the base to parse query text to AST. 

 
Figure 7: ANTLR4 autogenerates code files from Cypher.g4. 

In our project, query string is converted to CharStream, then lexer and parser are generated accordingly. 
Then we manually convert the parse tree to AST with CypherVisitor mechanism. Figure 8 shows the code 
to parse query string and call PropertyGraphCypherVisitor to handler parser tree. 
PropertyGraphCypherVisitor extends CypherBaseVisitor, which implements CypherVisitor.  

 
Figure 8: Code to parse query string and handle with Cypher Visitor. 

3.3.2 Parsing query text to AST 
Cypher query parsing with ANTLR4 is the process of analyzing a sequence of symbols to determine its 
grammatical structure (Parr, 2013). This involves breaking down the input into its constituent parts 
according to the Cypher.g4 gramma file. Figure 11 Shows the grammatical structure for the query text of 
“CREATE (charlie:Person:Actor {name: 'Charlie Sheen'})”. 

 
Figure 9: The gramma1cal structure of a CREATE query text. 



An Abstract Syntax Tree (AST) is a hierarchical tree structure that represents the abstract syntactic 
structure of source code or a query. Each node in the tree corresponds to a syntactic construct in the 
code, and the edges represent the relationships between them. To translate Cypher queries into a Java-
compatible format, we need to parse query text to AST, which involves transforming the parser tree into 
a structured AST representation. This representation captures the essential syntactic elements and their 
relationships, making it easier to analyze and manipulate the query code programmatically.  

 
Figure 10: The gramma1cal structure of a CREATE query text. 

In our project, we use CypherAstBase, an abstract class, to serve as the base for the structured AST 
representation. PropertyGraphCypherVisitor transforms the cypher parser tree to AST structure. Then for 
each syntactic construct in cypher parse tree, various classes that extends CypherAstBase class would 
be used to store information accordingly. For example, CypherStatement extends CypherAstBase and is 
return by the visitOC_Statement() function. Figure 10 shows partial implementation of the 
PropertyGraphCypherVisitor class.  The detailed function flow of PropertyGraphCypherVisitor is shown 
in Appendix B1. AST structure is shown in Appendix B2. 
3.3.3 Planning for Execution 
In this project, we used the ExecutionPlanBuilder to produce logical execution plans which describe how 
a particular query is going to be executed (i.e. steps for execution). This execution plan is essentially a 
binary tree of operators. An operator is, in turn, a specialized execution module that is responsible for 
some type of transformation to the data before passing it on to the next operator, until the desired graph 
pattern has been matched. The execution plans produced by the planner thus decide which operators 
will be used and in what order they will be applied to achieve the aim declared in the original query. 

 
 

Figure 11: The code to add execu1on steps to the execu1on plan. 



Figure 11 shows the code to add execution steps to the executionPlan tree. In visitQuery() function, 
SeriesExecutionStep is the execution plan to store the execution steps in a tree structure. For example, 
for the create node clause, executionPlan will add a child execution step by calling visitCreateClause() 
function. In visitCreateClause() function, for each CypherPatterPart, it will call 
visitCreateClausePatternPart() function to create a CreatePatterExecutionStep, which contains 
information about node pattern creation steps (e.g. CreateNodePatternExecutionStep) and relationship 
pattern creation steps. With the execution steps returned from various functions, the executionPlan will 
store execution steps in a tree structure. A detailed tree structure for execution steps are shown in 
Appendix B3.  
3.3.4 Execution to results 
Figure 12 shows the code for execute() function of CreateNodePatternExecutionStep. Upon execute, it 
extracts labels and properties from the Cypher query, and call PropertyGraphPlaces’s 
addPropertyVertex( ) function to create new PropertyVertexPlace with labels and properties.   

 
Figure 12: Code of CREATE execu1on step's execu1on() func1on. 

Figure 13 shows the code for execute() function of MatchPatternPartExecutionStep. Upon execute, it 
creates an Agents instance and call Agent.PropertyGraphDoAll( ) to fetch Match results from graph 
database. Agents initially initialize one PropertyGraphAgent on each PropertyVertexPlace. Then upon 
Agents.callAll( ) method, each agent will carry the current Match node and/or relationship information 
from the Match clause and then proceed to verify if the current PropertexVertexPlace is the correct node 
that satisfies the node matching information. If validated, then add current PropertyVertexPlace’s itemID 
to the results list and further determine the neighboring PropertyVertexPlaces to migrate to. Results list 
would be returned to main server at the end of CallAll( ) method. After that, Agent.manageAll( ) would be 
called, and new Agent would be spawn based on the neighbor vertex information, and then migrated to 
the destinated PropertyVertexPlace. This cycle continues until all Match clause criteria are fulfilled. In this 
way, agents transmit the gathered results to the main server.  



Agents’ callAll( ) function calls each PropertyGraphAgent’s callMethod( ), which based on the functionID 
would call each agent’s executeMatch( ) function. The executeMatch( ) function, shown in Figure 14, 
processes the matchArgs parameter, which contains information about node labels, node properties, 
relationship direction, relationship types, and relationship properties. It checks if the current place 
(PropertyVertexPlace) has the specified node labels and properties. If the node labels and properties 
match, the current place's item ID is added to the pathResult. This indicates a successful match. 
Depending on the specified direction, it sets the next vertex (neighbor vertexes) based on the given 
relationship types and properties and updates the newChildren count of the agent based on the number 
of next vertices set. If the direction is "NULL," it clears the next vertex, indicating no further traversal in 
that direction. 

 
Figure 13:Code of MATCH execu1on step's execu1on() func1on 

 

Figure 14: PropertyGraphAgent's executeMatch( ) func1on. 



4. Results 

4.1 Execution and verification of building MASS-based Property Graph Database 
With the queries shown in Appendix C1, the graph database was built and printed out as shown Appendix 
C2. The graph was printed out correctly based on the Create query clause, and Figure 15 is the illustration 
of the current graph.   

 
Figure 15: Graph created with Create Clauses 

4.2 Execution and verification of executing the Match query clauses. 
OpenCypher Match clauses tested are shown in Appendix C1. Appendix C3 shows the screenshots of 
the results for Match query clauses tested on the created graph shown in Figure 13. The Match query 
results are fetched from graph database using Agents. All the results from Match query clauses are 
verified to be correct and in line with Figure 15. 

5. Spring Quarter Project Plan 
Timeline Tasks 

Spring 2024 

Week 1 & 2 - Finish MATCH and DELETE query clause. 
- Schedule final defense. 

Week 3 & 4 - Finalize code package. 
- Start writing white paper. 

Week 5 & 6 - Writing white paper. 

Week 7 & 8 - Writing white paper. 

Week 9 & 10 - Final defense. 
- Final deliverables, including white paper and code package.   

6. Summary 
In current project, we have successfully extended the MASS-based graph database to handle complex 
node and relationship property information and executed OpenCypher CREATE and MATCH node and 
relationship queries accurately. Future tasks are outlined for further development during Spring Quarter. 
DELETE clauses will be integrated into our MASS-based property graph database to enhance its query 
capabilities and support a broader range of functionalities. 



Reference 
Eadline, D. (2018). Hadoop and Spark fundamentals : LiveLessons. Pearson. 

Hong, Y., & Fukuda, M. (2022). Pipelining Graph ConstrucKon and Agent-based ComputaKon over Distributed 
Memory. 2022 IEEE InternaKonal Conference on Big Data (Big Data), 4616–4624. 
hUps://doi.org/10.1109/BigData55660.2022.10020903 

Li, A., & Fukuda, M. (2023). Agent-Based ParallelizaKon of a MulK-Dimensional SemanKc Database Model. IRI, 
64–69. hUps://doi.org/10.1109/IRI58017.2023.00019 

Mohan, V., PoUuri, A., & Fukuda, M. (2022). Automated agent migraKon over distributed data structures. In 
Proceedings of the 15th InternaKonal Conference on Agents and ArKficial Intelligence, 1. 

openCypher. (2017, November). Cypher Query Language Reference, Version 9. 
HUps://Github.Com/Opencypher/OpenCypher/Blob/Master/Docs/OpenCypher9.Pdf. 

Parr, T. (2013). The DefiniKve ANTLR 4 Reference (2nd ed.). PragmaKc Bookshelf. 

Raj, Sonal. (2015). Neo4j High Performance : design, build, and administer scalable graph database systems for 
your applicaKons using Neo4j. Packt Publishing. 

Robinson, I., Webber, James., & Eifrem, E. (2013). Graph databases (First ediKon.). O’Reilly Media, Inc. 

  

 

  



Appendix A 

A1. Code package: 
Code package can be downloaded from Bitbucket: 

1) mass_java_appl, QueryGraphDB branch: 
https://bitbucket.org/mass_application_developers/mass_java_appl/src/QueryGraphDB/ 

2) mass_java_core, QueryGraphDB bracnch: 
https://bitbucket.org/mass_library_developers/mass_java_core/src/QueryGraphDB/ 

For more information of the files and folders containing the code that implemented in this project, it can 
be found at mass_java_appl, QueryGraphDB branch, QueryGraphDB folder, README.md file.  

A2. Build and Run: 
1. to make changes to MASS_java_core and rebuild, go to 
‘~/mass_java_appl/QueryGraphDB’ folder and then run ‘sh build_mass.sh’ 
2. to rebuild and run the QueryGraphDB application, go to 
‘~/mass_java_appl/QueryGraphDB’ folder and then run ‘sh build_run.sh’ 

 

 

 

  



Appendix B 

B1. Function flow of PropertyGraphCypherVisitor 

 
 



B2. Abstract Syntax Tree (AST) 

 



B3. ExecutionStep tree 

 
 

  



Appendix C 

C1. OpenCypher queries 

 

 



C2. Printed Graph after Create query clause 

 



C3. Printed results for various Match query clauses 

 



 
 

  



C4. Printed graph after the second Create clause 

 



C5. Printed result for Match clause on new Graph 

 


