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Goals 

The goal of the proposed thesis is to implement the techniques to optimize the 
performance of the agent-based models on the graphics processing units (GPU) as part of the 
MASS CUDA library based on the previous experiments and following the existing 
specification and APIs for MASS CUDA. 

The scientific contribution of this work is generalizing the existing techniques for 
efficient implementation of agent-based models on the GPU, implementing them as part of 
the general-use library for the agent-based models and understanding under what applications, 
what conditions, and what problem sizes which approaches and techniques are the best 
choices. Very little work has been done in the area of general-use libraries for the ABM 
simulations on GPU (see Related work section) and the proposed work will be beneficial to 
the research community working on parallelization of large-scale agent-based simulations on 
GPUs.  
 

Criteria 

The scope of the proposed thesis work is to test different approaches and techniques 
for implementing agent-based models in the GPU, test the performance of their 
implementations and identify their best use cases. 

The aspirational target is to achieve an improved performance of the MASS CUDA 
library as a result of implementing new approaches and techniques. 

 

Related works 

Previous work on MASS CUDA 

There have been several students who have made progress on CUDA versions of the 
MASS Library[2-4].   

Most of these students (Tosa Ojiru, Piotr Warczak and Robert Jordan) worked on the 
GPU-parallelized Wave 2D simulation using CUDA APIs directly.  

In 2014-2015 Nathaniel Hart developed a coherent MASS CUDA library that allows 
users to create and execute agent-based models on a GPU using MASS library APIs (without 
necessarily knowing anything about CUDA). The primary goal of Nathaniel’s work was to 
implement the encapsulation of the details of GPU parallel programming, and it has been 
accomplished. However, the resulting library did not achieve the performance goals as it 
showed a performance slowdown when compared to sequential computation of an identical 
simulation - the resulting performance of the system was 19% to 54% slower compared to the 
sequential execution of the program depending on the problem size.  

The current work aims to build up on top of Nathaniel’s work, in particular to reuse 
the APIs and utilize the results of experiments and profiling of Nathaniel’s test application. 
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Previous work on the Agent-Based Modeling using GPU 

There are a number of domain-specific implementations of Agent-Based Models on 
GPU that prove to provide good performance results and significant speed-up compared to 
the sequential execution. There are also some research papers dealing with the problems of 
abstracting out the specifics of the implementation and  

Following is the brief overview of research papers identified grouped by the 
application domain. More details on some of these papers are provided in the section 
Preliminary Research. 
1) Domain-specific agent-based models utilizing GPU: 

a) Biology & Medicine: 
i) Tuberculosis epidemic simulation[13]; 
ii) Modeling of blood coagulation system[12]; 
iii) Systemic inflammatory response simulation[6]; 
iv) Protein structure prediction[10]; 
v) Fish schooling simulation[15]; 

b) Physics: 
i) Molecular dynamics simulation[25]; 

c) Mathematics: 
i) Graph theory[11]; 

d) Social Studies: 
i) Traffic simulation and traffic signal timing optimization [37,38,40,41,44]; 
ii) Crowd simulation and path planning[7,8,9,29,30,42,43]; 
iii) Bird flocking[19, 21]; 
iv) Particle swarm optimization[24]; 

2) Agent-based modeling frameworks utilizing GPU: 
a) FLAME GPU: A High Performance Agent Based Modelling Framework on Graphics 

Card Hardware with CUDA[33-36]; 
b) Turtlekit: Logo-based library for Multi-Agent-Based simulations utilizing GPU[28]; 
c) MCMAS: An OpenGL-based toolkit to benefit from Many-Core Architecture in 

Agent-Based Simulations[45]; 
3) General techniques for implementing Agent-based models on GPU: 

a) Agent-based modeling techniques on multi-GPU clusters by Aaby, B. G., Perumalla, 
K. S. et al. from the Oak Ridge National Laboratory [5,32]; 

b) GPU environmental delegation[16,17]; 
c) Heterogeneous computing on CPU+GPU[18]; 
d) Separating agent management module from agent interaction module[26]; 

4) Other: 
a) MPI-CUDA implementation for multi-GPU clusters[22]; 
b) Benchmarking platform for ABMs[23]; 
c) Task scheduling in ABMs on GPU[31]. 

 

Preliminary Research 

To conduct a preliminary research for the Thesis project I have completed the 
CSS600 Independent Study/Research course under supervision of prof. Munehiro Fukuda. As 
part of the research I studied the existing MASS CUDA code and documentation to 
understand the current library architecture and implementation techniques used. I also studied 
available research papers on efficient implementation of the agent-based models on GPU and 
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to developed a list of possible improvements to the MASS CUDA library based on the best 
practices in the field. Over 40 relevant papers were reviewed in order to identify potential 
improvement techniques that can be applied to the existing MASS CUDA library to achieve 
better performance. 

CUDA programmability model and its fitness to Agent-Based models 

Graphics Processing Unit (GPU) provide an opportunity to accelerate the Agent-
Based models execution. However, GPU is not spontaneously efficient to support ABS due to 
its specific programmability model and memory hierarchy, which are briefly outlined 
below[26]. 

GPU is composed of global memory (DRAM) and several stream multi-processors 
(SM). An SM has tens of stream processors (SP), which is equivalent to arithmetic-logic unit 
(ALU) of CPU. Each SM has tens of SPs but can support hundreds of concurrent threads by 
multiplexing controlled by the warp scheduler. SM creates, manages, schedules, and executes 
in groups of 32 parallel threads. 

Every 32 threads form a warp executing in a lockstep manner. This is the single-
instruction-multiple threads (SIMT) parallel programming model utilized by GPU. Full 
efficiency is realized when all threads of a warp agree on their execution path. At every 
instruction issue time, a warp scheduler selects a warp that has threads ready to execute its 
next instruction and issues the instruction to those threads. Execution context (program 
counters, registers, etc) of each warp processed by a multiprocessor is maintained on-chip 
during the entire lifetime of a warp. Therefore, switching execution between warps has no 
cost. 

In CUDA, threads are organized into blocks. Threads of the same block run on the 
same SM and are not separable. One block runs on one SM, but one SM can support multiple 
blocks. Each SM has limited resources such as shared memories and registers. Blocks 
assigned to the same SM have to compete for these resources. If a single block requests too 
many resources, the number of blocks that can be concurrently supported by an SM decreases, 
and the performance will be affected. Fortunately, the numbers of blocks and the number of 
threads per block are configurable by developers. If one blocks requests too many resources, 
one can always reduce the number of threads per block to reduce the resources requested by 
one block. 

The memory of GPU has a hierarchical design as shown in Figure 1[46]. The global 
memory can be accessed by all threads in the same or different blocks. Global memory is big 
but slow. On the other hand, the shared memory is limited in size but fast. It can only be 
accessed by threads within the same block.  

The actual bandwidth of accessing data in global memory is critical to the 
performance of a CUDA application. The device coalesces global memory loads and stores 
into fewest transactions to maximize bandwidth utilization, when the threads of a warp access 
consecutive memory locations. In this favorable case, the advertised peak global memory 
bandwidth is achievable. 

Shared memory is on-chip programmable cache with much smaller size but much 
higher peak bandwidth in comparison with off-chip global memory. 
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Figure 1. GPU memory hierarchy 

As part of the literature survey there were identified a number of specific challenges 
related to implementing agent-based models on the GPUs: 

• Incompatible memory access patterns: 
o Agent creation and termination requires dynamic memory allocation, which 

can be a severe bottleneck on the GPU, as it requires global synchronization of 
the device and thus stall of all the executing warps; 

o Neighbor searching can be inefficient on the GPU, as neighbors can be 
situated anywhere in the global memory and thus memory access is not 
coalesced; 

• Branch divergence: 
o Agent-based models often include agents of different types, which have 

different behaviors and execution paths within a kernel. This results is thread 
divergence and thus reduces parallelism. 

Current MASS CUDA architecture and implementation details 
The main goal of the previous work on the MASS CUDA focused on creating the API 

that works and feels in the manner identical to MASS Java or MASS C++ libraries. 
The resulting library completely hides CUDA implementation details from the user 

with several exceptions: 

• The project must be compiled using nvcc (Nvidia CUDA compiler) with the required 
flags/options; 

• All files that are normally .cpp are .cu; 
• Functions in user-defined Place or Agent classes should be prepended with the macro 

MASS_FUNCTION (stands for __host__ __device__), which enables compiling of 
both host and device code. 
On the architectural level the project follows the Model-View-Presenter model, where 

View represents API of the library, Model represents the data model on the GPU and 
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Presenter represents the dispatcher coordinating the interaction of Model and View. The 
architecture is represented on the Figure 2 [2]. 

 
Figure 2. High-level architecture of MASS CUDA library 

 
The files in the project folder are structured into “src” and “test” folders, where “test” 

is the Heat2D application. 
The basic program flow and classes used by the Heat 2D application are represented 

on the Figure 3. The actual GPU kernel calls (such as callAllPlacesKernel and 
setNeighborPlacesKernel) start from the Dispatcher class. “MASS”, “Places” and “Agents” 
classes have virtually no CUDA implementation details exposed. Another point to mention is 
that the manipulation of the DataModel is performed through the partitions(“Partition” class), 
so that the code can be easily extended to run on different GPU devices. However, current 
implementation of the library can only run on a single GPU device. 

 
Figure 3. Program flow for Heat 2D application usage of MASS CUDA library 

 

MASS CUDA performance and profiling 

While the goal of encapsulation of the details of GPU parallel programming has been 
successfully accomplished by the existing MASS CUDA code, the resulting library did not 
achieve the performance goals as it showed a performance slowdown when compared to 
sequential computation of an identical simulation. 

As part of the preliminary research I performed a test run and profiling of the existing 
version of the MASS CUDA library using the Heat 2D application. As you can see on Figure 
4, MASS CUDA performs approximately 20% more efficiently on the available hardware 
(“juno.uwb.edu” with Intel Xeon CPU E5-2630 v3 @ 2.40GHz and GeForce GTX Titan 
GPU with 2688 CUDA cores and compute capability of 3.5) than sequential CPU 
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implementation for significantly large simulations (simulation space of order 1000). However, 
when compared to the direct GPU implementation using CUDA API calls, the MASS CUDA 
version is 55 times slower. So, the potential for performance improvement is huge there. 

 

Figure 4. Execution time of different implementations of MASS CUDA library 

Aside from measuring execution time for different version of the Heat 2D 
implementation, I also performed profiling of the MASS CUDA implementation using the 
“nvprof” profiling tool. As can be observed on the Figure 5, the majority of the execution 
time is taken by 3 kernels: mass::setNeighborPlacesKernel, mass::callAllPlacesKernel and 
mass::instantiatePlacesKernel.  

 

Figure 5. Heat 2D kernels execution times as a share of total 

Further profiling of these kernels showed some apparent possibilities for performance 
optimization, such as increasing the utilization of the shared memory versus global memory. 
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Shared memory transaction on the Nvidia GPUs are performed up to 10 times faster than 
global memory transactions. Table 1 below demonstrates the current memory transactions by 
all three of the kernels. Also profiling revealed that for all three kernels the main reason for 
warp stall was memory throttle (over 65% of the cases), so the optimization of the memory 
usage should be a priority during the future work. 

 

 

mass::setNeighbor
PlacesKernel 

mass::callAllPl
acesKernel 

mass:instantiate
PlacesKernel 

Shared memory transactions 638 267 - - 

Global memory transactions 21 757 737 11 114 410 3 539 155 045 

% of shared memory transactions vs 
global memory transaction 3% 0% 0% 

Table 1. Number of transactions by memory type for the Heat 2D test application 

Possible performance improvement techniques 
As part of the literature survey stage the following techniques and approaches were 

identified as the most viable performance improvement techniques: 

• Maximize the use of shared memory for the places objects and data; 
• Data structure to store agents neighbor data in the shared memory (preliminary group 

agents into blocks by location in the grid)[26]; 
• Use Agent Pooling technique to addresses dynamic memory allocation issue[26]; 
• Heterogeneous approach: agent behaviors managed by the CPU, environmental 

dynamics (anything that doesn’t modify agent state) handled by the GPU[16,17]; 
• Identify and implement a set of defined data structures and kernels utilized in popular 

ABMs (diffusion, path-finding, population dynamics)[45]. 

Plan 
 
Autumn 2017 quarter 
Week l Detailed plan update 
Week 2-4 Technical survey 
Week 5-10  Technical implementation 
Week 11 Term Report 
 
Winter 2018 quarter 
Week l-3 Technical implementation 
Week 4-5 Testing of the technical implementation 
Week 6 Technical performance evaluation 
Week 7-8 Thesis defense preparation 
Week 9-10  Master thesis write-up 

 

Required Resources 
The resources required for the successful implementation, testing and performance 
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measurement of the current thesis requires specific hardware and software: modern CPU 
running Linux OS with CUDA-compatible GPU and the NVIDIA® CUDA® Toolkit 
installed. The required hardware is available on the “juno.uwb.edu” computer, which has 
Intel Xeon CPU E5-2630 v3 with 2.40GHz processor frequency and GeForce GTX Titan 
GPU with 2688 CUDA cores and compute capability of 3.5. 

The required software was installed and tested on “juno” during the preliminary 
research stage. 
 

Constraints and Risks 
Key risk for the proposed thesis is the possible inefficiency of the implemented 

techniques. Because very little work has been done in the area of general-use libraries for the 
ABM simulations on GPU, there is no guarantee that the techniques implemented will result 
in the improved performance of the MASS CUDA library. However, even if the thesis will 
fail to achieve significant performance gains for the MASS CUDA library, it will still have 
an important scientific value as it will generalize and evaluate the performance of the existing 
techniques for efficient implementation of agent-based models on the GPU as part of the 
library. 
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