

© Copyright 2022

Maré G. Sieling

AGENT-BASED DATABASE WITH GIS

Maré G. Sieling

A Capstone Project

submitted in partial fulfilment of the

requirements for the degree of

Master of Science in Computer Science & Software Engineering

University of Washington

2022

Reading Committee:

Prof. Munehiro Fukuda, Chair

Prof. Arnold Lund

Prof. Min Chen

Prof. Erika Parsons

Program Authorized to Offer Degree:

Computer Science and Software Engineering

University of Washington

Abstract

AGENT-BASED DATABASE WITH GIS

Maré G. Sieling

Chair of the Supervisory Committee:
Professor Munehiro Fukuda

Computer Science

Geographic Information Systems (GIS) create, manage, analyse and maps data. These systems

are used to find relationships and patterns between different pieces of data in a geographically long

distance. GIS data can be extremely large and analysing the data can be laborious while consuming

a substantial amount of resources. By distributing the data and processing it in parallel, the system

will consume less resources and improve performance.

The Multi-Agent Spatial Simulation (MASS) library applies agent-based modelling to big data

analysis over distributed computing nodes through parallelisation. GeoTools is a GIS system that

is installed on a single node and processes data on that node. By creating a distributed GIS from

GeoTools with the MASS library, results are produced faster and more effectively than traditional

GIS systems located on a single node.

This paper discusses the efficacy of coupling GIS and MASS through agents that render

fragments of feature data as layers on places, returning the fragments to be combined for a

completed image. It also discusses distributing and querying the data, returning results by running

a query language (CQL). Image quality is retained when panning and zooming without major loss

of performance by rerendering visible sections of the map through agents and parallelisation.

Results show that coupling GIS and MASS significantly improves the efficiency and scalability

of a GIS system.

i

TABLE OF CONTENTS

Chapter 1. Introduction .. 1

1.1 Problem Definition .. 1

1.2 GeoTools ... 2

1.3 Goals .. 3

1.4 Constraints, Risks, and Resources ... 3

1.5 Report Structure ... 3

Chapter 2. Related Works .. 4

2.1 Agent-based Parallel Computing ... 4

2.2 Geographic Information Systems and GeoTools .. 4

2.3 Integrating GIS and Agent-Based Models .. 5

2.3.1 Loose Coupling ... 5

2.3.2 Tight Coupling ... 6

2.3.3 Dynamic vs Static Coupling of Data ... 7

Chapter 3. Implementation .. 8

3.1 System Implementation ... 9

3.1.1 Distributing GIS Data .. 9

3.1.2 Querying the Database .. 16

3.1.3 Agent based Rendering .. 20

3.2 Parallelisation .. 25

3.2.1 Places ... 26

3.2.2 Agents .. 26

ii

3.3 User Interface .. 26

Chapter 4. Verification .. 31

4.1 Execution Environment ... 31

4.2 Input Data Sets .. 31

4.3 Querying the Database Benchmark ... 32

4.4 Agent-based Rendering Benchmark .. 35

4.5 Usability .. 38

4.6 Summary .. 39

Chapter 5. Conclusion ... 41

5.1 Summary .. 41

5.2 Future development ... 41

References .. 43

Icons .. 44

Appendix A: Definitions ... 45

A.1. Multi-Agent Spatial Simulation .. 45

A.2. Image File Formats .. 45

A.2.1. GeoTiff .. 45

A.2.2. WorldFile ... 45

A.3. PostGis ... 45

Appendix B: Installation and Testing ... 46

iii

B.1. Setting up Nodes .. 46

B.2. Building the package with maven ... 47

B.3. Data Files ... 47

B.4. Maven and the pom.xml file .. 47

B.5. Database Function ... 48

B.6. Testing with Mockito .. 50

B.7. Running the program ... 50

B.7.1. Individual Functionality: Send Data to Places .. 51

B.7.2. Individual Functionality: Get Data from Places .. 51

B.7.3. Individual Functionality: Render a Subsection of the Base Map 52

B.7.4. Individual Functionality: Render Subsection of the Base Map with Agents 52

B.7.5. Full Functionality: User Interface ... 53

B.7.6. Running the Command Line Arguments ... 54

B.8. Validating results ... 55

Appendix C: Code ... 56

C.1. GisDataStore.java .. 56

C.2. GisDataStoreFactory.java .. 57

C.3. GisDataPlace.java .. 57

C.4. GisFeatureSource.java ... 58

iv

C.5. ImageTileData.java ... 60

C.6. FeatureRecordReader.java ... 61

C.7. GisFeatureReader.java ... 63

C.8. FeatureDataLoader.java ... 64

C.9. Tiler.java .. 65

C.10. FullMapBuilder.java .. 66

C.11. FileData.java .. 67

C.12. FeatureRecord.java .. 68

v

LIST OF FIGURES

Figure 1 Loosely coupled system [6] .. 6

Figure 2 Tight coupling: GIS integrated into a multi-agent system [12] 7

Figure 3 GIS MASS Database Design .. 8

Figure 4 Rendering a Feature on a Base Map ... 9

Figure 5 Map with axis [13] .. 10

Figure 6 Saving each tile on a separate place .. 11

Figure 7 Data Distribution Application UML ... 12

Figure 8 Sequence diagram for distributing data .. 13

Figure 9 Map divided into tiles with numbered file names ... 14

Figure 10 UML showing relationship between Tiler and GridCoverage 15

Figure 11 Example of feature files divided into tiles .. 16

Figure 12 DataStore UML ... 17

Figure 13 Multiple instances of Reader ... 19

Figure 14 Sequence diagram for querying data ... 20

Figure 15 Lifecycle of primary agent: spawning agents and rendering map fragment 21

Figure 16 Finding the coordinates of a fragment .. 22

Figure 17 UML for classes for map rendering .. 22

Figure 18 Primary agent will spawn other agents that have a task-limited lifespan. 23

Figure 19 Drone Agent Lifecycle .. 24

Figure 20 Section of map with country borders (black lines) and cities (pink dots) 24

Figure 21 Sequence diagram for rendering ... 25

Figure 22 MASS Programming Model [19] .. 26

Figure 23 Start-up classes for the UI ... 28

Figure 24 Settings Panel .. 28

Figure 25 Data Query Panel with Cities Data ... 29

Figure 26 Panning Buttons .. 30

Figure 27 Data Query Benchmark Performance on AWS .. 32

Figure 28 Data Query Benchmark with Single Node and Thread 33

Figure 29 Data Distribution for Data Query with one Node and One Thread 34

vi

Figure 30 Map Rendering Benchmark Performance on AWS .. 35

Figure 31 Map Rendering Benchmark with a Single Node and Thread 36

Figure 32 Map Rendering Benchmark with a Constant Number of Places 37

Figure 33 Dropdown for Selecting Feature ... 38

Figure 34 Adding Features to Map .. 39

Figure 35 Feature files and base map files in the input folder .. 49

Figure 36 Structure of java file source .. 49

Figure 37 Run configuration: files created after build .. 49

Figure 38 Label FXML definition ... 53

Figure 39 Controller class setting .. 54

Figure 40 Example of a successful log file ... 55

vii

LIST OF TABLES
Table 1 Benchmark Test File Schema ... 31

Table 2 Data Query Benchmark Results with Single Node and Thread 34

Table 3 Map Rendering Benchmark Results ... 37

Table 2 Sample query parameters ... 52

viii

DEDICATION

To my family

1

Chapter 1.

INTRODUCTION

1.1 PROBLEM DEFINITION

Geographic Information Systems (GIS) are databases containing geographic data with tools to

visualise and analyse the data. The data set is based on spatial locations [1]. The data’s locations,

such as roads, forests and cites (features), are defined as polygons, lines or points [2]. GIS is

extremely resource intensive. Large images and complex data sets are slow or even impossible to

analyse and display if the system does not have enough resources. It makes GIS-capable systems

expensive and not very portable as such large systems are also power-hungry and cumbersome.

This capstone integrates an agent-based modelling (ABM) with a GIS, GeoTools, that can be

processed for data by using the Multi-Agent Spatial Simulation (MASS) library and its Agents.

The MASS library provides a method for organising data using the distributed Places objects [3].

There is more flexibility to adapt the GIS as needed by using an open-source GIS. This includes

implementing the migration to the GIS (GeoTools) and completing an interface between MASS

and the GIS. The project scales up the GIS database over a cluster system (MASS Places), creating

a distributed array. This facilitates agent-based inquiries into the multi-dimensional database,

allowing agent-based GIS data retrieval and computation across the distributed system. The GIS

consists of spatially referenced datasets in the database that are separated into vector and raster

formats. Raster represents surfaces while the vector data represent edges and vertices.

Mapping the datasets to MASS over distributed systems allows for larger datasets that can be

accessed by agents. This improves scalability for the GIS data as the dataset size is not limited by

having to fit on one machine to be visualised. The interface between GeoTools and the MASS

distributed database allows GeoTools to access data as before, while the backend returns the data

through MASS processes, with the interface simulating access to the hard drive of the computer

GeoTools is running on.

This project adds various contributions to the MASS project.

2

• It creates a scalable distributed database as an abstract data source, with loose coupling and

an interface hiding the implementation from the GIS.

• Agents render parts of a map, with each agent executing a piece of work on a place on a

node, allowing for parallelisation.

• The completed GIS will perform as a single system image across a distributed system.

1.2 GEOTOOLS

The project creates an implementation of the GeoTools data source that uses MASS to retrieve

data from the distributed database.

A survey was done of the various GIS open-source software options before deciding on using

GeoTools. The GeoTools open-source library can be used for the implementation of geographic

information systems (GIS). It provides methods to manipulate geospatial data [4]. It was chosen

for this integration as it forms the basis of many of the most popular GIS tools on the market

currently. The code base is currently stable, follows Open Geospatial Consortium specifications

and is consistently being supported.

GeoTools supports various raster and vector formats used in GIS such as shape files and geotiff

(see A.2.1 GeoTiff) with the option of using plugins to support new formats. It also includes

database support, such as postgis (see A.3 PostGis).

GeoTools’ various downstream projects include uDig, Geomajas and GeoServer. It is

designed to allow for integration with custom content. In this project, MASS and GeoTools’ raw

data is loosely coupled (see 2.3.1 Loose Coupling), however, the implementations for rendering

the map and reading the data is tightly coupled to the GeoTools API (see 2.3.2 Tight Coupling).

The TIFF and shape files are an industry standard and not specific to GeoTools. The libraries

and APIs in GeoTools are used to perform the agent-based rendering, creating an implementation

that is tightly coupled to the GeoTools libraries. The same is true in the process for data retrieval,

as the DataStore implements GeoTools APIs.

3

1.3 GOALS

This project is part of a larger group project, MASS, a parallelizing library for multi-agent

spatial simulation, under the direction of Professor Fukuda at the University of Washington

Bothell.

• The goal of the current project is to prove the GIS database can be implemented as a MASS

application. For a full description of the MASS team project, see the Appendix (A.1).

• Connecting MASS to GIS shows the efficiency of using a distributed system coupled with a

multi-agent spatial system. This connection improves scalability compared to a GIS system

that is limited to one computing node. The implementation of agents increases efficiency,

performance and scalability by performing actions and computations in parallel on

computing nodes instead of on the main node, allowing for larger datasets and more

computations.

• Agents allows the system to perform as a single system image (SSI).

• A simple graphical user interface presents the program as an SSI while improving usability

compared to running command line arguments. This improves testing and makes it easier

for the developer to visualise new features added to the database. It also serves as a basis

for the development of a fully-fledged GIS for users.

1.4 CONSTRAINTS, RISKS, AND RESOURCES

This project runs successfully on the University of Washington Linux servers and on Amazon

Web Services (AWS). The University of Washington’s Linux servers do have space constraints.

There are no practical space constraints when running the project on AWS, however, non-free tiers

must be used.

1.5 REPORT STRUCTURE

The report that follows discusses related research and implementations in chapter 2, with the

implementation of the system in chapter 3. Chapter 4 evaluates the results and compares that to

the goals of the project. The conclusions are discussed in chapter 5.

4

Chapter 2.

RELATED WORKS

Implementing Geographic Information Systems (GIS) as a distributed database is the subject

of many reference works. There are various possible methods for integrating GIS and agent-based

models. What follows is a discussion of agent-based parallel computing, the types of GIS and the

theory surrounding integrating GIS with agent-based models.

2.1 AGENT-BASED PARALLEL COMPUTING

Multi-agent simulations provide an alternative method for modelling complex applications [5].

A multi-agent system contains multiple agents in one distributed system. Agents act as

independent entities that can act together or individually [5]. They work in varied environments,

including distributed and centralised environments. Each agent acts according to its own rules and

protocols. A group of agents in a multi-agent system can perform a set of tasks or goals that would

not be possible for a single agent [6].

2.2 GEOGRAPHIC INFORMATION SYSTEMS AND GEOTOOLS

Geographic Information Systems (GIS) rely on data that is based on spatial relationships

between features [1]. As such, GIS data relies on object-oriented data models rather than process

models. GIS uses tools to manage large set of data and complex modelling environments. In the

data, the world gets abstracted to be represented as a set of different features as layers on a base.

There are multiple open-source alternatives available, amongst others OrbisGIS, uDig and

GeoMaja.

GeoTools is an open-source, Java code library for creating GIS tools that are compliant with

Open Geospatial Consortium (OGC). It is released under the GNU Lesser General Public License

(LGPL). It is a stable library that is consistently updated and well-documented. It is used as the

basis for many other GIS, such as uDig. It was designed for developers building GIS products

with spatial, not temporal scalability, by simplifying the construction of data processing

applications as well as abstracting data sources, feature models and coordinate system map

5

projections [7]. GeoTools is thus not aimed at general users, but on developers who implement

the library.

2.3 INTEGRATING GIS AND AGENT-BASED MODELS

Coupling agent-based process models with data-based GIS models require planning

conceptually and functionally [1]. Processes and objects need to be represented and their

interactions defined. Traditional GIS use spatial data models (location) at the cost of temporal

dimensions (time). The process models use time and behaviour, so sacrifice space and spatial

relationships. They require adaptation to integrate with the data-based models of GIS, since GIS

contains spatial relationships.

GIS can be coupled with agent-based models either through loose coupling, tight coupling or

as complete integration [6].

Complete integration requires spatial features and the encapsulation of the agent-based model

in the GIS. It would also require temporal features, which is not usually a part of a GIS. It is thus

not a recommended approach.

2.3.1 Loose Coupling

As discussed by Peng et al., in general, loose coupling is preferable to tight coupling and full

integration.

Loose coupling makes testing simpler and the system more maintainable [9]. Loosely coupled

code that is built on abstractions, adheres to the Dependency Inversion Principle (DIP). DIP

requires objects to rely on abstractions, not concrete implementations [10]. The code is reusable,

independent and more easily maintained [11]. Adding new features becomes simpler. Overall,

the system is more resilient than tight coupling or full integration [12]. A very loosely coupled

system can however become overly complex with performance deterioration.

The loosely coupled system illustrated in Figure 1 creates transitional files for data exchanges

[6]. These files are in a format understandable to both the GIS and the Multi-Agent System. The

systems stay independent. The extra files do consume extra resources and slows down

performance. It is thus not an ideal solution for merging MASS with GIS.

6

Figure 1 Loosely coupled system [6]

2.3.2 Tight Coupling

Many researchers advocate for tight coupling to improve performance and efficiency, which

are high priorities in GIS [6], [1]. Tight coupling can be achieved by integrating MASS into GIS

or the opposite, embedding GIS into MASS [13], as illustrated in Figure 2.

7

Figure 2 Tight coupling: GIS integrated into a multi-agent system [13]

Early integration approaches were ABM-centric. Geographic objects with features and

attributes can be implemented as the agents, allowing for a state and behaviour [8]. This is an

expensive approach as GIS code is developed to be efficient, while AMB systems are not designed

for spatial interactions [1].

Using a middleware approach can couple a multi-agent system with existing GIS software.

Creating an interface or middleware between a GIS and ABM minimises the need to provide full

functionality in a single system [1]. This approach also alleviates the need to build a completely

new system.

Tight coupling hides the implementation from the user, creating a better user experience

through a singular user interface. This is considered a more complex implementation than loose

coupling [13]. Unlike loose coupling, there is no need for transitional files.

2.3.3 Dynamic vs Static Coupling of Data

The geographic data for the GIS can be coupled during the execution of the model. This would

be considered dynamic coupling. In contrast, static coupling requires the data to be imported

before simulation [2]. This project uses static coupling.

8

Chapter 3.

IMPLEMENTATION

A Geographic Information System (GIS) database needs specific elements to be functional. It

needs a mechanism to load into the database, a mechanism to query the data as well as a mechanism

to perform processing of the data.

This implementation functions as an interface between the GIS and MASS. The GIS provides

the business logic while MASS provides the scalability and parallelisation of data and processing.

The interface being implemented provides the user with an interface to the GIS, both from the

command line and through a Graphic User Interface (GUI). The data is distributed through MASS.

GIS queries are run through this implementation and maps are rendered and displayed in the GUI.

MASS provides the network infrastructure for data retrieval and processing on nodes.

Figure 3 illustrates the design components.

Figure 3 GIS MASS Database Design

9

3.1 SYSTEM IMPLEMENTATION

This implementation illustrates the processing of the data in a shape file by either querying the

raw data or rendering a map with vector GIS data superimposed over a base map raster image

(Figure 4). It includes a user interface that allows users to add to and remove features (layers)

from the map, zoom in and out of the map as well as pan across the map. The implementation also

has the ability to query and sort feature data, then displaying the results in a table.

Figure 4 Rendering a Feature on a Base Map

3.1.1 Distributing GIS Data

All GIS vector data is tied to geometry, such as a location on a map, the outline of a country

or the position of a manhole cover. This data needs to be broken up into tiles to be distributed

across MASS Places. MASS Places is a distributed array that is distributed evenly across

computing nodes over a cluster system (see 3.2 Parallelisation). The data is broken up

geographically, making it easier to locate for retrieval and processing. The data is thus indexed by

10

location. Shape files are used as they are an industry standard. This allows processing to be

independent of any specific library or implementation.

The base map tiles are divided according to the same coordinates as the feature files, ensuring

that related data is stored on the same places. Each place will thus contain a section of the base

map as well as its features over the same coordinates.

The base map is given a width in coordinates, with the x-coordinate ranging from -180 to 180

and the y-coordinate from -90 to 90 (see Figure 5).

Figure 5 Map with axis [14]

Using the geometry of the vector and raster data as the key, the data is split up into different

buckets and distributed to each place that represents a single geographic tile of the world. A simple

example is to distribute the data across two places. All raster and vector data associated with

latitude -90 to 90 and longitude -180 to 0 will be stored in the first place and all data associated

with latitude -90 to 90 and longitude 0 to 180 will be stored in the second place. The simplified

example in Figure 6 illustrates the division and storage of the tile files when the base image is

divided into 12 tiles. There are two nodes, named cssmpi1h and cssmpi2h. These are the names

of machines on the university network. In different implementations, it would be the names of the

machines that are hosting the nodes. Each node contains six places. The 12 tiles are then each

11

stored in a place, with each place containing only one tile. The shape file feature data is divided

up in a similar way using geography bounding boxes. The number of nodes can be changed as

well as the number of tiles and Places (see B.1 Setting up Nodes).

Figure 6 Saving each tile on a separate place

The main data distribution application is provided with an input folder that contains all the

raster and vector data files that needs to be distributed to the Places. The application will iterate

through the list of files in the input folder. The class UML for this feature application is shown in

Figure 7, with the main function in App.

12

Figure 7 Data Distribution Application UML

If the current file being processed is a raster data file, the program will create a new instance

of Tiler to produce the tiled raster data.

If the current file being processed is a vector data file, it will create a new instance of

FeatureQuery to produce the tiled vector data. GisDataPlace is an extension of the MASS

Place class. This implementation provides the ability to receive raster and vector data and store

the data in an appropriate location (see Figure 8).

13

Figure 8 Sequence diagram for distributing data

Two different components have been developed to break up the data. The Tiler is

responsible for splitting up raster data and the FeatureQuery is responsible for splitting up the

vector data.

The Tiler starts by loading up the raster data (the base map). The raster data contains the

image itself as well as the geographic information of the image expressed in the current Coordinate

Reference System (CRS).

Definition The Coordinate Reference System (CRS) defines how three-dimensional

spatial data, such as a real place on Earth, translates to two dimensions. It consists of a coordinate

system, horizontal and vertical units, projection data and the datum [15]. Data needs to be

converted to the same CRS to be analysed and processed.

The geographic information is used to break the image into smaller versions using the CRS

(see Figure 9) while maintaining the geographic information for each tile. The axis needs to be

reversed for the CRS, due to the quirk in geography that first has latitude, then longitude, versus

mathematical models that first use the x axis, then the y axis [16].

14

Figure 9 Map divided into tiles with numbered file names

This data will be distributed to each place using the MASS library, but it requires that the data

be serialized to transmit over the network. Unfortunately, the GeoTools objects are not

serializable, so a GridCoverageWriter is used to write the raster data for each tile to an array

of bytes. This, along with the filename of raster data for each tile, is returned by the Tiler. Figure

10 shows the relationship between the Tiler and the Geotools API classes.

15

Figure 10 UML showing relationship between Tiler and GridCoverage

The FeatureQuery uses the GeoTools API to read each shape file in the input folder.

Definition Shape files are considered an industry standard for vector geospatial data

files [17]. They contain the features of a geographic area. The *.SHP, *.DBF and *.SHX files are

required with various optional additional files also possible.

Definition Features contain geospatial data, usually referred to as the_geom, that

describe an entity using geometry to define the feature, for example with points, polygons, etc.

Features can be anything from cities to manhole covers. The features contain a descriptive label

as well.

The geometric bounds of each Place is determined by the number of rows and columns. The

FeatureQuery filters the shape files to get all the records that fall within the bounds of each

Place using a Bounding Box query.

Definition Filters use features to filter data in a map. It uses the common query

language (CQL), part of the OGC Catalog specification, which functions similarly to SQL.

Definition A Bounding Box is a two-dimensional rectangle that is defined by minimum

and maximum coordinates in the x and y directions on a map [18].

16

The GeoTools feature records are also not directly serializable, but unlike in the case of the

raster data GeoTools does not have an implementation that can write the shape file data directly to

an array of bytes. To work around the problem, the feature records for each tile is written to a

staging shape file along with any sidecar files.

Definition Sidecar files contain the georeferencing data for the image in a separate file.

The results of this process will be a shape file and other sidecar files in a staging folder that

represents the feature records associated with each Place.

The feature files are divided as shown in Figure 11.

Figure 11 Example of feature files divided into tiles

3.1.2 Querying the Database

The database requires the functionality to read the data that is distributed over multiple

Places running on a set of nodes as a single system. The GeoTools library exposes a set of

interfaces that can be implemented to plug new data stores into the library.

GeoTools uses the existing DataStore API (see Figure 12) to represent a file, database or

service that contains the spatial data. The interface represents a physical source of feature data.

Its implementation allows GeoTools to support many geographical data formats.

17

Figure 12 DataStore UML

The GisDataStoreFactory is responsible for creating new instances of

GisDataStore. By creating a Factory plugin as an interface, customised content is integrated

with GeoTools. This serves as pluggable point for implementing new data sources.

The GisDataStore is responsible for providing a list of the features that are supported as

well as creating instances of GisFeatureSource for a selected feature.

It is assumed that the datastore will run on the same node with at least one Place, so a list of

supported features is created by looking at all the shape files that have been distributed to the local

node, extracting the name of the feature from the filename and returning that to the calling code.

The GisFeatureSource is responsible for providing the schema of the feature as well as

creating instances of GisFeatureReader based on a provided Query object. It will provide

18

the schema by using the name of the feature to find the first shape file that matches the feature

name and reading the schema from the file.

The GisFeatureReader acts like an iterator by providing implementation for next,

hasNext and close. This way the client code can iterate through the feature records and

process the records as needed.

The design required a way to create multiple instances of GisFeatureReader in a thread-

safe manner while also performing the read operation across multiple nodes on the network. This

implies that there will be open readers running on the Places (see FeatureRecordReader in

Figure 13) that need to maintain their state on each node. That state is synchronized with the state

of the GisFeatureReader that is requesting feature records from all the Places.

This coordination is done as follows:

• A UUID is created to uniquely identify an instance of the GisFeatureReader (client-

side). This UUID is the key to synchronizing the state of the FeatureRecordReader

instances running in the Places with the GisFeatureReader. It will be used in all

network calls to the Places from these instances of the GisFeatureReader.

• The GisFeatureReader makes an OPEN_READER call to GisDataPlace instance

running in each Place. The GisDataPlace will make a call to the

FeatureRecordReaderFactory to create a new instance of

FeatureRecordReader. The factory will store the newly created instance in a map

using the UUID provided in the arguments as the key. This allows the factory to retrieve

the instance in future interactions. The FeatureRecordReader will open the

appropriate shape file using the provided query.

19

Figure 13 Multiple instances of Reader

• The GisFeatureReader next establishes a set of buffered records by making a

READ_NEXT_RECORD call to each of the instances of GisDataPlace using the UUID

established in the constructor as argument in the call.

• The GisDataPlace uses UUID to retrieve the appropriate FeatureRecordReader.

It reads a set of records and returns them to the GisFeatureReader.

The GisFeatureReader will now have a set of buffered records and it will return records

from the buffer to the calling code. If the buffer is empty, it will repeat these steps until no results

are returned.

This is illustrated in the sequence diagram in Figure 14.

20

Figure 14 Sequence diagram for querying data

3.1.3 Agent based Rendering

Rendering vector-based features on a base map (raster data) is one of the main features of a

GIS system. Rendering data is a data- and compute-intensive process, so the system makes use of

agents to render fragments of the map in Places and send the fragments back to the main

application where it is assembled into a complete map (Figure 15).

21

Figure 15 Lifecycle of primary agent: spawning agents and rendering map fragment

The application creates a single agent that is the primary agent from which all the worker

agents are spawned.

The application establishes a utility class (WorldGrid) that provides the implementation with

the latitude and longitude range for each of the tiles in the system. This is used to help set up the

arguments that will be used in the calls to the agents to render the relevant fragments correctly.

The input parameters to the application includes the latitude and longitude bounds of the map

image that should be rendered as well as the base map image and details of any features that should

be rendered on top of the map. The application uses the bounds to identify the tiles that will be

involved in rendering the map (Figure 16).

22

Figure 16 Finding the coordinates of a fragment

The application creates a two-dimensional array of arguments that represent the arguments that

need to be sent to each of the agents once they have migrated to the correct places. The argument

(MapRenderingArgs) encapsulates the base map image file name, the pixel width of the map

image fragment to render, the latitude and longitude bounds of the fragment and a list of the

features that need to be rendered on the map.

The application calculates the fragment coordinates in FullMapBuilder. These

coordinates are passed as arguments to the agents (lines 37 – 61 in A.2.10 FullMapBuilder.java).

Figure 17 shows the relationship between these classes in the UML diagram.

Figure 17 UML for classes for map rendering

23

The application makes a SPAWN call to the primary RenderMapAgent to spawn N-1 new

agents (see Figure 18). The primary agent will also be creating a fragment. The provided input

arguments are passed for each newly spawned agent in its constructor, where N is the number of

tiles identified as taking part in the process.

Figure 18 Primary agent will spawn other agents that have a task-limited lifespan.

The application makes a MIGRATE call to all agents. The input argument provided during the

construction of each agent includes the indices of the Place that they need to migrate to.

The application will make a RENDER call to all agents. Each agent will proceed to do the

following (Figure 19):

• Create a new MapFragmentBuilder.

• Render the selected vector data on top of the base image map fragment.

• Return the results of the map rendering process as an array of bytes.

• Terminate itself if it is not the primary agent.

24

Figure 19 Drone Agent Lifecycle

Once the application has the various map fragments it can construct a complete image by

stitching the map fragments together.

Figure 20 is an example of a map fragment returned by the agents that includes country borders

and cities as the features.

Figure 20 Section of map with country borders (black lines) and cities (pink dots)

This process is visualised in the sequence diagram in Figure 21.

25

Figure 21 Sequence diagram for rendering

3.2 PARALLELISATION

The Multi-Agent Spatial Simulation (MASS) performs the parallelisation functions using the

modelling objects Places and Agents (see Figure 22) [19].

Threads are spawned when MASS is initialised. The number of threads per computing node

are defined when the program is run. The multi-threaded processes are managed with the message

passing technique [19].

26

Figure 22 MASS Programming Model [20]

Data is saved to dedicated Places, so Agents can retrieve and analyse the data on demand [20].

3.2.1 Places

Places are distributed evenly over computing nodes in a cluster as a two-dimensional array of

elements. In this implementation, a Place represents a section of the raster and vector data sets.

The queries on the data are parallelised by distributing the data sets evenly across the Places.

3.2.2 Agents

The map rendering arguments (MapRenderingArgs) in this application-specific Agent are

serialised upon migration [21]. Each agent is allocated to the processing of data of a single Place.

The Agents migrate to Places. They can spawn new agents and control their own behaviour.

Parallelisation of data processing is achieved by migrating Agents to the Places where the data is

located. The compute-intensive processing is performed by the Agents on the Places in parallel.

The results are returned to the original object that initiated the process.

3.3 USER INTERFACE

Multiple steps must be followed to generate a map with features or to query the data when

running the components from the command line. Each time the pom file needs to be changed and

27

different parameters must be entered. If a mistake is made or the results retrieved are not adequate,

then the steps all need to be repeated. Integrating all the components and functionality into one

user interface simplifies the process and should make it easier for a developer to add and test new

components.

A graphic user interface (GUI) was developed with JavaFX and FXML to integrate all the

functionality in one place. Each component has an associated controller class with a top-level

controller that contains the frame in which the components will run.

This GUI is a prototype.

Definition JavaFX is an open-source platform to develop user interfaces in Java. It

serves as an alternative to Swing. It uses FXML to define the user interface visual components.

Definition FXML is a markup language to define the look and feel of a user interface.

It defines containers and objects as well as the size of the object. Program logic is thus kept

separate from the design.

Example: The following line defines a label component in FXML.

<Label fx:id="queryLabel" layoutX="25.0" layoutY="80.0" text="Query" />

The UiLauncher class is a workaround for executing a Java application with JavaFX without

using modules. The class that extends Application (GisApplication) cannot be directly called

for execution in the pom.xml file, thus this class is used as the entry point and calls the user

interface (Figure 23).

GisApplication sets up the environment before calling the first controller,

PrimaryUiController, to show the user interface. From there, listeners perform the logic

to call the related windows and required functionality.

28

Figure 23 Start-up classes for the UI

The SettingsController sets the location of the base map and feature files (Figure 24).

These values are persistent between instances of the program. It will also distribute the files across

the nodes. Every time a new data location is set, the data will need to be redistributed. In this

implementation, a base map is required. The base map needs to be in raster format.

Figure 24 Settings Panel

DataUiController is called when the Data button is clicked (Figure 25). It contains logic

for updating the user interface and rendering the results of the query.

29

Figure 25 Data Query Panel with Cities Data

The MapUiController is called when the Map button is clicked. It contains logic for

updating the user interface and renders the map with the class MapFragmentBuilder and the

method renderMap(). The map is rerendered each time a feature is added or removed. The

rerendering is done each time a change occurs on the map, whether the map gets resized or moved.

Panning moves the viewport of the map in the direction of the panning button that is clicked

as shown in Figure 26. The map is rerendered each time to preserve the quality of the image. The

panning buttons do not move the map if the full map is visible.

30

Figure 26 Panning Buttons

The user can zoom into the map with the appropriate magnifying glasses that are mapped to

the functions zoomReset(), zoomOut() and zoomIn(). The function zoomReset()

makes the full map visible. The function zoomIn() has a maximum level of zoom, while

zoomOut() will not zoom out further once the full map is visible.

A change listener handles resizing of the window to redraw the map to fit the dimensions. The

map is rerendered after the window is resized. There is a minimum size for the window. A timer

is built in to delay resizing, to prevent continuous rerendering as the window is dragged bigger or

smaller.

31

Chapter 4.

VERIFICATION

This chapter shows the benchmark results of both the data query and the map rendering

modules. The benchmarking was completed using multiple thread combinations over multiple

nodes, comparing the runtime of the modules.

4.1 EXECUTION ENVIRONMENT

The benchmarks were performed using up to eight computing nodes on AWS. AWS was set

up using EC2 m5.xlarge instances that run on Ubuntu Linux. These instances use Intel Xeon

Platinum 8175 3.1 GHz processors with 16 GB of memory and four virtual CPUs. The MASS

library 1.4.0 is used during benchmarking along with Java 11 OpenJDK.

A maximum of eight nodes was used as AWS limits the number of on-demand virtual cores to

32 unless more are specifically requested. This would have accrued further costs to this project.

4.2 INPUT DATA SETS

The base map raster data for demonstration and benchmarking was retrieved from Natural

Earth Data [22]. A very large vector data set is required for proper benchmarking of the program

in map rendering and data querying. This was artificially generated as a shape file with GeoTools

by creating a random vector set with a million records. The records in the file use the schema

shown in Table 1.

Table 1 Benchmark Test File Schema

Name Type Notes

the_geom Point All shape files require this field. It can be a point, line or polygon.

UUID String Unique identifier

number Integer Randomly allocated value from 0 to 1000

32

4.3 QUERYING THE DATABASE BENCHMARK

The large artificial data set is distributed across 24 Places. For benchmarking, an arbitrary

query is run to retrieve all records that have a numeric value greater than 990. This is the top 1%

of the data. A small percentage of data was chosen to ensure that only a subset of records from

each place is returned. This ensures that the benefit of having a distributed data set is realised.

The time taken to iterate over all records is measured. The results are graphed in Figure 27.

Figure 27 Data Query Benchmark Performance on AWS

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8

M
ed

ia
n

La
te

nc
y

in
 m

s

Number of Nodes

Data Query Benchmark with Equal Number of Tiles

1 Thread

2 Threads

3 Threads

4 Threads

33

The benchmarking was run with one to eight nodes, with each node run with one to four

threads. A maximum of four threads per node were chosen as the AWS m5.xlarge EC2 instances

only contain four virtual cores.

A second benchmark was run that kept the number of nodes and threads constant. It increased

the number of places the data was distributed across. This was to determine if there is a benefit to

using multiple Places per node, with only a single thread per node. The results with the trendline

are graphed in Figure 28.

Figure 28 Data Query Benchmark with Single Node and Thread

There is no benefit, but rather a slow trend to increased latency with higher place counts.

Table 2 shows the results of the query run without aggregating the results. This data

distribution is plotted in Figure 29.

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

M
ed

ia
n

La
te

nc
y

in
 m

s

Places Count

Data Query Benchmark with Single Node and Thread

34

Table 2 Data Query Benchmark Results with Single Node and Thread

Cells 1 2 3 4 5 6 7 8 9 10
1 2742 2701 2697 2714 2684 2686 2692 2715 2690 2705
2 2720 2701 2721 2703 2711 2702 2776 2693 2689 2683
3 2755 2738 2722 2704 2697 2720 2718 2725 2720 2704
4 2691 2676 2675 2673 2675 2653 2663 2679 2664 2666
5 2695 2649 2652 2651 2653 2653 2655 2725 2648 2649
6 2676 2656 2665 2656 2674 2679 2646 2662 2756 2657
7 2859 2885 2731 2722 2732 2740 2721 2724 2712 2710
8 2748 2885 2731 2678 2763 2687 2691 2701 2687 2685
9 2798 2687 2676 2963 2740 2729 2736 2744 2757 2743

10 2755 2743 2740 2690 2679 2689 2696 2675 2675 2715
11 2699 2773 2722 2673 2634 2651 2655 2661 2696 2632
12 2680 2650 2650 2657 2649 2653 2689 2673 2644 2641
13 2748 2651 2645 2722 2722 2749 2797 2744 2755 2703
14 2789 2725 2803 2746 2733 2721 2723 2726 2771 2727

Figure 29 Data Distribution for Data Query with one Node and One Thread

Places Count

M
ed

ia
n

La
te

nc
y

in
 m

s

2600

2650

2700

2750

2800

2850

2900

2950

3000

Data Query Benchmark with Single Node and Thread

1 2 3 4 5 6 7 8 9 10 11 12 13 14

35

4.4 AGENT-BASED RENDERING BENCHMARK

The large artificial data set as well as the raster data (map image) are distributed across 24

Places. Agent-based rendering is used to render the artificial vector data on top of the base map

image. The time taken to render the full map with the artificial feature is measured. The results

are graphed in Figure 30.

Figure 30 Map Rendering Benchmark Performance on AWS

The benchmarking was run with one to eight nodes, with each node run with one to four

threads. A maximum of four threads per node were chosen as the AWS m5.xlarge EC2 instances

only contain four virtual cores.

A second benchmark was run that kept the number of nodes and threads constant. It increased

the number of places the data was distributed across. This was to determine if there is a benefit to

using multiple Places per node, with only a single thread per node. The results are graphed in

Figure 31.

500

700

900

1100

1300

1500

1700

1900

2100

1 2 3 4 5 6 7 8

M
ed

ia
n

La
te

nc
y

in
 m

s

Number of Nodes

Map Rendering Benchmark with Equal Number of Places

1 Thread

2 Threads

3 Threads

4 Threads

36

Figure 31 Map Rendering Benchmark with a Single Node and Thread

Map rendering shows a significant improvement in performance with the increase in Places.

This improvement shows that the GeoTools API is more efficient when rendering small pieces of

the map and stitching them together, than when trying to process one large map.

A benchmark test with a fixed number of Places, nodes and threads was done to measure the

performance with different row and column combinations that add up to the total number of 12

Places. The combinations are shown in Table 3.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

M
ed

ia
n

La
te

nc
y

in
 m

s

Places Count

Map Render Benchmark with Single Node and Thread

37

Table 3 Map Rendering Benchmark Results

Node

Count

Thread

Count

Row

Count

Column

Count

Median

Latency(ms)

6 2 1 12 753

6 2 2 6 916

6 2 3 4 1107

6 2 4 3 1148

6 2 6 2 1055

6 2 12 1 1118

Figure 32 displays the results of the table, showing the large difference between minimal rows

with maximum columns and other combinations of rows and columns. Each node has two threads,

thus creating a total of 12 places.

Figure 32 Map Rendering Benchmark with a Constant Number of Places

753

916

1107
1148

1055

1118

700

750

800

850

900

950

1000

1050

1100

1150

1200

1
R

12
 C

2
R

6
C

3
R

4
C

4
R

3
C

6
R

2
C

12
 R

 1
 C

M
ED

IA
N

 L
AT

EN
CY

 IN
 M

S

NUMBER OF ROWS AND COLUMNS

Map Rendering Benchmark
with a Constant Number of Places

38

Different row and column combinations for dividing the image into tiles affect the performance

of map rendering, with minimal rows proving to be the optimum for performance.

4.5 USABILITY

Distributing the data, querying the data and displaying the map with features can be

accomplished with command line calls. This is however limiting as a separate command needs to

be run for each functionality. Displaying a different section of the map or adding new features

requires the command line call to be run again with new arguments. The user interface makes it

clear what functionality is available to the user and allows the user to make changes to settings

with ease.

The settings panel is a simple way for a user to select the relevant data through file choosers.

The selected data set is distributed from the user interface in the settings. The base map can be

selected in the settings as well, allowing for different types and styles of base maps.

The map section in the user interface allows visual variety, since the map can be resized,

zoomed into or zoomed out of. It is also possible to pan around the map. This functionality is not

available from the command line. It makes the user interface more efficient and simpler to use

than the command line.

Dropdowns are an easy, efficient way to show the user which features are available to add to

the base map (Figure 33). The features names are pulled from the data set that is linked in the

settings, thus only offering the available features.

Figure 33 Dropdown for Selecting Feature

39

A legend is created from features added to the map. It allows the user to easily reference the

features and their colours (Figure 34). Features can easily be removed as well, either individually

or completely cleared.

Figure 34 Adding Features to Map

As with the map functionality, the features names that can be queried, are pulled from the data

set that is linked in the settings, thus only offering the available features. Subsets of data can easily

be displayed with the use of queries. The query functionality for the data visually represents the

resulting data set that the user can manipulate through sorting the columns.

4.6 SUMMARY

Benchmarking shows that there is significant performance improvement when running over

multiple nodes, dividing the data across multiple places and by choosing a suitable tile division of

the map for rendering. This illustrates the scalability of this system compared to running this GIS

on a single machine. All benchmarks show that there is a flattening of improvement at between

seven and eight nodes. As the number of agents increase, there is a latency increase for performing

actions such as spawn and migrate. This is where the overhead of MASS becomes higher than the

Select Feature
asa

Active Features

40

benefit of multiple nodes. This point will move to higher node counts for a much larger dataset.

A limit to the number of nodes has not yet been reached.

Shape files have a 2 GB inherit limit to their individual file size as they follow the dBase file

standard [23]. The current implementation splits up shape files, so the same limit applies.

Implementing a writable data store will allow the system to move beyond this limitation by adding

more places with each place having its own 2 GB limit. It would thus add further scalability.

The FullMapBuilder and the GisDataStore abstract away that using MASS is making

calls to multiple nodes. The callers of these classes only see a single system. This, along with the

user interface create the impression that the user is working with a single system image (SSI) while

hiding the implementation across a distributed system.

The graphic user interface improves usability by allowing the user to pick pre-determined

options from an intuitive graphic interface. It helps minimise the potential for errors through visual

cues and by using elements such as drop boxes. The user can only pick available features from

the drop boxes since the features are taken from the available files. The user is prevented from

trying to add a feature that does not have a corresponding data file. The user can see exactly which

features are being used and can easily make changes to pick another feature or to remove features.

The user also has more options for navigating through the data and around the map. This makes

the user interface less restrictive than generating maps from the command line.

41

Chapter 5.

CONCLUSION

5.1 SUMMARY

This project serves as a proof of concept that a Geographic Information System (GIS) database

can be implemented as a MASS application with a notable improvement in performance and

scalability. The GIS would present as a single system image with a graphic user interface that is

scalable over multiple nodes with large datasets. The simple user interface would improve

usability, allowing the user to select features and functionality with point and click rather than

having to repeatedly run the commands from a command line.

• A working basic GIS system was created that uses MASS for data distribution. It

performs as a single system image across a distributed system.

• An interface hides the implementation with MASS from the GIS.

• MASS Agents render parts of a map, with each agent executing a piece of work in a place

on a node, sending the resulting fragment back to be combined into the completed image.

• Improved performance when using more computing nodes is shown in various

benchmarking tests.

• Usability is improved through the use of a simple graphic user interface prototype.

5.2 FUTURE DEVELOPMENT

Since the project serves as a proof of concept, there is a lot of scope in future development to

build a fully-fledged GIS over MASS.

• Mathematical functions performed with GeoTools can be converted to be performed by

Agents in MASS with MASS’s optimised functions. This includes the calculation of

distance between two points, the intersection between two line-segments and determining

properties such as point-in-polygon, point distance to lines.

42

• The GIS data store can be implemented to be writable, for further scalability and to work

around the shape file size limitation.

• The GIS can be connected to another type of agent-based system to compare performance

with this implementation with MASS.

• In benchmarking, it was found that performance was improved during map rendering by

having a minimum of rows and a maximum of columns. This behaviour should be further

investigated.

• The GIS functionality along with the user interface can be expanded to perform more

types of GIS analysis.

• Traditional GIS support multiple data formats. This implementation can be expanded to

support more formats than shape files, using GeoTools plugins. This could also include

removing the requirement for a raster base map so that the map can be rendered from a

vector file.

• The GUI is currently a prototype. The interface can be improved by verifying and testing

usability through user reviews.

• The user interface can be improved with navigation and zoom in the map rendering

section. Mouse drag and clicks can be used as alternatives to buttons to make the interface

more intuitive.

43

REFERENCES

[1] P. M. Fukuda, "MASS: A Parallelizing Library for Multi-Agent Spatial Simulation," 1
November 2021. [Online]. Available: https://depts.washington.edu/dslab/MASS/.

[2] "GIS Glossary," 2 Dec 2021. [Online]. Available:
http://wiki.gis.com/wiki/index.php/GIS_Glossary.

[3] L. Wasser, "Introduction to Coordinate Reference Systems," 12 Dec 2021. [Online].
Available: https://www.earthdatascience.org/courses/earth-analytics/spatial-data-r/intro-to-
coordinate-reference-systems/.

[4] S. Fellah, M. Desruisseaux, W. K. and A. Petkov, "Interface Coverage," 10 03 2022.
[Online]. Available:
https://docs.geotools.org/stable/javadocs/org/opengis/coverage/Coverage.html.

[5] "Feature Class," 13 Dec 2021. [Online]. Available:
http://wiki.gis.com/wiki/index.php/Feature_class.

[6] GISGeography, "The Ultimate List of GIS Formats and Geospatial File Extensions," 11
Dec 2021. [Online]. Available: https://gisgeography.com/gis-formats/.

[7] "GeoTools Documentation," 2 Dec 2021. [Online]. Available: https://docs.geotools.org/.
[8] P. Taillandie, D.-A. Vo, E. Amouroux and A. Drogoul, "GAMA : bringing GIS and multi-

level capabilities to multi-agent simulation," in European Workshop on Multi-Agent
Systems, Paris, France, 2010.

[9] "OpenGIS FAQ," 10 03 2022. [Online]. Available:
https://docs.geotools.org/stable/userguide/library/opengis/faq.html.

[10] apache.org, "Maven," Apache Maven Project, 2022. [Online]. Available:
https://maven.apache.org/pom.html. [Accessed 24 March 2022].

[11] NASA, "Blue Marble," 12 03 2022. [Online]. Available:
https://visibleearth.nasa.gov/collection/1484/blue-marble.

[12] "ArcMap," 2 Dec 2021. [Online]. Available:
https://desktop.arcgis.com/en/arcmap/10.3/manage-data/coverages/what-is-a-coverage.htm.

[13] "Tutorials," 12 11 2021. [Online]. Available:
https://docs.geotools.org/latest/userguide/tutorial/index.html.

[14] S. Gokulramkumar, "Agent Based Parallelization of Computational Geometry
Algorithms," Seattle, Washington, 2020.

[15] X. Li, "Agent-Based Parallelization of a Multi-Dimensional Semantic Database Model,"
2021.

[16] S. Paronyan, "Agent-Based Computational Geometry," Seattle, Washington, 2021.
[17] Z. Zhang, S. Zhang and C. Zhang, "An Agent-Based Hybrid Framework for Database

Mining," Applied Artificial Intelligence, pp. 383-398, 2003.
[18] M. Batty and B. Jiang, "Multi-Agent Simulation: New Approaches to Exploring Space-

Time Dynamics Within GIS," Centre for Advanced Spatial Analysis, London, 1998.

44

[19] Y. Peng, L. Meng and C. Lin, "Research on Coupling GIS and Multi-agent of Spatial
Information," in Second International Conference on Networks Security, Wireless
Communications and Trusted Computing, 2010.

[20] D. G. Brown, R. Riolo, D. T. Robinson, M. North and W. Rand, "Spatial process and data
models: Toward integration of agent-based models and GIS," Journal of Geographical
Systems, pp. 25-47, 2005.

[21] R. C. Martin, Clean Code, Upper Saddle River, NJ: Pearson Education, Inc., 2009.
[22] S. Reges and M. Stepp, Building Java Programs A Basics to Basics Approach, Hoboken,

NJ: Pearson, 2016.
[23] V. G. Cerf, "Loose Couplings," IEEE internet computing, p. 96, 03 2013.

ICONS

Nature Vectors by Vecteezy. (2022, 03 15). Retrieved from Vecteezy:
https://www.vecteezy.com/free-vector/nature

45

APPENDIX A: DEFINITIONS

A.1. MULTI-AGENT SPATIAL SIMULATION

The MASS (multi-agent spatial simulation) library is an agent-based programming paradigm

in Java, C++, and CUDA. It performs multi-agent and spatial simulation over a cluster of

computing nodes using parallelisation. This parallel big data analysis is applicable to various

scientific fields, including environmental data science, bioinformatics and space cognition. Places,

which are mapped to threads, and Agents, which are mapped to individual processes, are key parts

of MASS [3].

A.2. IMAGE FILE FORMATS

A.2.1. GeoTiff

Raster format image file with data contained in tiff. The data includes the coordinate reference

system as well as the envelope of the image.

A.2.2. WorldFile

Tiff raster image file with sidecar files that contain data. The data includes the coordinate

reference system as well as the envelope of the image.

A.3. POSTGIS

PostGIS is an open-source software program implemented as an external extender for

PostgreSQL object-relational database. PostGIS adds support for geographic objects to the

database by running location queries in SQL [24].

46

APPENDIX B: INSTALLATION AND TESTING

Currently the code is set up to run on the cssmpi servers at UW Bothell. The repository

(https://bitbucket.org/mass_application_developers/mass_java_appl/src/master/) needs to be

cloned on one of these servers. Create a folder on the primary server and clone the code to this

folder. Currently the code exists in the msieling-gis-database branch.

Each functional element of the program can be run independently. Refer to the Maven and the

pom.xml file section of this document for instructions on modifying the pom.xml file to run

individual functionality.

Follow the next steps.

B.1. SETTING UP NODES

The servers and nodes are defined in the nodes.xml file. Note that there are various versions

of this file. The specific one is located in the ..\mass_java_appl\Applications\gis_database

folder. Set up the required servers in this file. Example 1 has two nodes set up.

.ssh private key
To set up the file, the user first needs to define an .ssh key. In this example the key is of type

id-rsa. Instructions on how to create a private key are in the MASS user guide.

hostname
Each host name refers to a server to be used.

masshome
This is the location of the project jar (after running mvn package).

username
The username needed to log into the host

Example: The following code shows a sample node.xml file.

47

<nodes>

 <node>
 <master>true</master>
 <hostname>cssmpi8h</hostname>
 <masshome>~/capstone/mass_java_appl/Applications/gis_database/target/</masshome>
 <username>msieli</username>
 <privatekey>~/.ssh/id_rsa</privatekey>
 <port>22123</port>
 </node>

 <node>
 <hostname>cssmpi7h</hostname>
 <masshome>~/capstone/mass_java_appl/Applications/gis_database/target/</masshome>
 <username>msieli</username>
 <privatekey>~/.ssh/id_rsa</privatekey>
 <port>22123</port>
 </node>

</nodes>

B.2. BUILDING THE PACKAGE WITH MAVEN

Run mvn package in the ..\mass_java_appl\Applications\gis_database folder. This will create

a target folder.

B.3. DATA FILES

The data files include all the relevant feature and image files (*.TIFF,*.SHP, *.DBF,

*.SHX, etc.). Copy these data files into the input folder. Java uses relative referencing. When

running the program, it will look for this input folder relative to the target folder unless an

absolute path is used.

B.4. MAVEN AND THE POM.XML FILE

Various changes had to be made to the pom file to include GeoTools dependencies.

Originally a very large jar would be created that included all the dependencies by unpacking

their respective jars and putting their class and config files into the large jar. This caused conflicts

since many files had the same names, specifically many of the metadata files. By leaving the

dependency jars separate, this problem was avoided.

Example: The following code shows the changes to the pom.xml file.

48

<!-- Make this jar executable -->
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>jar</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <archive>
 <manifest>
 <addClasspath>true</addClasspath>
 <mainClass>edu.uw.bothell.css.dsl.mass.apps.gisdatabase.App</mainClass>
 <classpathPrefix>dependency-jars/</classpathPrefix>
 </manifest>
 </archive>
 </configuration>
</plugin>

<!-- Copy project dependency -->
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <executions>
 <execution>
 <id>copy-dependencies</id>
 <phase>package</phase>
 <goals>
 <goal>copy-dependencies</goal>
 </goals>
 <configuration>
 <includeScope>runtime</includeScope>
 <outputDirectory>${project.build.directory}/dependency-jars/</outputDirectory>
 </configuration>
 </execution>
 </executions>
</plugin>

Refer to the section B.7 (Running the program) in this document for instructions on optional

changes to the pom.xml file to prove different functionality.

B.5. DATABASE FUNCTION

The database works with flat files. It distinguishes between both image and feature (data) files.

When the data is divided, files that are related (e.g. *.SHP, *.DBF and *.SHX) are stored together.

The data files (base maps and feature files) need to be stored in the input folder in the

gis_database folder (Figure 35) for the data to be found to be divided amongst nodes. These files

will only be referenced in the initial division of data. The tiles created after division will be located

in the tmp folder on the respective nodes.

49

Figure 35 Feature files and base map files in the input folder

The build configuration (Figure 36) and run configuration differ with regards to the file

structure. The pom.xml file to run the maven build in, is located in the gis_database folder. The

build is completed with the command mvn package run in the gis_database folder.

Figure 36 Structure of java file source

The build creates a target folder in gis_database if it does not exist and creates the necessary

files for the run configuration. This folder includes the nodes.xml file. The nodes.xml file is not

generated. The user needs to ensure that it exists.

Figure 37 Run configuration: files created after build

50

The command to run the program needs to be run from the target folder:
java -jar gis_database-1.0-SNAPSHOT.jar

B.6. TESTING WITH MOCKITO

Unit tests are done with Mockito and JUnit.

Example: The following code uses mocks to test if the iterator returns a record if there is

another record.

@Test
public void getNext_trueHasNext_returnRecord() throws Exception {

SimpleFeature simpleFeatureMock = Mockito.mock(SimpleFeature.class);
Mockito.when(simpleFeatureIteratorMock.hasNext()).thenReturn(true);
Mockito.when(simpleFeatureIteratorMock.next()).thenReturn(simpleFeatureMock);
Mockito.when(simpleFeatureMock.getAttributeCount()).thenReturn(1);
Mockito.when(simpleFeatureMock.getAttribute(Mockito.anyInt())).thenReturn("test");
FeatureRecordReader featureReader = new FeatureRecordReader(

 TestHelper.getFeatureQueryArgs(),
 1,
 2,
 "dummyFolder"
);

FeatureRecord featureRecord = featureReader.getNext();
assertNotNull(featureRecord);
assertEquals(1, featureRecord.getAttributes().size());
assertEquals("test", featureRecord.getAttributes().get(0));

}

B.7. RUNNING THE PROGRAM

The program can be run with the user interface as a complete system or with individual

functionality from the command line for each software feature.

A basic user interface to show proof of concept allows a user to load a map, select an area and

load selected features for this area. These features are rendered on top of the map and displayed

to the user. Each functionality can also be tested separately by making the appropriate changes to

the pom file in the root directory (by changing the mainClass).

As this Java application is a Maven project, it requires a Project Object Model (pom.xml) file

to be compiled [25]. This file contains the configuration details so the project can access code it

is dependent on that is part of other projects. MASS is also included in the project through the

pom file as a dependency.

The number of nodes used in the program are defined by the node.xml file. This file is used

by MASS and requires at least one node.

51

The base map and feature files for this program needs to be stored in the same folder.

B.7.1. Individual Functionality: Send Data to Places

Distributing the data amongst places is a separate process to retrieving the data. When the base

map and data file locations are changed, the data is redistributed amongst the nodes. These

locations need to be defined before running the application the first time.

The mainClass in the pom file needs to be changed to

<mainClass>
 edu.uw.bothell.css.dsl.mass.apps.gisdatabase.dataimport.App
</mainClass>

B.7.2. Individual Functionality: Get Data from Places

A query utility is included to filter the feature data which the user can use to receive results as

text in a table format. The query returns everything if the query term is include.

Example: The mainClass in the pom file needs to be changed to

<mainClass>

 edu.uw.bothell.css.dsl.mass.apps.gisdatabase.datastore.AppRetrieve

</mainClass>

The GisDataStore (C.1 GisDataStore.java) is responsible for the following:

• Instantiates places

• List of supported features

• Creates GISFeatureSource (C.4 GisFeatureSource.java)for a selected feature

The program supports any features depending on the shape files it is given. The currently

included files are for features such as cities and country borders. The cities feature would contain

attributes such as population size, city name, country, state and location. While the feature files

(shape files) are in the correct folder, the program will recognise them and add them to the list.

Further shape files can be downloaded from numerous online sources.

52

The GISFeatureSource (C.4 GisFeatureSource.java) constructs instances of the

GISFeatureReader (C.7 GisFeatureReader.java) for the source according to the input query

parameters (Table 4 Sample query parameters). It also provides an indicator for the number of

records for a given query. Included is a schema of the feature.

Table 4 Sample query parameters

Query Result

include All data
CNTRY_NAME=’CANADA’ All rows where the country name matches `Canada`
BBOX(the_geom,110,-45,155,-10) Rows where the coordinates fall inside the bounding box

The schema of a feature is the names of the columns as well as their data types. This could

include population size as a number, city name as a string, and location as a coordinate point.

B.7.3. Individual Functionality: Render a Subsection of the Base Map

Currently the values for this test are hard coded to render a subsection of the map. After

running the program, a .tiff file is created with the features included on top of the subsection of the

base map. This is stored in the root folder of gis_database. This functionality was kept in the

example to show the contrast with agent-based rendering. It can thus be made to be variable. In

B.7.4 when using agents to render the fragments, the functionality is updated and the subsections

are determined by the user.

Example: The mainClass in the pom file needs to be changed to

<mainClass>
 edu.uw.bothell.css.dsl.mass.apps.gisdatabase.mapmaker.TestRender
</mainClass>

B.7.4. Individual Functionality: Render Subsection of the Base Map with

Agents

The query values for this example are hard coded to render a subsection of the map by using

agents. After running the program, a .TIFF file will be created with the features included on top

of the subsection of the base map. The sample application will use this same functionality to allow

the user to render the map they are interested in.

53

The mainClass in the pom file needs to be changed to

<mainClass>edu.uw.bothell.css.dsl.mass.apps.gisdatabase.mapmaker.TestAgentsRenderMap</mainClass>

B.7.5. Full Functionality: User Interface

The interface is created with JavaFX and FXML.

Example: The mainClass in the pom file needs to be changed to

<mainClass>edu.uw.bothell.css.dsl.mass.apps.gisdatabase.ux.UiLauncher</mainClass>

The user interface combines all the functionalities. The folder with the data can be selected in

settings. The folder name is stored. The same can be done with the base map. This functionality

includes dividing the data amongst the nodes. The data can be retrieved via a query. It is displayed

in a table. The sub map can be retrieved and displayed. Further functionality includes

customisable features, panning over the map and zoom in and zoom out functionality.

Definition JavaFX is an open-source platform to develop user interfaces in Java. It

serves as an alternative to Swing. It uses FXML to define the user interface visual components.

Definition FXML is a markup language to define the look and feel of a user interface.

It defines containers and objects as well as the size of the object (Figure 38). Program logic is thus

kept separate from the design.

A <Label fx:id="queryLabel" layoutX="25.0" layoutY="80.0" text="Query" />

Figure 38 Label FXML definition

The tool SceneBuilder works with FXML to allow for some drag and drop functionality in

building the interface. The interface created in SceneBuilder is saved as an FXML file. Controller

settings (Figure 39) connects the relevant program logic to the FXML file.

54

Figure 39 Controller class setting

B.7.6. Running the Command Line Arguments

Ensure that the package has been built with Maven. Navigate to the target folder.

Send Data to Places

Run java -jar gis_database-1.0-SNAPSHOT.jar -f <folder name>

Arguments
-f <foldername> (required) set the name of the data folder/ file
-htc <number> (optional) set the number of horizontal tiles
-vtc <number> (optional) set the number of vertical tiles

Get Data from Places / Render Subsection of Map
(with and without Agents)

Run java -jar gis_database-1.0-SNAPSHOT.jar

55

Application with User Interface

Run java -Dprism.order=sw -Djdk.gtk.version=2 -jar gis_database-1.0-SNAPSHOT.jar

B.8. VALIDATING RESULTS

The database files are in the /tmp/gisdata folder on each server. As the tmp folders are

unique to each cssmpi server, each server will contain different files, making it easier to validate

the accurate division and distribution of the files.

The log files will show the execution steps. (The log file can be found by opening the ~ (tilde)

folder inside the target folder and navigating through all the subsequent folders to the text file.

Note the path in Figure 40.) Logs will indicate if the process completed successfully. It also logs

the mapping of the data to the places.

Figure 40 Example of a successful log file

56

APPENDIX C: CODE

C.1. GISDATASTORE.JAVA

public class GisDataStore extends ContentDataStore { 1

 2

 private final Places places; 3

 4

 // Get all the features - indicated by the file names 5

 public GisDataStore(Places places) { 6

 this.places = places; 7

 } 8

 9

 /** 10

 * Remove everything from the first period. 11

 * 12

 * @param filename filename to trim 13

 * @return filename without extension / index 14

 */ 15

 private String trimFileName(String filename) { 16

 return filename.split("\\.")[0]; 17

 } 18

 19

 /** 20

 * Get list of .shp files 21

 * 22

 * @return list of .shp files in source folder 23

 */ 24

 private File[] getShapeFileList() { 25

 FileFilter fileFilter = new FileFilter() { 26

 public boolean accept(File file) { 27

 return (file.getName().endsWith(".shp")); 28

 } 29

 }; 30

 File inputFolder = new File(Constants.SOURCE_FOLDER); 31

 return inputFolder.listFiles(fileFilter); 32

 } 33

 34

 /** 35

 * Get list of features 36

 */ 37

 @Override 38

 protected List<Name> createTypeNames() throws IOException { 39

 Set<Name> featureSet = new HashSet<>(); // prevent duplicates 40

 41

 File[] files = getShapeFileList (); 42

 43

 for (File file : files) { 44

 featureSet.add(new NameImpl(trimFileName(file.getName()))); 45

 } 46

 return new ArrayList<>(featureSet); 47

 } 48

 49

 @Override 50

 protected ContentFeatureSource createFeatureSource(ContentEntry entry) throws IOException { 51

 return new GisFeatureSource(entry, Query.ALL, places); 52

 } 53

 54

}55

57

C.2. GISDATASTOREFACTORY.JAVA

private void createOrGetPlaces(GisConfig gisConfig) { 1

 if (this.places == null) { 2

 synchronized (lock) { 3

 if (this.places == null) { 4

 this.places = new Places(5

 1, // handle for places 6

 GisDataPlace.class.getName(), // places class name 7

 null, 8

 // constructor arg 9

 gisConfig.getNumberOfHorizontalTiles(), // size of first dimension 10

 gisConfig.getNumberOfVerticalTiles()); // size of second dimension 11

 GisLog.logMessage("Created Places!"); 12

 } 13

 } 14

 } 15

}16

C.3. GISDATAPLACE.JAVA

public class GisDataPlace extends Place { 1
 2
 private static final long serialVersionUID = -3581731224030296274L; 3
 public static final int OPEN_READER = 0; 4

 public static final int SAVE_MAP_IMAGE = 1; 5
 public static final int SAVE_FEATURE = 2; 6
 public static final int QUERY_FEATURE = 3; 7
 public static final int READ_NEXT_RECORD = 4; 8
 public static final int CLOSE_READER = 5; 9
 public static final int RENDER_MAP_FRAGMENT = 6; 10

 11
 private FeatureDataLoader featureDataLoader; 12
 private FeatureDataSaver featureDataSaver; 13
 private MapImageSaver mapImageSaver; 14
 private FeatureRecordReaderFactory featureRecordReaderFactory; 15
 16
 /** 17

 * Set to print to logs 18
 19
 static { 20
 System.setErr(new PrintStream(new StreamLogger(MASS.getLogger(), true))); 21
 System.setOut(new PrintStream(new StreamLogger(MASS.getLogger(), false))); 22
 }*/ 23

 24
 /** 25
 * Default constructor 26
 * 27
 * @param arg 28
 */ 29
 public GisDataPlace(Object arg) { 30

 super(); 31
 this.featureDataLoader = new FeatureDataLoader(Constants.SOURCE_FOLDER); 32
 this.featureDataSaver = new FeatureDataSaver(Constants.SOURCE_FOLDER); 33
 this.mapImageSaver = new MapImageSaver(Constants.SOURCE_FOLDER); 34
 this.featureRecordReaderFactory = new FeatureRecordReaderFactory(Constants.SOURCE_FOLDER); 35
 } 36
 37

 /** 38
 * Calls the correct method to save the file depending on the type of data the 39
 * file contains. (Image vs Feature) 40
 * 41
 * @param functionID which save function (image vs feature) 42
 * @param argument data to save 43

 */ 44
 @Override 45
 public Object callMethod(int functionId, Object argument) { 46
 switch (functionId) { 47
 case OPEN_READER: 48
 try { 49

58

 this.featureRecordReaderFactory 50
 .create((FeatureQueryArgs) argument, this.getIndex()[0], this.getIndex()[1]); 51
 } catch (Exception e) { 52
 GisLog.logException(e); 53

 } 54
 break; 55
 case SAVE_MAP_IMAGE: 56
 this.mapImageSaver.saveMapImage((ImageTileData) argument, this.getIndex()[0], this.getIndex()[1]); 57
 break; 58
 case SAVE_FEATURE: 59

 this.featureDataSaver.saveFeature((FeatureData) argument); 60
 break; 61
 case QUERY_FEATURE: 62
 return this.featureDataLoader.getFeatureRecords(63
 (FeatureQueryArgs) argument, 64
 this.getIndex()[0], 65
 this.getIndex()[1]); 66

 case READ_NEXT_RECORD: 67
 FeatureRecordReader featureRecordReader = this.featureRecordReaderFactory 68
 .getReaderInstance((UUID) argument); 69
 return featureRecordReader.getNext(); 70
 case CLOSE_READER: 71
 FeatureRecordReader featureRecordReaderToClose = this.featureRecordReaderFactory 72
 .getReaderInstance((UUID) argument); 73

 featureRecordReaderToClose.close(); 74
 break; 75
 case RENDER_MAP_FRAGMENT: 76
 try { 77
 if (argument == null) { //place doesn't have what I need 78
 GisLog.logMessage("Null args at " + Arrays.toString(this.getIndex())); 79

 return null; 80
 } 81
 GisLog.logMessage("Building fragment at " + Arrays.toString(this.getIndex())); 82
 IMapBuilder mapFragmentBuilder = new MapFragmentBuilder((MapRenderingArgs) argument); 83
 return mapFragmentBuilder.renderMap(); 84
 } catch (Exception e) { 85
 StringWriter stringWriter = new StringWriter(); 86

 PrintWriter printWriter = new PrintWriter(stringWriter); 87
 e.printStackTrace(printWriter); 88
 return stringWriter.toString(); 89
 } 90
 default: 91
 break; 92

 } 93
 return null; 94
 } 95
}96

C.4. GISFEATURESOURCE.JAVA

protected SimpleFeatureType buildFeatureType() throws IOException { 1

 String featureName = this.entry.getName().getLocalPart(); 2

 FileFilter fileFilter = new FileFilter() { 3

 public boolean accept(File file) { 4

 return (file.getName().startsWith(featureName) && file.getName().endsWith(".shp")); 5

 } 6

 }; 7

 8

 File inputFolder = new File(Constants.SOURCE_FOLDER); 9

 File[] files = inputFolder.listFiles(fileFilter); 10

 11

 FileDataStore fdStore = null; 12

 try { 13

 fdStore = FileDataStoreFinder.getDataStore(files[0]); 14

 SimpleFeatureSource featureSource = fdStore.getFeatureSource(); 15

 return featureSource.getSchema(); 16

 } 17

 finally { 18

 if (fdStore != null) { 19

 fdStore.dispose(); 20

 } 21

59

 } 22

} 23

 24

60

C.5. IMAGETILEDATA.JAVA

public class ImageTileData implements Serializable { 1

 2

 private static final long serialVersionUID = 3306801116392230899L; 3

 public byte[] image; 4

 public String fileExtension; 5

 public String filename; 6

 7

 /** 8

 * Default constructor 9

 */ 10

 public ImageTileData() { 11

 } 12

 13

 14

 /** 15

 * Parameterised constructor 16

 * 17

 * @param image 18

 * @param fileExtension 19

 * @param filename 20

 */ 21

 public ImageTileData(byte[] image, String fileExtension, String filename) { 22

 this.image = image; 23

 this.fileExtension = fileExtension; 24

 this.filename = filename; 25

 } 26

}27

61

C.6. FEATURERECORDREADER.JAVA

public class FeatureRecordReader { 1

 2

 private FileDataStore store; 3

 private SimpleFeatureIterator simpleFeatureIterator; 4

 private UUID id; 5

 6

 public FeatureRecordReader (FeatureQueryArgs featureQueryArgs, int row, int column, String 7

sourceFolderName) throws Exception { 8

 this.id = featureQueryArgs.getId(); 9

 10

 String fileName = getFileName(sourceFolderName, featureQueryArgs.getFeatureName(), row, column); 11

 store = FileDataStoreFinder.getDataStore(new File(fileName)); 12

 SimpleFeatureSource featureSource = store.getFeatureSource(); 13

 14

 SimpleFeatureCollection collection = 15

featureSource.getFeatures(CQL.toFilter(featureQueryArgs.getQueryCondition())); 16

 17

 //open file 18

 simpleFeatureIterator = collection.features(); 19

 } 20

 21

 public UUID getId() { 22

 return id; 23

 } 24

 25

 public FeatureRecord getNext() { 26

 if (!simpleFeatureIterator.hasNext()) { 27

 MASS.getLogger().debug("No next record"); 28

 return null; 29

 } 30

 SimpleFeature simpleFeature = simpleFeatureIterator.next(); 31

 FeatureRecord featureRecord = new FeatureRecord(); 32

 for (int i = 0; i < simpleFeature.getAttributeCount(); i++) { 33

 featureRecord.add(simpleFeature.getAttribute(i)); 34

 } 35

 return featureRecord; 36

 } 37

 38

 public void close() { 39

 if (simpleFeatureIterator != null) { 40

 simpleFeatureIterator.close(); 41

 } 42

 43

 if (store != null) { 44

 store.dispose(); 45

 } 46

 } 47

 48

 /** 49

 * Gets full path of file name. 50

 * 51

 * @param featureName feature that defines file name 52

 * @return absolute path of file 53

 */ 54

 private String getFileName(String sourceFolderName, String featureName, int row, int column) { 55

 File tileDirectory = new File(sourceFolderName); 56

 String featureFileName = featureName + ".shp" + row + "_" + column; 57

 File featureFile = new File(tileDirectory, featureFileName + ".shp"); 58

 GisLog.logMessage("Attempting to load: " + featureFile.getAbsolutePath()); 59

 if (!featureFile.exists()) { 60

 System.out.println("File not found!"); 61

 } 62

 return featureFile.getAbsolutePath(); 63

 } 64

62

}65

 	

63

C.7. GISFEATUREREADER.JAVA

public class GisFeatureReader implements FeatureReader<SimpleFeatureType, SimpleFeature> { 1
 2

 /** State used when reading file */ 3
 private final ContentState state; 4
 private final Places places; 5
 private final FeatureQueryArgs featureQueryArgs; 6
 private final Queue<FeatureRecord> buffer; 7
 8
 /** 9

 * @param state 10
 * @param query 11
 * @param places 12
 */ 13
 public GisFeatureReader(ContentState state, Query query, Places places) { 14
 this.state = state; 15

 this.places = places; 16
 this.featureQueryArgs = new FeatureQueryArgs(state.getEntry().getName().getLocalPart(), 17
CQL.toCQL(query.getFilter())); 18
 19
 this.places.callAll(GisDataPlace.OPEN_READER, constructArgs(this.featureQueryArgs)); 20
 21
 this.buffer = new LinkedList<>(); 22

 23
 refreshBuffer(); 24
 } 25
 26
 private Object[] constructArgs(Object obj) { 27
 Object[] objects = new Object[places.getSize()[0] * places.getSize()[1]]; 28

 for (int i = 0; i < objects.length; i++) { 29
 objects[i] = obj; 30
 } 31
 32
 return objects; 33
 } 34
 35

 private void refreshBuffer() { 36
 Object[] results = places.callAll(GisDataPlace.READ_NEXT_RECORD, constructArgs(this.featureQueryArgs.getId())); 37
 for (Object record : results) { 38
 if (record != null) { 39
 this.buffer.add((FeatureRecord) record); 40
 } 41
 } 42

 } 43
 44
 @Override 45
 public SimpleFeatureType getFeatureType() { 46
 return state.getFeatureType(); 47
 } 48

 49
 @Override 50
 public SimpleFeature next() throws IOException, IllegalArgumentException, NoSuchElementException { 51
 FeatureRecord next = this.buffer.poll(); 52
 if (this.buffer.isEmpty()) { 53
 refreshBuffer(); 54
 } 55

 SimpleFeatureBuilder featureBuilder = new SimpleFeatureBuilder(getFeatureType()); 56
 57
 next.getAttributes().stream().forEach(a -> featureBuilder.add(a)); 58
 59
 return featureBuilder.buildFeature(null); 60
 } 61

 62
 @Override 63
 public boolean hasNext() throws IOException { 64
 return !this.buffer.isEmpty(); 65
 } 66
 67
 @Override 68

 public void close() throws IOException { 69
 places.callAll(GisDataPlace.CLOSE_READER, constructArgs(this.featureQueryArgs.getId())); 70
 } 71
 72

 	

64

C.8. FEATUREDATALOADER.JAVA

public List<FeatureRecord> getFeatureRecords(FeatureQueryArgs featureQueryArgs, int row, int column) { 1

 List<FeatureRecord> featureRecordList = new ArrayList<FeatureRecord>(); 2

 String fileName = getFileName(featureQueryArgs.getFeatureName(), row, column); 3

 FileDataStore store = null; 4

 SimpleFeatureIterator simpleFeatureIterator = null; 5

 6

 try { 7

 Filter filter = CQL.toFilter(featureQueryArgs.getQueryCondition()); 8

 store = FileDataStoreFinder.getDataStore(new File(fileName)); 9

 SimpleFeatureSource featureSource = store.getFeatureSource(); 10

 SimpleFeatureCollection collection = featureSource.getFeatures(filter); 11

 simpleFeatureIterator = collection.features(); 12

 13

 while (simpleFeatureIterator.hasNext()) { 14

 SimpleFeature simpleFeature = simpleFeatureIterator.next(); 15

 FeatureRecord featureRecord = new FeatureRecord(); 16

 for (int i = 0; i < simpleFeature.getAttributeCount(); i++) { 17

 featureRecord.add(simpleFeature.getAttribute(i)); 18

 } 19

 featureRecordList.add(featureRecord); 20

 } 21

 22

 } catch (Exception e) { 23

 GisLog.logException(e); 24

 } finally { 25

 simpleFeatureIterator.close(); 26

 store.dispose(); 27

 } 28

 return featureRecordList; 29

 }30

Code runs on places

65

C.9. TILER.JAVA

public ImageTileData[][] getTiles() throws IllegalArgumentException, IOException { 1

 GisLog.logMessage("Attempting to process " + this.inputFile.getAbsolutePath()); 2

 ImageTileData[][] imageArgs = null; 3

 AbstractGridFormat format = GridFormatFinder.findFormat(this.inputFile); 4

 String fileExtension = this.getFileExtension(this.inputFile); 5

 6

 // working around a feature in geotiff loading via format.getReader which 7

 // sets the axis in reverse 8

 Hints hints = null; 9

 if (format instanceof GeoTiffFormat) { 10

 hints = new Hints(Hints.FORCE_LONGITUDE_FIRST_AXIS_ORDER, Boolean.TRUE); 11

 } 12

 13

 GridCoverage2DReader gridReader = format.getReader(this.inputFile, hints); 14

 GridCoverage2D gridCoverage; 15

 16

 gridCoverage = gridReader.read(null); // get everything 17

 Envelope2D coverageEnvelope = gridCoverage.getEnvelope2D(); 18

 double geographicTileWidth = (Constants.MAX_X - Constants.MIN_X) 19

 / (double) gisConfig.getNumberOfHorizontalTiles(); 20

 double geographicTileHeight = (Constants.MAX_Y - Constants.MIN_Y) 21

 / (double) gisConfig.getNumberOfVerticalTiles(); 22

 23

 CoordinateReferenceSystem targetCRS = gridCoverage.getCoordinateReferenceSystem(); 24

 25

 // iterate over the tile counts 26

 imageArgs = new 27

ImageTileData[gisConfig.getNumberOfHorizontalTiles()][gisConfig.getNumberOfVerticalTiles()]; 28

 for (int i = 0; i < gisConfig.getNumberOfHorizontalTiles(); i++) { 29

 for (int j = 0; j < gisConfig.getNumberOfVerticalTiles(); j++) { 30

 31

 GisLog.logMessage("Processing tile at indices i: " + i + " and j: " + j); 32

 // create the envelope of the tile 33

 Envelope envelope = getTileEnvelope(34

 Constants.MIN_X, 35

 Constants.MIN_Y, 36

 geographicTileWidth, 37

 geographicTileHeight, 38

 targetCRS, 39

 i, 40

 j); 41

 42

 GridCoverage2D finalCoverage = cropCoverage(gridCoverage, envelope); 43

 44

 if (this.gisConfig.getTileScale() != GisConfig.DEFAULT_SCALE) { 45

 finalCoverage = scaleCoverage(finalCoverage); 46

 } 47

 48

 ByteArrayOutputStream os = new ByteArrayOutputStream(); 49

 50

 // use the AbstractGridFormat's writer to write out the tile to the byte array 51

 // output stream 52

 format.getWriter(os).write(finalCoverage, (GeneralParameterValue[]) null); 53

 54

 imageArgs[i][j] = new ImageTileData(os.toByteArray(), fileExtension, 55

this.inputFile.getName()); 56

 } 57

 } 58

 return imageArgs; 59

}60

 	

66

C.10. FULLMAPBUILDER.JAVA

public BufferedImage renderMapToImage() throws IOException, InterruptedException { 1
 WorldGrid worldGrid = new WorldGrid(gisConfig); 2

 3
 int startX = 0; 4
 int endX = gisConfig.getNumberOfHorizontalTiles() - 1; 5
 int startY = 0; 6
 int endY = gisConfig.getNumberOfVerticalTiles() - 1; 7
 8
 // find cells that contain the corner points of the image to be rendered 9

 for (int i = 0; i < gisConfig.getNumberOfHorizontalTiles(); i++) { 10
 Bounds cellBounds = worldGrid.getCellBounds(i, 0); 11
 if (cellBounds.getMinX() < mapRenderingArgs.getBounds().getMinX() 12
 && cellBounds.getMaxX() > mapRenderingArgs.getBounds().getMinX()) { 13
 startX = i; 14
 } else if (cellBounds.getMinX() < mapRenderingArgs.getBounds().getMaxX() 15

 && cellBounds.getMaxX() > mapRenderingArgs.getBounds().getMaxX()) { 16
 endX = i; 17
 } 18
 } 19
 for (int j = 0; j < gisConfig.getNumberOfVerticalTiles(); j++) { 20
 Bounds cellBounds = worldGrid.getCellBounds(0, j); 21
 if (cellBounds.getMinY() < mapRenderingArgs.getBounds().getMinY() 22

 && cellBounds.getMaxY() > mapRenderingArgs.getBounds().getMinY()) { 23
 startY = j; 24
 } else if (cellBounds.getMinY() < mapRenderingArgs.getBounds().getMaxY() 25
 && cellBounds.getMaxY() > mapRenderingArgs.getBounds().getMaxY()) { 26
 endY = j; 27
 } 28

 } 29
 30
 // build list of relevant cells that agents will migrate to 31
 Cell[] cellList = new Cell[(endX - startX + 1) * (endY - startY + 1)]; 32
 int cellIndex = 0; 33
 34
 MapRenderingArgs[] subMapRenderingArgs = new MapRenderingArgs[(endX - startX + 1) * (endY - startY + 1)]; 35

 36
 for (int i = startX; i <= endX; i++) { 37
 for (int j = startY; j <= endY; j++) { 38
 // places agent needs to migrate to so it can find right cells (cells and places 39
 // are equivalent) 40
 cellList[cellIndex] = new Cell(i, j); 41
 42

 Bounds bounds = worldGrid.getCellBounds(i, j); 43
 double minX = Math.max(mapRenderingArgs.getBounds().getMinX(), bounds.getMinX()); 44
 double minY = Math.max(mapRenderingArgs.getBounds().getMinY(), bounds.getMinY()); 45
 46
 double maxX = Math.min(mapRenderingArgs.getBounds().getMaxX(), bounds.getMaxX()); 47
 double maxY = Math.min(mapRenderingArgs.getBounds().getMaxY(), bounds.getMaxY()); 48

 49
 subMapRenderingArgs[cellIndex] = new MapRenderingArgs(50
 "/tmp/gisdata/" + mapRenderingArgs.getImageFilename() + i + "_" + j + ".tif", 51
 (int) (degreeToPixelRatio() * (maxX - minX)), 52
 new Bounds(minX, minY, maxX, maxY)); 53
 54
 for (MapRenderingFeatureArg featureArg : mapRenderingArgs.getMapFeatureArgs()) { 55

 subMapRenderingArgs[cellIndex].addMapFeatureArg(56
 "/tmp/gisdata/" + featureArg.getFeatureName() + ".shp" + i + "_" + j + ".shp", 57
 featureArg.getColor()); 58
 } 59
 cellIndex++; 60
 } 61

 } 62
 63
 agents.callAll(RenderMapAgent.SPAWN, new Object[] { cellList }); 64
 agents.manageAll(); 65
 System.out.println("ManageAll after SPAWN called"); 66
 67
 agents.callAll(RenderMapAgent.MIGRATE); 68

 System.out.println("MIGRATE called"); 69
 agents.manageAll(); 70
 System.out.println("ManageAll after MIGRATE called"); 71
 72
 Object[] results = (Object[]) agents.callAll(RenderMapAgent.RENDER, subMapRenderingArgs); 73
 agents.manageAll(); 74

67

 75
 int horizontalTiles = endX - startX + 1; 76
 int verticalTiles = endY - startY + 1; 77
 BufferedImage[][] fragments = new BufferedImage[horizontalTiles][verticalTiles]; 78

 int totalWidth = 0; 79
 int totalHeight = 0; 80
 int counter = 0; 81
 for (int i = 0; i < horizontalTiles; i++) { 82
 totalHeight = 0; 83
 for (int j = 0; j < verticalTiles; j++) { 84

 fragments[i][j] = toBufferedImage(results[counter]); 85
 totalHeight += fragments[i][j].getHeight(); 86
 counter++; 87
 } 88
 totalWidth += fragments[i][0].getWidth(); 89
 } 90
 91

 BufferedImage combinedImage = new BufferedImage(totalWidth, totalHeight, BufferedImage.TYPE_INT_ARGB); 92
 93
 Graphics2D g = combinedImage.createGraphics(); 94
 95
 int pixelX = 0; 96
 int pixelY = 0; 97
 98

 for (int i = 0; i < horizontalTiles; i++) { 99
 int columnWidth = 0; 100
 for (int j = verticalTiles - 1; j >= 0; j--) { 101
 if (fragments[i][j] != null) { 102
 g.drawImage(fragments[i][j], pixelX, pixelY, null); 103
 pixelY += fragments[i][j].getHeight(); 104

 columnWidth = fragments[i][j].getWidth(); 105
 } 106
 } 107
 pixelY = 0; 108
 pixelX += columnWidth; 109
 } 110
 111

 return combinedImage; 112
 }113

C.11. FILEDATA.JAVA

public class FileDetails implements Serializable { 1
 2
 private static final long serialVersionUID = 765237785295914119L; 3

 private String name; 4
 private byte[] contents; 5
 6
 /** 7
 * @param name 8
 * @param contents 9

 */ 10
 public FileDetails(String name, byte[] contents) { 11
 this.name = name; 12
 this.contents = contents; 13
 } 14
 15
 /** 16

 * @return the name 17
 */ 18
 public String getName() { 19
 return name; 20
 } 21
 22

 /** 23
 * @return the contents 24
 */ 25
 public byte[] getContents() { 26
 return contents; 27
 } 28
 } 29

 	

68

C.12. FEATURERECORD.JAVA

public class FeatureRecord implements Serializable { 1
 private static final long serialVersionUID = 7112321129853400467L; 2

 private List<Object> attributes; 3
 4
 /** 5
 * 6
 */ 7
 public FeatureRecord() { 8
 this.attributes = new ArrayList<>(); 9

 } 10
 11
 public void add(Object attribute) { 12
 this.attributes.add(attribute); 13
 } 14
 15

 /** 16
 * @return the attributes 17
 */ 18
 public List<Object> getAttributes() { 19
 return new ArrayList<>(attributes); 20
 } 21

69

