

Development of an Agent-based Graph Database Benchmarking Dataset

Michelle Dea

Term Report Fall 2023

Project Committee:

Prof. Munehiro Fukuda, Chair

Prof. Wooyoung Kim, Member

Prof. David Socha, Member

1. Project Overview
The Multi-Agent Spatial Simulation (MASS) library is a parallel programming library

using agent-based modeling to simulate a number of collective behaviors, ex: biological

agents, and computational geometry algorithms [1]. MASS at its core is comprised of two

main components, Places and Agents. Places represents a matrix of elements dynamically

allocated over a cluster of nodes. These elements can exchange information with any

other element, i.e. Place. Agents can perform computations, and can migrate between

different Places, allowing them to interact with other Agents and Places.

When considering big data computing, frameworks such as MapReduce and Spark are

some of the more common tools being used to process large volumes of data. However,

these tools mainly deal with data in the form of text. For more complex data structures,

such as graphs, where the data points are interconnected, a more suitable approach is to

use a graph database. More specifically, agents can be leveraged to support analysis of

graphs, as they can be deployed into data structures mapped over distributed memory. In

this way, we can build a graph database application that can construct graphs over

distributed memory.

Harshit Rajvaidya’s recent work implemented an agent-based graph database using a

MASS application, i.e. MASS Graph Database (MASS Graph DB) [2]. More specifically,

his work used a combination of OpenCypher queries, and Agents to perform those

queries. As part of his work, he conducted performance comparisons against two popular

graph database systems: Neo4j, and RedisGraph. Both of which support OpenCypher

queries. Rajvaidya’s performance comparison was done using very simple graph datasets

he created. The use of these simple datasets was largely to showcase the querying

capabilities of MASS Graph DB, rather than execution speed. As part of a continuation of

his work, my project focuses on creating several larger graph datasets (at a minimum 500

nodes, and 500 edges/relationships per dataset) for benchmarking purposes with a focus

on evaluating execution speed and spatial scalability.

It was recently announced that the application RedisGraph will soon be sunsetted. In the

interest of longevity, a new graph database application was selected for my project.

Instead of RedisGraph, I will be using ArangoDB for benchmarking purposes.

We will be comparing our performance against Neo4j and ArangoDB to evaluate the

potential of MASS Graph DB. We can identify the strengths and weaknesses of an agent-

based graph database in comparison to these popular graph databases by using graph

datasets that vary in different aspects, specifically type of data and size of the data.

Specifically, I will be doing a comparative analysis of the execution speed (query

throughput) and spatial scalability (query response time) of these three graph databases.

To ensure the comparison is fair, I will be creating a tool that randomly generates the

graph dataset based on certain parameters, such as topology and size, and I will be

developing a way for the resulting dataset to be loaded into the three different graph

databases. For my project, I identified three popular use cases for graph databases. These

include recommendation engines, fraud detection, and social networks. The datasets for

each of these use cases are unique in their topology, which is why a parameter for this

tool will account for topology to generate a realistic random graph for benchmarking.

The purpose of this work is to be able to measure execution performance of MASS

against Neo4j and RedisGraph using these benchmarking applications. As part of these

benchmarking applications, standard queries will be written to provide an efficient way

for future researchers to benchmark their MASS Graph DB programs.

2. Goals
The main goal of this project is to create a benchmarking dataset and tools to simplify

benchmarking MASS Graph DB against popular graph databases. The motivation behind

this is to create tools such that future researchers can devote their time to improving the

MASS Graph DB, rather than spending resources on investigating methods to conduct

performance or execution testing. This work will also standardize how future MASS

Graph DB changes will be evaluated, establishing consistency and improving accuracy

when it comes to performance testing. To further outline the specific goals for this

project, here are the explicit tasks I hope to accomplish:

1. Create tools to randomly generate several graph datasets that can be loaded into

MASS Graph DB, Neo4j, and ArangoDB. These datasets are modeled after graphs

pulled from real world applications based on the use cases mentioned above, and will

be automatically generated with some randomness.

2. Create standard queries for each of the datasets that can be run across each graph

database for measuring performance.

3. Identify the strengths and weaknesses of the MASS Graph DB compared to Neo4j

and ArangoDB.

4. Create an efficient process or tool for running these programs for future researchers.

3. Achievements
This quarter began with the review of Harshit’s previous work. I took a look into the

GraphDB branch of the MASS Java application repository, specifically within the

GraphDB folder. I started my code review with the GraphDBAgent, GraphDBHandler,

and GraphDBNode. The GraphDBHandler held the main program to be run, which

indicated use of two simple CSV files (Book1.csv and Book2.csv) as the program’s input.

Initially, I tried running this program to see the output of the match query. Unfortunately,

the program would not compile successfully. This led to a further review of how the

GraphDB Agent and GenericGraph work together in the GraphDB application. From this

investigation, a fellow student, Lilian Cao, who is working on extending the capabilities

of MASS Graph DB, concluded it was better to rebuild the Graph DB application without

the use of GenericGraph, as it is structured in a way that is not flexible for extension of

additional queries. From here, I shifted my focus away from familiarizing myself with

Harshit’s previous work, to identifying a new database to use for benchmarking.

RedisGraph was originally one of the graph databases I planned on using for

benchmarking MASS’ Graph application’s performance against. However, Redis put out

an end-of-life notice for RedisGraph. This meant we should consider a different graph

database to use for benchmarking purposes, one that would have longevity so that future

researchers down the line could continue to use this application for performance

comparison. In my research, I came across reviews of different graph databases that

touched on features such as complexity, user base, and use cases. Among the databases I

considered were OrientDB, Dgraph, TigerGraph, and ArangoDB. The reason ArangoDB

was selected amongst these contenders came down to a few key factors. Firstly,

ArangoDB is cloud agnostic. With the rising popularity of using cloud providers for

application development, this is important for future work as it is flexible enough to work

with any cloud provider. ArangoDB can also be deployed on any operating system (OS).

This avoids issues where a future research is dependent on a specific OS. ArangoDB uses

its own language, AQL, for querying its database. While this does increase complexity

since there is an associated learning curve, the language is a combination of conventional

coding and SQL, which increases its adaptability for developers who may not be familiar

with AQL. There is also a good user base, which is an advantage when it comes to

troubleshooting since other users likely ran into similar issues.

After selecting a new graph database to use, I turned my attention to identifying practical

datasets to use as the initial datasets for benchmarking. Graph databases have a variety of

use cases, of these the more common ones include: recommendation engine, fraud

detection, and networks (ex: social media or network management). For recommendation

engine, I will be using the Amazon Product Co-Purchasing Network [3] dataset. For fraud

detection, I have selected a Cryptocurrency Transactions [3] dataset. And for a social

media network, I have selected a Twitch dataset [4]. Next quarter, I will be using these

datasets as the foundation for my random graph generator tool. This tool will take in a

parameter such as topology or use case and return a randomized graph that is modeled

after these practical datasets.

With the datasets selected, I worked on transforming the datasets into a format that could

be imported into Neo4j and ArangoDB. I started with the Amazon dataset, and wrote a

Java program to convert the data into an importable format for Neo4j. I then used

OpenCypher queries to import the data into Neo4j, and successfully created the graph.

I used the same dataset for importing into ArangoDB. For ArangoDB, I used the terminal

to execute commands to import the data from the CSV files.

4. Results
This quarter, I focused on establishing the foundational pieces for performance testing

once the MASS Graph DB is ready. Part of this was being able to successfully create a

graph database within Neo4j. I started with the Amazon dataset that contained over 3

million edges, and over 400,000 nodes. I wrote a program that updated the format of the

data into an importable csv for Neo4j.

The size of this graph was too large for my machine to import, as Neo4j currently runs

locally on my personal laptop. As discussed with Professor Fukuda, MASS can generally

handle graphs with around 8000 nodes [5]. This led me to create a smaller graph with

7900 nodes instead.

To create a graph such that the products (nodes) were connected to co-purchased

products, I created two sets with the same nodes and then used the edges information to

connect the nodes using a BOUGHT_WITH relationship to establish a co-purchasing

relationship. A snippet of the resulting graph is shown in Figure 1 below.

Figure 1: Display of Amazon graph in Neo4j limited to 20 nodes

With ArangoDB, I am using a docker container to run the database. The web interface

can be accessed via http://localhost:8529/. ArangoDB organizes their data into

collections, which in this case can be either a collection of nodes, or a collection of edges.

The import here is a bit trickier, as you need to specify how the edges correspond to the

node collection. I was able to do so using this command by specifying a prefix of the

node collection:

arangoimport --file "amazonProduct.csv" --type csv --collection
"amazonProducts" --create-collection true

arangoimport --file "amazonEdges.csv" --collection amazonEdges --
create-collection true --type csv --create-collection-type edge --translate
FromNodeId=_from --translate ToNodeId=_to --from-collection-prefix
amazonProducts --to-collection-prefix amazonProducts

http://localhost:8529/

In the web interface, I selected the newly created nodes and edges:

A snippet of the resulting graph is displayed in Figure 2 below.

Figure 2: The Amazon graph displayed in ArangoDB.

5. Next Quarter’s Plan
Due to some technical difficulties with getting up to speed on some of the syntax for

these graph databases, I will be adjusting my plans for next quarter to include the

following:

Winter 2024

Week Tasks

January Week 1 & 2 Update csv formatter program to use “ | ” as a delimeter for MASS

importing

Import Amazon data into MASS using the QueryDB branch

developed by Lilian

Convert the remaining graphs into the appropriate formats for all

three graph database applications.

Create standard set of queries for benchmarking – beginning with

“Create” command

January Week 3 & 4 Start work on random graph generator

• Identify inputs/parameters for generator

• Create functions to output graph in CSV format

Finalize standard queries for benchmarking program

February Week 1 & 2 Create program for automating benchmarking GraphDB application

performance using benchmarking datasets

• Program should be easy to run and compatible graphs

generated from random graph generator

Include thorough instructions for running program

February Week 3 & 4 Continue working on automated benchmarking program

March Week 1 & 2 Write up quarter term report

6. Summary
This quarter I was able to accomplish the foundations of what I hoped to achieve, which

was familiarizing myself with graph database creation within Neo4j and ArangoDB. The

syntax and nuances for both systems proved a bit challenging as I have not worked with

these databases before. With Neo4j, it is worth noting that by establishing constraints on

the database, the commands used to import data need to altered to reflect the established

constraints. For example, specifying that each node in the graph will contain a unique ID

requires the user to specify that there will be no null IDs in their Cypher queries.

The limitation of using my personal device to run these databases introduced a limitation

of the size of graph I am able to create. As a solution to this, we may be able to leverage

the school Hermes machines to run the database applications. Though I suspect a

challenge here will be accessing the web interface in order to execute queries and

visualize the graph. This will be part of my future work, to explore the capabilities in this

area.

7. References
1. “MASS: A parallelizing library for multi-agent spatial simulation.” [Online].

Available: http://depts.washington.edu/dslab/MASS/

2. “An Agent-based Graph Database” White Paper, Accessed on: June 30, 2023.

[Email]. Available: via Professor Munehiro Fukuda.

3. Leskovec, J., & Krevl, A. (2014, June). SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data

4. “Recommendation on Live-Streaming Platforms: Dynamic Availability and Repeat

Consumption”

Jérémie Rappaz, Julian McAuley and Karl Aberer

RecSys, 2021

5. “Agent-based Graph Applications in MASS Java and Comparison with Spark” Term

Paper. [Online]. Available:
https://depts.washington.edu/dslab/MASS/reports/CarolineTsui_whitepaper.pdf

http://depts.washington.edu/dslab/MASS/
https://depts.washington.edu/dslab/MASS/reports/CarolineTsui_whitepaper.pdf

