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1. Project Overview 
The Multi-Agent Spatial Simulation (MASS) library is a parallel programming library 

using agent-based modeling to simulate a number of collective behaviors, ex: biological 

agents, and computational geometry algorithms [1]. MASS at its core is comprised of two 

main components, Places and Agents. Places represents a matrix of elements dynamically 

allocated over a cluster of nodes. These elements can exchange information with any 

other element, i.e. Place. Agents can perform computations, and can migrate between 

different Places, allowing them to interact with other Agents and Places.  

 

When considering big data computing, frameworks such as MapReduce and Spark are 

some of the more common tools being used to process large volumes of data. However, 

these tools mainly deal with data in the form of text. For more complex data structures, 

such as graphs, where the data points are interconnected, a more suitable approach is to 

use a graph database. More specifically, agents can be leveraged to support analysis of 

graphs, as they can be deployed into data structures mapped over distributed memory. In 

this way, we can build a graph database application that can construct graphs over 

distributed memory. 

 

Harshit Rajvaidya’s recent work implemented an agent-based graph database using a 

MASS application, i.e. MASS Graph Database (MASS Graph DB) [2]. More specifically, 

his work used a combination of OpenCypher queries, and Agents to perform those 

queries. As part of his work, he conducted performance comparisons against two popular 

graph database systems: Neo4j, and RedisGraph. Both of which support OpenCypher 

queries. Rajvaidya’s performance comparison was done using very simple graph datasets 

he created. The use of these simple datasets was largely to showcase the querying 

capabilities of MASS Graph DB, rather than execution speed. As part of a continuation of 

his work, my project focuses on creating several larger graph datasets (at a minimum 500 

nodes, and 500 edges/relationships per dataset) for benchmarking purposes with a focus 

on evaluating execution speed and spatial scalability. Throughout my work, my 

references to nodes and vertices as they relate to graphs represent the same thing, an 

entity within a graph. 

 

It was recently announced that the application RedisGraph will soon be sunsetted. In the 

interest of longevity, a new graph database application was selected for my project. 

Instead of RedisGraph, I will be using ArangoDB for benchmarking purposes.  

 

We will be comparing our performance against Neo4j and ArangoDB to evaluate the 

potential of MASS Graph DB. We can identify the strengths and weaknesses of an agent-

based graph database in comparison to these popular graph databases by using graph 

datasets that vary in different aspects, specifically type of data and size of the data. 

Specifically, I will be doing a comparative analysis of the execution speed (query 

throughput) and spatial scalability (query response time) of these three graph databases. 

To ensure the comparison is fair, I will be creating a tool that randomly generates the 

graph dataset based on certain parameters, such as topology and size, and I will be 

developing a way for the resulting dataset to be loaded into the three different graph 

databases. For my project, I identified three popular use cases for graph databases. These 



 

  

include recommendation engines, fraud detection, and social networks. The datasets for 

each of these use cases are unique in their topology, which is why a parameter for this 

tool will account for topology to generate a realistic random graph for benchmarking. 

 

The purpose of this work is to be able to measure execution performance of MASS 

against Neo4j and ArangoDB using these benchmarking applications. As part of these 

benchmarking applications, standard queries will be written to provide an efficient way 

for future researchers to benchmark their MASS Graph DB programs.  

 

2. Goals 
The main goal of this project is to create a benchmarking dataset and tools to simplify 

benchmarking MASS Graph DB against popular graph databases. The motivation behind 

this is to create tools such that future researchers can devote their time to improving the 

MASS Graph DB, rather than spending resources on investigating methods to conduct 

performance or execution testing. This work will also standardize how future MASS 

Graph DB changes will be evaluated, establishing consistency and improving accuracy 

when it comes to performance testing. To further outline the specific goals for this 

project, here are the explicit tasks I hope to accomplish: 

1. Create tools to randomly generate several graph datasets that can be loaded into 

MASS Graph DB, Neo4j, and ArangoDB. These datasets are modeled after graphs 

pulled from real world applications based on the use cases mentioned above, and will 

be automatically generated with some randomness. 

2. Create standard queries for each of the datasets that can be run across each graph 

database for measuring performance. 

3. Identify the strengths and weaknesses of the MASS Graph DB compared to Neo4j 

and ArangoDB. 

4. Create an efficient process or tool for running these programs for future researchers. 

 

 

3. Achievements 
This quarter I began by finishing my work of creating csv files for the other two datasets 

(Twitch and Cryptocurrency)[3][4]. After implementing functions to take care of csv 

generation for those datasets, I tested loading them into Neo4j to confirm the data loads 

correctly. I used the built-in visualizer in the Neo4j web interface to spot check the 

validity of the graphs that were created based on the generated csv input. 

 

The next task I worked on was creating functions to generate csv files specifically for 

importing into MASS. This mainly involved using a pipe “ | ” as the delimiter between 

fields, and grouping fields according to how Lilian’s graph builder works. Lilian Cao is a 

student in this research group with a focus on updating the implementation of MASS’ 

graph database application. After converting the Amazon data into this format, I moved 

on to adding this same functionality for the Twitch and Cryptocurrency datasets. I then 

pulled the latest code from Lilian’s QueryDB branch and tested importing these various 

datasets into MASS. As a starting point, I am limiting the number of nodes to 8,000 per a 

former student’s research that MASS can handle around 8,000 nodes [5]. To reiterate the 

overall structure of the graphs, each of my generated datasets held 8,000 nodes and 



 

  

different numbers of edges (Amazon: ~59,000 edges, Twitch: ~9,000 edges, 

Cryptocurrency: ~20,000 edges). 

 

After completing these functions, I started working on my random graph generator 

design. I decided to use a factory design pattern for the generator since it makes the code 

less coupled, allowing us to create graph objects without tying the code to specific 

classes. It is also easier to extend should a new graph dataset type be added to the 

generator. The initial design is detailed in Figure 3.1 below: 

 

 
Figure 3.1: Random graph generator initial design 

 

The following describes the pairings between the graph objects I am creating compared 

to the practical data I am using as the basis for my random graph generator: Products uses 

Amazon data, Social Media uses Twitch data, Transactions uses Cryptocurrency data. My 

implementation uses the practical datasets as the foundation for the values that will be 

written into the generated csvs, i.e. the fields and values generated by the random graph 

generator are pulled from the practical datasets. The random piece comes from 

rearranging of the relationships between nodes, i.e. the edges that connect the nodes. 

Originally, the edges that connect a pair of nodes were created at random. After speaking 

with Professor Fukuda, maintaining the degree of distribution among edges is an 

important consideration for graph generation. Professor Kim shared her lecture slides 

regarding Network Motif, subgraph patterns that occur frequently and uniquely in a 

network [6]. The algorithm [6] for maintain this degree distribution includes the 

following steps:  

1. Get degree sequences 

2. Each vertex is repeated by the number of its degree 

3. Randomly choose two vertices to make an edge 

I implemented this degree distribution algorithm as part of my random graph generator 

for the Products graph, and for the Social Media graph. 

 



 

  

For the benchmarking piece, I discussed my future plan with Professor Fukuda, and I will 

be creating a program for benchmarking against MASS. The standard queries for this 

program will include Create, Delete, and Match. For Neo4j, I will be creating a manual 

with a list of commands to run in the Neo4j web interface, since the interface has a 

helpful visualization capability, and the interface displays the time it takes to run each 

query. 

 

I also began evaluating TigerGraph as an alternative to ArangoDB. A major appeal of 

TigerGraph is it’s scalability and performance[7]. Its distributed architecture supports fast 

loading speeds for both graph creation and traversal. However, I think the licensing of 

TigerGraph is going to pose a problem. There is a free developer license that lasts on a 

month-to-month basis, that needs to be renewed with an account manager at the end of 

the trial period. This type of licensing may not be appropriate for research that will span 

multiple months, as the renewal is left to the account manager’s discretion. 

 

4. Results 
When loading the data into MASS, I uncovered a bug that I reported to Lilian. After the 

128th node, MASS does not print the vertex ID, it instead prints a numerical value that I 

believe to be assigned by MASS as shown in Figure 4.1: 

 

 
Figure 4.1: Vertex ID displays numerical value instead of ID 

 

A challenge I experienced was implementing the degree distribution algorithm from 

Professor Kim. With the Twitch dataset, because the degree distribution for more popular 

users is significantly higher than others, when we randomly pair vertices together for 

edge creation, we run the risk of being left with a list of only one vertex left, ex: if we 

have a graph that looks like this:  

 

Vertex ID 1 2 3 

Degrees 2 1 1 

 

After step 2 where each vertex is repeated based on the number of degrees, we have a list 

that looks as such: [1,1,2,3]. If 2 and 3 are randomly paired to create an edge, we are only 

left with [1,1] to create an edge pair. A node should not be linked to itself. To combat this, 

I added in logic that runs through the list of edge pairings so far, and tests to see if a new 

acceptable edge pair can be created with the remaining unpaired vertices. If a new pair 

can be created, that edge is broken apart, and the new edge is added to my list of edge 

pairings. A snippet of the code is shown below in Figure 4.2: 



 

  

 
Figure 4.2: Code snippet detailing swapping implementation 

 

5. Next Quarter’s Plan 
 

Spring 2024 

Week Tasks 

March Week 3 & 4 Finish Random Graph Generator 

Create standard queries for benchmarking in MASS 

• Create 

• Match 

• Delete 

Research related works in the domain of benchmarking and graph 

data 

April Week 1 & 2 Create scripts / manual for benchmarking against Neo4j and 

ArangoDB 

April Week 3 & 4 Benchmark MASS performance against Neo4j and ArangoDB using 

variously sized graphs: 

• 8000 vertices 

• 10000 vertices 

• 20000 vertices 

May Week 1 & 2 Whitepaper and final defense prep 

May Week 3 & 4 Whitepaper and final defense prep 

June Week 1 Incorporate feedback into whitepaper  

 



 

  

 

6. Summary 
This quarter I was able to complete most of the development for graph generation. This 

data is going to serve as the benchmarking data for performance testing and database 

evaluation. By first creating functions that read and generate data from the practical 

datasets, I was able to leverage this logic for my random graph generator which made the 

conversion more efficient than having to start from scratch.  

 

One piece I struggled with was being able to maintain degree distribution within the 

Social Media graph. My original implementation of the degree distribution algorithm 

mentioned earlier worked with the Amazon data, as the average degree per edge was not 

high. However, with the Twitch data, because there are very popular users who may have 

many edges, there is a higher risk of ending up with a list of unmatched vertices of just 

one particular user. After reevaluating my original implementation, I needed to update my 

swapping logic to only break up an edge pair if the new resulting edge pair was 

acceptable.  
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