
From: Nathan Wong
Date: June 10, 2021
To: Professor Fukuda
Subject: CSS490 Term Report

Abstract

This report provides an overview of the work done in the spring quarter of 2021 on
the topics of benchmarking and comparing different platforms in order to help
researchers make decisions on the best available library for their application
domains. There are seven benchmarks in total, and these benchmarks were chosen
to simulate real world occurrences. These benchmarks are: The Game of Life, Social
Networks, Tuberculosis, Brain Grid, Bail-in Bail-out MATSIM and VDT (Virtual Design
Team). The libraries that will be running these seven benchmarks are Flame, Mass
C++ and Repast HPC. Methods to analyze these libraries are the runtime of the
benchmarks, and the overall use case of each library. Overall use cases include
strengths and weaknesses, as well as ease of implementation. This report highlights
the implementation of the VDT benchmark and the Bail-in Bail-out benchmark.
Furthermore, this report also details the parallelization and data gathered from the
previous quarter’s benchmarks (Social Network and MATSIM) and the benchmarks
mentioned above.

Introduction

Overview of the research
This research is focused on testing three different libraries across seven different
benchmarks. The libraries that are being tested are Flame, Mass C++ and
RepastHPC. These libraries all use multi agents to simulate models, however they
implement them in different ways. Flame uses a messaging board where Agents
can read and write messages and perform actions based upon the message
received. Mass C++ makes use of a distributed array where each element is called
a place. Each agent can then act within the places. Finally, Repast HPC utilizes a
sharing and requesting system for agents. This allows agents to be shared within
each process when needed. Agents are robots that perform specific tasks that are
automatically dependent on the program. We will be testing these libraries across
seven different benchmarks. These benchmarks are Game of Life, Social Networks,
Tuberculosis, Brain Grid, Bail-in Bail-out, MATSIM and VDT. These benchmarks
represent social, behavioral and economical/ environmental applications. This
quarter the tasks were to implement the Bail-in Bail-out and VDT benchmark for the
RepastHPC library.

Research Purposes
Just like there are many different libraries to do similar functions, the same is to be
said with agent based modeling. While having many options is always a positive

thing, it also shows a problem in choosing the optimal library for projects. Not a lot
of research is done on the performance of agent based libraries, and with this
research we will help show under which conditions and applications that the above
libraries would be beneficial.

Structure of the Report
The next sections of the report will go into the specification and implementation of
the VDT and Bail-in Bail-out benchmark. This section will include a description of
classes and purposes, data flow diagrams and overall how the program works. The
next section will evaluate the data and go in depth to explaining each occurrence.
The following section will contain reflections about the work that was done these
past two quarters. The final section will be the conclusion, summarizing the report
and laying out next steps.

Specification and Implementation

VDT Specification
This simulation is meant to simulate different software engineering teams
completing different projects. The simulation takes in an input file that consists of
projects that need to be completed. The simulation also takes in a user input for the
amount of engineers per team and of what type. Projects are defined as tasks, and
have an array stating how many hours each engineer needs to work on it. There
are five different engineers in total, and each engineer has a hierarchical status. In
order of hierarchy these engineers are: Project Lead, Senior Software Engineer,
Junior Software Engineer, Test Engineer and UX designer. This hierarchy can be
seen as a tree where Tasks start from the root nodes and stop at the leaf nodes.
Figure 1.0 depicts an example of an engineering team of 15. This team consists of 1
Project Lead, 2 Senior Software Engineers, 3 Junior Software Engineers, 4 Test
Engineers and 5 UX designers.

Figure 1.0 - Engineering team of 15

If an engineering team had less engineers down the hierarchy the node would
simply point to one of the other leafs. The output of each benchmark is how long it
took to complete all the tasks.

VDT Implementation
The VDT implementation has three major classes. These classes are the Task class,
the Agent class and the Observer class. The Task class responsibility is to show how
long each agent should work on it. The Agent class’s responsibility is to work on the
task then pass it on to the appropriate agent. Finally, the Observer’s responsibility
is to initialize all the agents and tasks, instruct all agents to play, and stop the
simulation when the appropriate amount of tasks has been completed.

Task Class
The Task class holds a vector of hours, and ints that consist of the type, total
Hours, priority, day and id. The methods of this class mainly consist of getters and
setters.

Agent Class
The Agent class holds a queue of Agents that are meant to represent agents that
work under this specific agents, a deque of Tasks, an observer pointer, a Task
pointer that represents the current Task, and a set of ints that holds the id of Tasks
that it has worked on. The methods of this class consist of getters, setters, as well
as a few action methods. The most notable action method is called the Play
method.

The method Play first checks if the agent is working on any tasks by seeing if
currentTask is pointing to anything. If not, it checks if there are any tasks in the
deque. If there are no tasks the method ends there. However, if there are tasks in
the deque, it then randomly chooses whether to choose the first task, the last task
or the one with the highest priority. Once a task is chosen, currentTask points to it,
and the id is added into the workedOn set. At every tick of the simulation it
decreases the hours needed to work on it by one. Once that hour reaches zero, the
agent then uses the queue of agents that work under it in order to pass the task
onto the hierarchy. If the agent is a UX agent, it notifies the observer that a task is
completed, and then deletes the task. Figure 1.1 is a data flow diagram of the Play
method.

Figure 1.1 - Agent::play method

Observer Class
The Observer class has a Set of Agents, a deque of the five different engineers, a
set of ints that represents completed tasks, as well as two ints representing hours
and day. The key methods are distributingTasks, as well as the go method.

The distributingTasks methods distributes the tasks that were created to the correct
agents. Using the deque it rotates the head agents and assigns tasks to them until
there are no more tasks to give out.

The go method is also quite simple, as the agents play method does most of the
work. First the observer checks to see if it has the correct amount of tasks
completed in its set, if it does then the simulation ends. If it does not, it instructs
each agent that it controls to play. It will then increment the hour. Once the hour
reaches over 24 it increases the day, and resets the hour to zero. It will then repeat
this until the size of completed is equal to the expected amount. Once it has
completed it will print out a statement saying which team finished and at which day
and hour it finished at.

Bail-in Bail-Out Specification
The Bail-in Bail-out is an economic simulation. It contains the following agents:
workers, firms, owners and banks. The worker agent’s job is to bring home money,
consume a portion of it and deposit the rest into the bank. The firm agent’s job is to
either turn a profit or a loss. If the firm has negative liquidity, it must go to its
owner to check if they have any capital. If the owner has enough capital they may
deposit their own money in order to have the firm break even. Otherwise the firm
must go to a bank for a loan. It must then pay off the loan in the future or risk
going bankrupt. The bank gives a loan and expects a return. It may loan money to
other banks or firms. However if a firm is to go bankrupt they would not receive a
return on their loan. Finally, if a bank was to go bankrupt the simulation would then
halt.

Bail-in Bail-out Implementation
The Bail-in Bail-out Implementation has 6 major classes. These classes are the
Worker Class, the Firm Class, the Owner Class, the Bank Class, the Observer class
and the Messenger class. The Worker, Firm, Owner and Bank class are all
considered agents and therefore perform their duties as instructed. The Observer
class holds the process’s agents and is tasked with creating Messenger agents to
send to other processes when needed. It is also responsible for fulfilling any
Messenger agents that it may receive. Finally the Messenger class’s sole purpose is
to go to other processes and let the observer know which agent to either take
money from or give money to.

Worker Class
The Worker class holds the following data: an AgentID, a double representing
wages, a double representing consumption, a double representing deposit, a Bank
pointer, and an Observer pointer. The bank pointer is used to get the id of the bank
that it plans on depositing money into. The observer pointer is needed in order to
create a messenger agent to send to the appropriate process so the bank value
actually gets updated. The main method for this class is the play method.

The play method takes in its wages. It then sets the deposit to the amount received
multiplied by consumption. Once finished, it tells the observer to create a
messenger agent to send to its bank with the deposit amount.

Firm Class
The Firm class holds the following data: an AgentId, a vector of Workers, a double
representing productionCost, another double representing dividends, a shared
context of banks, a map that represents debt, and finally a pointer to the observer.
Like the reasoning above, a pointer to the observer is needed in order to create the
messenger class. The shared context of banks is also needed in order to have a
correct view of the interest rates. The main method for this class is the play method
and the receiveLoan method.

The play method first calculates the productionCost by randomizing the current
productionCost by a double ranging between 0.5 and 1.5. It then moves on to
calculating the profit by multiplying the productionCost by another double in the
range of 0.5 and 1.5. It then calculates the liquidity by going through each worker
and subtracting the wages from each worker. Once that is done, if there is a profit
it pays dividends. However, if there is not a profit and the firm goes into debt it
then calls the receiveLoan method. It then goes through the map and pays off
either half of the debt or all of the debt if it can afford to. If there is still debt it
increases the debt amount by the interest rate and then returns.

The receiveLoan method takes in an int representing the amount of banks that the
firm went to. We then use the shared context in order to get a vector of the banks,
and then iterate through finding the one with the lowest interest. Once found, we
instruct the observer to create a messenger agent with the amount that we need in
order to be at zero.

Owner Class
The Owner class holds the following data: a double representing its capital, a Firm
pointer representing the firm it owns, as well as an AgentId and an Observer
pointer. The need for an observer pointer is the same reasoning that was
mentioned in the previous two classes. The methods of this class mainly consist of
setters and getters.

Bank Class
The Bank class holds the following data: an AgentId, a double representing
liquidity, a double representing the current interest rate it offers, a shared context
to other banks, a map representing debt and an Observer pointer. Like the classes
previously mentioned, the observer pointer is needed in order to create messenger
agents. The main method for the bank is the play method.

The play method simply checks to see if it’s liquidity has hit negative. If it has it
requests a loan from other banks. It also pays off its current debt by either half or
all of it. If it cannot pay off half of its debt, it is considered bankrupt.

Messenger Class
The Messenger class holds the following data: a double representing the amount to
deposit or receive, an int representing the type (whether it is a bank, firm, owner or
worker) and finally an int representing the id. This class mainly consists of getters
and setters.

Observer Class
The Observer class holds the following data: a shared context of all the previously
mentioned classes, as well as any providers and receivers needed to send agents
across processes. It’s main method is the play method, the sendMessenger method
and the fulfillMessenger method.

The play method simply checks if any banks are bankrupt. If not, it instructs all the
agents to play. Once they have finished playing, it then calls the sendMessenger
agents, which sends the messenger to the appropriate process. Afterwards, it calls
the fulfillMessenger process which goes through each Messenger and either deposits
or takes away the money from its agents. It repeats until a bank agent has
declared bankruptcy. Figure 1.2 depicts the play method in the Observer class.

Figure 1.2 Observer::play method

The sendMessenger method works by going through its sharedContext of
messenger and sending it to the appropriate process. The appropriate process is
found by the function id % worldSize, where worldSize represents how many
processes are in the world, and id representing the id of the agent it is trying to
send to.

The fulfillMessenger method works by going through each messenger and seeing
which type of agent it is first. Based on the type, it then iterates through the
appropriate shared context finding the agent that matches based off of id. Once it is
found, it then either deposits or takes away the amount from the messenger. Once
that messenger is completed, it is then removed from the shared context. This
action is repeated until the shared context size is zero.

Performance

Social Network Performance

Graph 1.0 - Social Network Repast HPC 1-Node vs 4-Node performance

The graph above looks at the performance between 1-Node and 4-Node for the
Social Network benchmark of Repast HPC. While the Time to run is very close, this
is mainly due to the fact that most of the time is spent printing out the output.
Printing out the output does not differ from 1-Node and 4-Node as they both use 1
process to print it out. This is because the output of the social network benchmark
must remain consistent, and printing it out on more processes will mess with how it
is being printed out. Despite this however, the 4-Node is still slightly faster than the
single node.

MATSIM performance

Graph 1.1 - MATSIM Repast HPC 1-Node vs 4-Node performance

By looking at the graph above it is evident that the 4-node heavily outperformed
1-node. This would be mainly due to the parallelization, as the processes have to
process less node than the single node. As the mesh grid grows bigger, I expect the
distance in time to increase between the Single Node and the Multi Node.

VDT performance

Graph 1.2 - VDT Repast HPC 1-Node vs 4-Node performance

The VDT performance between 1-Node and 4-Node follows a very similar trend.
This is because single and multi nodes essentially work the same way. However,
the difference is that the 4-Node only has to deal with one team each, while the
1-Node has to deal with multiple teams. This means that it has to spend more time
processing as it is not parallelized. Therefore, as the amount of tasks increases I
expect the trend to remain very similar.

Bail-in Bail-out Performance

Graph 1.3 - BailIn BailOut Repast HPC 1-Node vs 4-Node performance

This performance has the multi Node take longer in the beginning, but eventually it
becomes faster at around the 10000 Agent mark. Interestingly enough the increase
of agents causes the program to run faster. This may be because since there are
more firms, there is a higher chance for a loan to be needed from a bank, and a
higher chance for bankruptcy to occur. The trends are pretty random, this can be
attributed to the amount of randomness that occurs in the program. Because of
this, running the simulation multiple times may be needed to get an accurate
result.

Reflections

Implementing these benchmarks this quarter was a lot easier than last quarter. I
believe that spending extra time on design helped me be more efficient, and
allowed me to complete benchmarks quicker. However, I still spent a lot of time
debugging my methods. I believe that doing more unit testing would help solve this
issue. While it may cause me to spend more time upfront, once I put the program
together, less time would be needed to ensure that it works. I will be taking these
reflections and lessons that I have learned in my future line of work. I hope to be
able to continue to reflect upon the work that I have done and find ways to improve
efficiency and accuracy.

Conclusion
We are hoping to help bring clarity into which agent based modeling library would
be the most beneficial under different circumstances. While we do not have all the
data yet, we hope that once we do we are able to help computing and non
computing scientists alike make informed decisions on the library that they should
choose.

Future Plans
While I will no longer be actively working on creating benchmarks, the future plans
for this research is to verify the data that is shown above, finish the remaining
benchmarks needed for other libraries and finally write a paper about our findings.

Special thanks
I would like to give special thanks to Dr. Fukuda and my lab partner Sarah Panther
for their constant availability the past two quarters as they have helped me learn
about parallelization and the Repast HPC library a lot easier.

APPENDIX

Running the Benchmarks

1. Make sure that you have setup mpi correctly on your local and remote
machines (If you are unsure on how to set it up check out the file in the
hermes machine. I have also attached it in each benchmark’s instruction
folder).

2. Clone the Benchmarks onto your local machine using the branch
(https://bitbucket.org/mass_application_developers/mass_cpp_appl/branch/
Nathan_Repast_HPC)
2a.) This can be done by using the command git pull <remote repo>

2b.) You can also call git clone using this link as well
(https://NathanWong37@bitbucket.org/mass_application_developers/mass_c
pp_appl.git)

3. The folder that you have cloned or pulled is set up to contain all four
benchmarks in a single directory

4. Using the cd command change your directory to the appropriate benchmark
5. Upon opening the benchmarks you will see a folder with instructions and a

folder with the program
5a.) There are some directories with an input file program as well. If there is
an input file program make sure to read the instructions on how to run it.
Once you have ran the input file program, make sure to copy the file(s)
produced into the program file.

https://bitbucket.org/mass_application_developers/mass_cpp_appl/branch/Nathan_Repast_HPC
https://bitbucket.org/mass_application_developers/mass_cpp_appl/branch/Nathan_Repast_HPC
https://NathanWong37@bitbucket.org/mass_application_developers/mass_cpp_appl.git
https://NathanWong37@bitbucket.org/mass_application_developers/mass_cpp_appl.git

6. Afterwords change the directory to the benchmark program
7. A make file is provided in each benchmark directory, along with the repast

hpc library. Ensure that you have booted up your mpi by typing the
command CSSmpdboot

8. Afterwords to compile the program simply time make./compile
9. Running the program is dependent on the benchmark you want to run, as

some take in an input file. (Replace # from the commands below with the
amount of nodes you want to run)
9a.) To run the social networking benchmark type the command

mpirun -n # ./main.exe config.props model.props
9b.) To run the MATSIM benchmark type the command

mpirun -n # ./main.exe config.props model.props Node_link.txt
Car_Agents.txt

9c.) To run the VDT benchmark type the command
mpirun -n # ./main.exe config.props model.props Tasks.txt

9d.) To run the Bail-in Bail-out benchmark type the command
mpirun -n # ./main.exe config.props model.props

10. To alter the environment you can simply configure model.props for both
social networking and Bail-in Bail-out. More details are in the instructions. To
alter the environment for MATSIM and VDT, you will need a new input file
that can be generated using the input program.

Collecting the Data
I collected the data by running the benchmarks using a variety amount of agents
for each benchmark. I would then run it around three times and keep the lowest
amount of time that was produced. Afterwards I would use excel in order to draw
and display the graphs. All the time is in milliseconds.

Social Network Data

Table 1.0 - Social Network 1000 Agents

Trial Agents SingleNode time
(ms)

MultiNode time
(ms)

1 1000 14406 19545

2 1000 18341 15470

3 1000 21261 283832

Table 1.1 - Social Network 3000 Agents

Trial Agents SingleNode time
(ms)

MultiNode time
(ms)

1 3000 17990 14105

2 3000 24816 21047

3 3000 29102 25614

Table 1.2 - Social Network 5000 Agents

Trial Agents SingleNode time
(ms)

MultiNode time
(ms)

1 5000 627839 403686

2 5000 682465 419081

3 5000 59533 417836

Table 1.3 - Social Network 7000 Agents

Trial Agents SingleNode time
(ms)

MultiNode time
(ms)

1 7000 1074548 961341

2 7000 990786 1041686

3 7000 994347 884775

For the Social Network simulation I made sure to make it print out to the third
degree, and also have three connections.

MATSIM Data
For the MATSIM data the agents are based off of the mesh grid size and will always
be 1/10th of it. This one runs faster as it doesn’t have to print out as much, and
can print whenever an agent has finished. The number that was chosen was the
closest whole number I could get to having a size of 1000, 2500, 5000 and 10000.

Table 2.0 - MATSIM 900 size mesh grid (90 Agents)

Trial Agents SingleNode time
(ms)

MultiNode time
(ms)

1 90 7220 6957

2 90 7613 6610

3 90 7843 6588

Table 2.1 - MATSIM 2500 size mesh grid (250 Agents)

Trial Agents SingleNode time
(ms)

MultiNode time
(ms)

1 250 21236 12200

2 250 21281 14795

3 250 21154 15252

Table 2.2 - MATSIM 4900size mesh grid (490 Agents)

Trial Agents SingleNode time
(ms)

MultiNode time
(ms)

1 490 43832 16918

2 490 49845 15845

3 490 43653 15586

Table 2.2 - MATSIM 10000mesh grid (1000 Agents)

Trial Agents SingleNode time
(ms)

MultiNode time
(ms)

1 1000 94899 38472

2 1000 981242 41002

3 1000 1031037 31167

VDT Data
VDT data the agents are kept in 3 teams of 25, however the amount of tasks are
increased.

Table 3.0 - VDT 50 Tasks

Trial Agents SingleNode time
(ms)

MultiNode time
(ms)

1 75 18 6

2 75 22 5

3 75 19 5

Table 3.1 - VDT 100 Tasks

Trial Agents SingleNode time
(ms)

MultiNode time
(ms)

1 75 38 25

2 75 40 26

3 75 47 22

Table 3.2 - VDT 250 Tasks

Trial Agents SingleNode time
(ms)

MultiNode time
(ms)

1 75 35 31

2 75 57 34

3 75 52 17

Table 3.3 - VDT 500 Tasks

Trial Agents SingleNode time
(ms)

MultiNode time
(ms)

1 75 69 37

2 75 63 26

3 75 65 29

Table 3.4 VDT 1000 Tasks

Trial Agents SingleNode time
(ms)

MultiNode time
(ms)

1 75 88 55

2 75 79 58

3 75 75 53

Bail-in Bail-out Data
The Bail-in Bail-out Data consists of 1000, 5000, 10000 and 20000 workers. 1/10th
of the amount of workers makes up owners and firms. Then there is a consistent 5
banks throughout each simulation. The data presented below is rather hard to make
sense of, as a series of unlucky rolls can bankrupt the program, or a series of lucky
rolls could cause the program to run for a while.

Table 4.0 Bail-in Bail-out (1000 Workers, 50 firms, 50 owners, 5 banks)

Trial Agents SingleNode time
(ms)

MultiNode time
(ms)

1 1105 2046014 58024519

2 1105 139949 4340559

3 1105 13108364 2981063723

Table 4.1 Bail-in Bail-out (5000 Workers, 250 firms, 250 owners, 5 banks)

Trial Agents SingleNode time
(ms)

MultiNode time
(ms)

1 5505 9695437 9106742

2 5505 708689 159690719

3 5505 14101038 3150911

Table 4.2 Bail-in Bail-out (10000 Workers, 500 firms, 500 owners, 5 banks)

Trial Agents SingleNode time
(ms)

MultiNode time
(ms)

1 11005 755821 521470

2 11005 514127972 7863174

3 11005 757311 9647125

Table 4.3 Bail-in Bail-out (20000 Workers, 1000 firms, 1000 owners, 5
banks)

Trial Agents SingleNode time
(ms)

MultiNode time
(ms)

1 22005 108691056 1678082

2 22005 3109483 2483410

3 22005 2810700 4103289

If you have any questions please email me at : wongnat7@uw.edu
Thanks,
Nathan Wong

