
Omar Ahmed CSS 497: Autumn 2023 Term Report

Developing and Refactoring MASS CUDA Application

Benchmarks

Omar Ahmed

CSS 497 Autumn 2023 Term Report

Professor. Munehiro Fukuda

12/13/2023

Omar Ahmed CSS 497: Autumn 2023 Term Report

2 | P a g e

Table of Contents
1. Introduction .. 3

1.1. Motivation ... 3

1.2. Project Goal ... 3

2. MASS CUDA Background ... 3

2.1. Context .. 3

2.2. Previous Applications .. 4

2.3. Reasons for Selected Applications .. 4

3. Implementation .. 5

3.1. Social Network .. 5

3.1.1. SocialPlace as Places ... 5

3.1.2. Simulation ... 6

3.2. Tuberculosis .. 6

3.2.1. EnviromentPlace as Places .. 6

3.2.2. Macrophage as Agents .. 7

3.2.3. T-cells as Agents .. 7

3.2.4. Simulation ... 8

4. Verification .. 8

4.1. Social Network .. 8

4.2. Tuberculosis .. 9

4.3. Execution Performance ... 9

5. Conclusion ... 10

5.1. Summary ... 10

Appendix ... 11

Omar Ahmed CSS 497: Autumn 2023 Term Report

3 | P a g e

1. Introduction

1.1. Motivation

The motivation behind my work on both porting and refactoring benchmark

applications for MASS CUDA is to get closer to implementing a set of standard

applications on the CUDA version of the MASS library. This set of applications, which is

also implemented on MASS C++ and Flame, is used to benchmark the performance and

efficiency of the MASS CUDA library and compare that to other implementation

performances for agent parallelization.

During the Autumn quarter, I focused my efforts on correctly implementing the

two MASS CUDA benchmark applications, Game of Life and The Social Network. The

Game of Life benchmark application implements the mathematical John Conway’s Game

of Life. In contrast, The Social Network benchmark application implements a

specification for a graph of people who are connected as friends and aims to optimally

retrieve their connections. Please refer to sections 2.2 and 2.3 for a detailed explanation.

1.2. Project Goal

The goal of this project is to create standardized applications to be used in

measuring the execution performance and programmability of the MASS CUDA library

on a multi-GPU setup against the performance of other single-GPUs, different

architecture, or different library approaches. This project also serves as a metric for the

usability of the MASS CUDA library itself for developers and to expose any library

errors.

The completion of both Game of Life and Social Network will contribute to the

complete and whole measurement of the MASS CUDA library when compared to

FLAME GPU and MASS C++ as all agent-based parallelization libraries.

2. MASS CUDA Background

2.1. Context

The MASS (Multi-Agent Spatial Simulation) Library is a parallel-computing

library for multi-agent and spatial simulations over a cluster of computing nodes. The

CUDA (Compute Unified Device Architecture) platform is a framework developed by

Nvidia to expose the capabilities of GPU acceleration, specifically on Nvidia CUDA-

ready GPUs, and allow for intuitive and optimized general-purpose GPU (GPGPU)

programming.

The MASS CUDA Library takes advantage of Nvidia CUDA’s programming

model, nvcc compiler, and parallelization to implement its Place and Agent-based

simulation model on the GPU cluster, Juno machines.

Omar Ahmed CSS 497: Autumn 2023 Term Report

4 | P a g e

2.2. Previous Applications

The goal number of MASS CUDA benchmark applications is 7 applications, 4 of

which have been implemented (GameOfLife, Heat2D, BrainGrid, and SugarScape),

while I have worked on implementing 2 of the remaining 3 applications.

The latest implemented benchmark application is the Game of Life application

which is a cellular automaton simulation of the interaction between the cells in a 2D grid

that are dead or alive based on their surrounding neighbors’ states. This application is

modeled using Places, where each Place is a cell in the grid, but does not use any

static/dynamic agents.

The Heat2D benchmark application simulates the dispersion of heat across a

metal sheet as a 2D grid starting from an initial point. It applies the place-agent model

using a place to simulate each of the cells in the 2D grid but does not use any

static/dynamic agent.

The BrainGrid benchmark application simulates a human neural network that

generates axons and dendrites to form the network. It applies the place-agent model using

a place to simulate each of the cells in the 2D grid but doesn’t involve any static/dynamic

agent.

The SugarScape benchmark application simulates interactions of ants in a grid of

different sugar mounds attempting to collect as much sugar as possible. It applies the

place-agent model using dynamic ant agents that use agent migration to transfer places

and uses a place to simulate a grid with sugar mounds.

2.3. Reasons for Selected Applications

The Social Network benchmark application simulates the connections/friends

formed between an n number of people in a social network and allows for retrieval of the

x-th degree list of friends of all people in the network. The people in the social network

are represented as places and not static or dynamic agents. What distinguishes this

application from the ones previously implemented is that the network of friendships in

the social network is a group of Places connected to each other using a bidirectional

graph through an adjacency list stored at each place. MASS CUDA’s programming model

applies greatly to this benchmark application due to the computationally intensive and

parallel nature of the breadth-first search algorithm that is run when retrieving each user’s

x-th degree friendships.

The Tuberculosis benchmark application is a simulation of a 2D grid that

represents human lung tissue. Bacteria on Places and Macrophage Agents are then

spawned. Bacteria grow at a predetermined rate on each Place, and Macrophages Agents

eat and react to the bacteria and other Macrophages if they are infected. At each time

step, Macrophages are spawned from four entry points on the grid that represent blood

vessels. At a predetermined time step, T-cell Agents enter the simulation via the blood

vessels and react to the macrophages, activating the infected ones and bursting the

chronically infected. The simulation computes and visualizes the state of the grid for x

‘total days’ when the simulation is terminated. What distinguishes this application is its

use of a 2-dimensional grid where each cell is a place that warrants two differently

behaving agents to migrate and eliminate bacteria. MASS CUDA’s programming model

Omar Ahmed CSS 497: Autumn 2023 Term Report

5 | P a g e

applies to this benchmark application as it relies on the agent-based model developed in

the library which is highly parallelizable.

3. Implementation

3.1. Social Network

3.1.1. SocialPlace as Places

SocialPlaceState

 The SocialPlace class represents a Person in the Social Network

simulation and is responsible for tracking the Person’s k first degree friends and

computing their x-th degree circles of friends. Since the Social Network

application is modeled as a bidirectional graph that represents all friendships

between different People, each Person must track their first degree of friends from

an adjacency list which includes all People’s first-degree friends. The

‘SocialPlaceState.h’ class inherits the PlaceState class and consists of a userId to

track the index of the place in the places array when instantiated as well as an

integer array of the People’s first-degree friends’ userIds. A queue and set data

structures are used to traverse the graph through breadth-first search and track

visited places, then an int array ‘currentLevel’ is used for outputting friendships at

each degree. An excerpt of that code is shown in Appendix Code Snapshot A:

SocialPlace Initialization:

SocialPlaces is meant to be a 1D array of SocialPlace classes that each

contain a list of adjacencies. The code in Appendix Code Snapshot B shows how

SocialPlaces is created. The basis of this adjacency list model is a 2D array that is

as long as the n number of users, represented as places, specified on host memory

through user input and is as wide as the k number of first-degree connections each

user should have. Each user has k = n / m number of friends, where n is the

number of users in the entire simulation and m is the fraction of the total group

and this is done to create a k-regular bidirectional graph.

SocialPlace Functions:

When the simulation is initialized and a randomized k-regular graph is

created, each Place sets their userId using an invocation to ‘setUserId’. Then, a

place receives their list of first-degree friends which is passed through the

‘setFriends’ function. The callAll MASS function is called to ‘setFriends’ with an

argument of a 1D contiguous representation of the 2D adjacency list which is

nPeople * nFriends big, then each SocialPlace retrieves the 1D array relevant to

them. While each place is retrieving their int array of first-degree friends, their

neighborOffsets array is being populated.

Omar Ahmed CSS 497: Autumn 2023 Term Report

6 | P a g e

Using the MASS function ‘exchangeAll’, each Place’s actual neighbors’

array is then populated with Place pointers using their dynamic neighborOffsets

array.

When the simulation is initialized and each user/place has populated their

first-degree friendship list, the simulation then uses the ‘calculateXthFriends’

function to retrieve each user’s x-th degree friend by using a modified parallel

breadth-first search algorithm that outputs and retrieves each Place’s next degree

of friends. Through populating their neighborOffsets array all places exchange

neighbors using the ‘exchangeAll’ function.

3.1.2. Simulation

The simulation starts with initializing each place with its index in the

places array using the MASS ‘callAll’ function. Then, the 1D array

‘friendShipList’ is initialized and randomly created to be a k-regular graph to then

be passed to each place for populating their friends list. The simulation ends after

iterating through the array ‘places’ and returning up to their x-th degree

friendships. An excerpt of the almost complete functionality can be seen in

Appendix Code Snapshot C

3.2. Tuberculosis

3.2.1. EnviromentPlace as Places

EnviromentPlaceState:

The EnviromentPlace class manages each of the grid places’ state

throughout the TB simulation, including bacteria growth and the functions/logic

to control macrophage agents that decay by 1 level per day releasing chemokine

and T-cell agents responding. The state of each place is contained in

‘EnviromentPlaceState.h’ and contains the state of agents on this place as each

place is limited to one macrophage agent and one T-cell agent residing on it at a

time. An excerpt of this can be found in Appendix Code Snapshot D:

EnvironmentPlace initialization:

All places in the simulation representing EnviromentPlace classes are

initialized using code that can be found in Appendix Code SnapShot E:

A randomization of the initial Places with bacteria on the grid occurs on

CPU host memory and then sent via callAll() to the GPU device memory for

processing. The blood vessels in all four quadrants are also determined based on

the size of the simulation. The dimension of the grid is always set to two but the

placesSize is size * size to be an n * n grid.

EnviromentPlace Functions:

Omar Ahmed CSS 497: Autumn 2023 Term Report

7 | P a g e

When the simulation is initialized and the randomized initial state of the

simulation is determined, each agent will call a place’s ‘getHighestChemokine’

function to determine where to migrate within its cardinal neighbors.

For every simulation cycle/day, ‘chemokineDecay’ is called to decay the

chemokine levels by 1 and if a macrophage is present with it then it will decay the

macrophage’s chemokine level to 2 as well.

After the first 10 days, agents can spawn deciding on location using the

‘cellRecruitment’ function. Then, every 10 days after that the ‘bacteriaGrowth’

function is invoked which causes places containing bacteria to spread it to their

neighbors.

3.2.2. Macrophage as Agents

MacrophageState

The macrophage dynamic agents represent human immune system

macrophage cells that can be resting, infected, activated, chronically infected, or

dead. It also tracks its internal bacteria and infection times. An excerpt can be

found in Appendix Code Snapshot F

Macrophage Initialization

The initial spawned amount of macrophages is determined by

init_macro_num plus the four spawner points in each quadrant which results in

the totalMacro. Each of these macrophages is assigned a random place and the

spawners are assigned to the blood vessels. They are initialized using the code

below:

Macrophage Functions

Every simulation cycle, the ‘migrate’ function is invoked in the macrophages. The

agent’s state is then updated by invoking the ‘updateState’ Agent function.

Spawners will invoke ‘spawnMicro’ if the place decided that it should spawn a

macrophage.

3.2.3. T-cells as Agents

TcellState

The T-cell state only tracks if it is a spawner.

T-cell Initialization

T-cell spawners are created at the beginning of the simulation, below is an

excerpt of the code:

T-cell Functions

Omar Ahmed CSS 497: Autumn 2023 Term Report

8 | P a g e

Using the get ‘getHighestChemokine’ Places function, T-cells decide where to

spawn. Spawners also spawn a T-cell using ‘spawnTCell’ if a Place decides to

spawn one.

3.2.4. Simulation

This implementation uses a vector of all cardinal neighbors which is

created and allows for passing of bacteria and agent state from current place to

neighbors through exchangeAll() for places. The simulation is terminated when

the desired number of totalDays is achieved. See code in Appendix Code

Snapshot G

4. Verification

4.1. Social Network

Social Network Visualization

This is a snapshot of a representative output produced by the Social Network

simulation. The parameters of this simulation are 50 people in the network, each person

has 10 friends, and the goal is to retrieve their 4th degree of friends. At each degree of

friendship, all people’s relevant friends for that degree are listed.

Social Network Results

Omar Ahmed CSS 497: Autumn 2023 Term Report

9 | P a g e

The Social Network application is functioning correctly, bug-free, and safe within

CUDA memory. However, the following bugs addressed are existent or potentially

existent problems.

During the development of the Social Network benchmark application, I

discovered several bugs within the MASS CUDA Library. Most importantly, is the lack

of a method to invoke an exchange of neighbors based on offsets that are relative, not

predetermined, and dynamic to places rather than predetermined offsets. A new

methodology of setting neighborOffsets specific to the functionality of each application

the populating a list of neighboring Places based on those dynamic offsets was

implemented in a new exchangeAll() function.

Another issue I encountered is the lack of C++ standard library or NVCC Thrust

library support for native data structures. This led to my implementation of necessary

data structures such as queues and sets. This also birthed a new issue of non-dynamic

memory allocation on a CUDA kernel which results in over-allocation of memory, and

this can, in cases of large-size simulations, exhaust all available memory on the GPU

device and crash the application.

Lastly, in the case of host-device memory transfer, both the Social Network and

Game of Life programs have proven that MASS CUDA is inefficiently handling function

invocation and control transfer between host and device which causes higher than

expected execution time.

4.2. Tuberculosis

Tuberculosis Results

As Tuberculosis is now functional, it is still not producing the desired output due

to incorrect agent behavior. The Agent class in MASS should allow for migration of

agents to any part of the grid, while it can only migrate to direct neighbors of a Place.

This has been fixed in version 0.6.2 in the new dynamic migration, termination, and

spawn features implemented. As a result, Tuberculosis runs with no errors but behaves

incorrectly.

4.3. Execution Performance

Social Network

After running ‘make test’, the execution performance for the Social Network

application according to the 7 test simulations is as follows:

Users Friends Degrees (iterations) Times (ms)

10 2 5 344

20 5 5 423

50 10 5 384

100 10 5 384

Omar Ahmed CSS 497: Autumn 2023 Term Report

10 | P a g e

200 10 5 377

300 10 5 383

300 30 1 189

This optimality in execution performance is a great indicator of how the MASS

CUDA library can leverage the parallelizable potential of the Social Network since the

execution time remained near constant as simulation sizes grew.

5. Conclusion

5.1. Summary

Over the past Autumn quarter of development, I have successfully implemented

the Social Network benchmark application and have validated my implementation using

7 different valid test cases for simulation runs. This validation exercise also produced 7

different visualizations of the x-th degree of friends. This implementation in MASS

CUDA reveals better performance metrics in both programmability and execution

performance.

I have also implemented and ported a sizable portion of the Tuberculosis

benchmark application which is ported from its MASS C++ implementation to MASS

CUDA. While I have not produced execution performance figures after my brief time of

work on the application, I am confident that once my implementation is complete through

Fall quarter, the performance metrics for Tuberculosis application will be as impressive

as the Game of Life and Social Network figures.

Omar Ahmed CSS 497: Autumn 2023 Term Report

11 | P a g e

Appendix

Code Snapshots:

(A)

(B)

(C)

Omar Ahmed CSS 497: Autumn 2023 Term Report

12 | P a g e

(D)

(E)

(F)

(G)

Omar Ahmed CSS 497: Autumn 2023 Term Report

13 | P a g e

Location

The code location for Social Network and Tuberculosis applications is located under the

‘oahmed_develop’ branch at following repo location:

https://bitbucket.org/mass_application_developers/mass_cuda_appl/src/oahmed_develop/

My implementation of SocialNetwork is found under the SocialNetwork directory. My

implementation of Tuberculosis is found under the Tuberculosis_dev directory.

How to Run

 Social Network & Tuberculosis

There is a reference to the Game of Life running instructions in the README.md

file in the ‘GameOfLife_dev’ directory, but the two steps to reproduce my output are:

- ‘make build’

- ‘make test’

https://bitbucket.org/mass_application_developers/mass_cuda_appl/src/oahmed_develop/

