
Omar Ahmed CSS 497: Summer 2023 Term Report 
 

 

 

 

 

Refactoring and Porting MASS CUDA Application 

Benchmarks 

 

Omar Ahmed 

 

 

CSS 497 Summer 2023 Term Report 

Professor. Munehiro Fukuda 

8/21/2023 

 

 

 



Omar Ahmed CSS 497: Summer 2023 Term Report 

2 | P a g e  
 

Table of Contents 
1. Introduction .......................................................................................................................................... 3 

1.1. Motivation ..................................................................................................................................... 3 

1.2. Project Goal ................................................................................................................................... 3 

2. MASS CUDA Background ....................................................................................................................... 4 

2.1. Context .......................................................................................................................................... 4 

2.2. Previous Applications .................................................................................................................... 4 

2.3. Reasons for Selected Applications ................................................................................................ 5 

3. Implementation .................................................................................................................................... 7 

3.1. Game of Life .................................................................................................................................. 7 

3.2. Social Network ............................................................................................................................ 10 

4. Verification .......................................................................................................................................... 14 

4.1. Game of Life ................................................................................................................................ 14 

4.2. Social Network ............................................................................................................................ 17 

4.3. Execution Performance ............................................................................................................... 17 

4.4. Current Problems ........................................................................................................................ 18 

5. Conclusion ........................................................................................................................................... 18 

5.1. Summary ..................................................................................................................................... 18 

5.2. Future Development ................................................................................................................... 19 

Appendix ..................................................................................................................................................... 20 

 

 

 

 

 

 

 



Omar Ahmed CSS 497: Summer 2023 Term Report 

3 | P a g e  
 

1.  Introduction 

1.1. Motivation 
The motivation behind my work on both porting and refactoring benchmark applications 

for MASS CUDA is to get closer to implementing a set of standard applications on the 

CUDA version of the MASS library. This set of applications, which is also implemented 

on MASS C++ and Flame, is used to benchmark the performance and efficiency of the 

MASS CUDA library, and compare that to other implementation performances for agent 

parallelization. 

 

During Summer quarter, I focused my efforts on correctly implementing the two MASS 

CUDA benchmark applications, Game of Life and The Social Network. The Game of 

Life benchmark application is an implementation of the mathematical John Conway’s 

Game of Life, while The Social Network benchmark application implements a 

specification for a graph of people who are connected as friends and aims to optimally 

retrieve their connections. Please refer to sections 2.2 and 2.3 for a detailed explanation. 

 

1.2. Project Goal 
The goal of this project is to create standardized applications to be used in measuring the 

execution performance and programmability of the MASS CUDA library on a multi-GPU 

setup against the performance of other single-GPU, different architecture, or different 

library approaches. This project also serves as a metric for the usability of the MASS 

CUDA library itself for developers and to expose any library errors. 



Omar Ahmed CSS 497: Summer 2023 Term Report 

4 | P a g e  
 

The completion of both Game of Life and Social Network will contribute to the complete 

and whole measurement of the MASS CUDA library when compared to FLAME GPU 

and MASS C++ as all agent-based parallelization libraries. 

2.  MASS CUDA Background 

2.1. Context 
The MASS, short for Multi-Agent Spatial Simulation, library is a parallel-computing 

library for multi-agent and spatial simulations over a cluster of computing nodes. The 

CUDA, short for Compute Unified Device Architecture, platform is a framework 

developed by Nvidia to expose the capabilities of GPU acceleration, specifically on 

Nvidia CUDA GPUs, and allow for intuitive and optimized general purpose GPU 

(GPGPU) programming. 

  

The MASS CUDA library takes advantage of Nvidia CUDA’s programming model, nvcc 

compiler, and parallelization to implement its Place and Agent based simulation model on 

the GPU cluster, Juno machines. 

 

2.2. Previous Applications 

The goal number of MASS CUDA benchmark applications is 7 applications, 3 of which 

have been implemented (Tuberculosis, Heat2D, BrainGrid, and SugarScape), while I 

have worked on implementing 2 of the remaining 4 applications. 

The latest implemented benchmark application is the Tuberculosis application which is a 

complex simulation of the interaction between the immune system in the human lungs 



Omar Ahmed CSS 497: Summer 2023 Term Report 

5 | P a g e  
 

and Mycobacterium Tuberculosis. It applies the place-agent model to using two different 

agents and one place to simulate the environment.  

 

The Heat2D benchmark application simulates the dispersion of heat across a metal sheet 

as a 2D grid starting from an initial point. It applies the place-agent model using a place 

to simulate each of the cells in the 2D grid but does not use any static/dynamic agent. 

 

The BrainGrid benchmark application simulates a human neural network that generates 

axons and dendrites to form the network. It applies the place-agent model using a place to 

simulate each of the cells in the 2D grid but doesn’t involve any static/dynamic agent. 

 

The SugarScape benchmark application simulates interactions of ants in a grid of 

different sugar mounds attempting to collect as much sugar as possible. It applies the 

place-agent model using dynamic ant agents that use agent migration to transfer places 

and uses a place to simulate a grid with sugar mounds. 

 

2.3. Reasons for Selected Applications 
The Game of Life benchmark application simulates the mathematical game by John 

Conway. The rules of the game are that any cell with fewer than two neighbors die of 

underpopulation, any cell with two or three neighbors survives, any cell with more than 

three neighbors dies of overpopulation, and any dead cell with exactly three neighbors 

becomes alive. This game is a cellular automaton with two states, dead or alive, that 

describes how an entity could be responsible for creating another of itself as John Von 



Omar Ahmed CSS 497: Summer 2023 Term Report 

6 | P a g e  
 

Neumann stated, also how the evolution of the state of the game is solely dependent upon 

the initial state of creation. Since it is a zero-player game that can stretch to infinity, the 

game is terminated after a certain count of iterations has completed or the game evolved 

to contain no more living cells. In MASS CUDA, The Game of Life is simulated using an 

orthogonal grid of cells where each cell is represented by a place in the library. Each 

place/cell contains information about its neighboring cells’ state and the game is iterated 

based on each place/cell calculating its own state using the states of neighboring cells. 

This iterative, yet finite, calculation of each cell’s state is a computationally intensive but 

parallelizable problem and is why MASS CUDA’s programming model has easily been 

applied to the Game of Life with success. The purpose of the game is to determine the 

state of the grid/environment after x generations, known as ticks, given a random initial 

state of the grid. The Game of Life application uses places for cells not any 

static/dynamic agents to compute the simulation state, but unlike other previously 

implemented applications, Game of Life is the only application simulating cellular 

automaton with a possibility of an infinitely long simulation. 

 

The Social Network benchmark application simulates the connections/friends formed 

between a number of users in a social network and allows for retrieval of the Xth degree 

list of friends of a particular user. The users in the social network are represented using 

places and not static or dynamic agents. What distinguishes this application from the ones 

previously implemented is that the social network of friendships in the social network is a 

group of users connected to each other using a bidirectional graph through an adjacency 

list stored at each place. MASS CUDA’s programming model applies greatly to this 



Omar Ahmed CSS 497: Summer 2023 Term Report 

7 | P a g e  
 

benchmark application because the computationally intensive and parallelize workload of 

the breadth-first search that is run when retrieving each user’s xth degree friendships. 

 

3.  Implementation 

3.1. Game of Life 

3.1.1. Life Cells as Places 

Life State: 

 The Life class manages each of the grid places’ state throughout the GoL 

simulation, including the health state of the cell and the functions/logic to 

compute the next state of the cell. The state of the cell is contained in ‘LifeState.h’ 

which includes an array of the 8-directional neighbors of the cell, a value ‘mod0’ 

containing the state of the cell if the simulation tick is even, and a value ‘mod1’ 

containing the state of the cell if the simulation tick is odd. Below is an excerpt of 

this: 

  



Omar Ahmed CSS 497: Summer 2023 Term Report 

8 | P a g e  
 

 

In comparison to MASS C++, this is a decoupling of the functionality of the Life 

class since state-related attributes of each Life cell in C++ stored as attributes of 

the Life class itself as a vector of cardinal neighbors and current state of cell. This 

difference in structure is due to a difference in global memory management by 

CUDA and how the state of each cell must be associated with a PlaceState pointer 

for CUDA to store and access. 

 

Life Places initialization: 

All places in the simulation representing Life classes are initialized using 

the following code: 

 

A randomization of the initial grid state happens on CPU host memory and 

then sent via callAll() to the GPU device memory for processing. The dimension 

of the grid is always set to two but the placesSize is size * size to be an n * n grid. 



Omar Ahmed CSS 497: Summer 2023 Term Report 

9 | P a g e  
 

 

Life Place Functions: 

When the simulation is initialized and the randomized initial state of the 

simulation is determined, each place calls the ‘initalizeHealth’ function storing the 

initial health state in the mod0 attribute by retrieving its place index. 

When the simulation is terminated and the desired nth state of the grid is 

achieved, the grid must be displayed by retrieving the health state of each place 

using a public member. This is done through the function ‘getHealth’ which 

returns the mod0 attribute. 

When the entire grid state must be computed at each tick/iteration of the 

simulation, the ‘computeDeadOrAlive’ function is called upon by the 

exchangeAll() function to allow for each place to send message to each of its 

neighbors with its updated state then each place gets the most updated state by 

accessing each of its neighbors’ mod0/mod1 state and updating its own based on 

that. 

 

3.1.2. Simulation 

This implementation uses a vector of all cardinal neighbors which is 

created and allows for passing of health state from current place to neighbors 

through exchangeAll() for places. The simulation is terminated when the desired 

number of generations is achieved. See below for code: 



Omar Ahmed CSS 497: Summer 2023 Term Report 

10 | P a g e  
 

 

 

3.2. Social Network 

3.2.1. SocialPlace as Places 

SocialPlace State 

 The SocialPlace class represents a user in the Social Network simulation 

and is responsible for tracking the user’s first degree friends and computing their 

xth degree circles of friends. Since the Social Network application is modeled as a 

bidirectional graph that represents all friendships between different users, each 

user must form and adjacency list which includes its first degree friends. The 

‘SocialPlaceState.h’ class consists of a userId to track the index of the place/user 



Omar Ahmed CSS 497: Summer 2023 Term Report 

11 | P a g e  
 

in the places array when instantiated as well as an integer array of the user’s first 

degree friends’ userIds. An excerpt of that code is shown below:  

 

 

SocialPlace Initialization: 

SocialPlaces is meant to be a 1D array of SocialPlace classes that each 

contain a list of adjacencies. The following code shows how SocialPlaces is 

created: 

 

The basis of this adjacency list model is a 2D array that is as long as the 

number of users, represented as places, specified on host memory through user 

input and is as wide as the number of first-degree connections each user should 

have. Each user has k = n / m number of friends, where n is the number of users in 



Omar Ahmed CSS 497: Summer 2023 Term Report 

12 | P a g e  
 

the entire simulation and m is the fraction of the total group and this is done to 

create a k-regular bidirectional graph. 

 

SocialPlace Functions: 

When the simulation is initialized and a randomized k-regular graph is 

created, each of users the receives their list of first- degree friends which is passed 

through the ‘setFriends’ function. The callAll function is called to setFriends with 

an argument of a 2D array which is nPeople * nFriends big, then each 

user/SocialPlace retrieves the 1D array relevant to them. 

When each place is prompted by its neighboring place to exchange their 

first-degree friend list using ‘exchangeAll’, each user returns their predefined 

friendship list using the ‘getFriends’ function. 

After all places are initialized, the ‘setUserId’ function is called to before 

calling the ‘setFriends’ function so each user has a populated index from their 

place in the Places array in the ‘userId’ property in SocialPlaceState. 

The ‘getUserId’ function is used to retrieve the place’s index in the places 

array when needed for displaying results, etc. 

When the simulation is initialized and each user/place has populated their 

first-degree friendship list, the simulation then uses the ‘calculateXthFriends’ 

function to retrieve each user’s xth degree friend by using the ‘exchangeAll’ 



Omar Ahmed CSS 497: Summer 2023 Term Report 

13 | P a g e  
 

function. The ‘calculateXthFriends’ function uses breadth-first search to traverse 

the graph and compile the friends at each degree up to the xth degree. 

 

3.2.2. Simulation 

The simulation starts with initializing each place with its index in the places array 

using the ‘callAll’ function. Then, the 2D array ‘friendShipList’ is initialized and 

randomly created to be a k-regular graph to then be passed to each place for 

populating their friends list. The simulation ends after iterating through the array 

‘places’ and returning up to their xth degree friendships. An excerpt of the almost 

complete functionality is seen below: 

 

 



Omar Ahmed CSS 497: Summer 2023 Term Report 

14 | P a g e  
 

4.  Verification 

4.1. Game of Life 

Game of Life Visualization 

For the Game of Life simulation, there are 5 tests that run for 10 generations each and all 

start at a randomized state. These 5 unit tests are found in the file 

‘GameOfLife/GameOfLife_dev/test/main.cu’ where the tests are executed with the 

command ‘make test’, ‘make test’ in this case does not receive any command line 

arguments to specify simulation size but is predetermined for each test when executed at 

simulation size 2, 4, 8, 16, 32. Below are all the visualized results of the 5 simulations 

run. 

- For a simulation of size 2 (2 * 2) 

 

- For a simulation of size 4: 

 

- For a simulation of size 8: 



Omar Ahmed CSS 497: Summer 2023 Term Report 

15 | P a g e  
 

 

- For a simulation of size 16: 

 

- For a simulation of size 32: 



Omar Ahmed CSS 497: Summer 2023 Term Report 

16 | P a g e  
 

 

As observed by the displayed results of each of the 5 different sized simulations, 

all simulations of size 8 or less are all resolved to no living cells after only 10 

generations/iterations. The complexity of simulations of size 16 and 32, however, is much 

higher and much more unpredictable. 

Game of Life Results 

Since the Game of Life benchmark application is not complex in implementation, 

without any agents or concurrency problems, the implementation and results for the 

application were fairly straightforward.  

One minor bump in the road was a mis-implementation of the application using 

MASS CUDA without using the correct app template. Due to many directory, import, and 



Omar Ahmed CSS 497: Summer 2023 Term Report 

17 | P a g e  
 

segmentation issues, the original implementation would produce an invalid configuration 

argument error. Below is a snippet of the error:  

 

I reported this issue to Brian, but found that an easier solution was the 

restructuring of the Game of Life application all together. 

 

4.2. Social Network 

Social Network Results 

At this current time, the Social Network benchmark application is not in a state that can 

be run or tested. However, there is an issue referenced in section 4.4 with the MASS 

CUDA library implementation that was exposed through the Social Network’s use of 

‘exchangeAll’.  

 

4.3. Execution Performance 

Game of Life 

After running ‘make test’, the execution performance for the Game of Life application 

according to the 5 test simulations is as follows: 

- Simulation size 2: 211 ms 

- Simulation size 4: 459 ms 

- Simulation size 8: 441 ms 



Omar Ahmed CSS 497: Summer 2023 Term Report 

18 | P a g e  
 

- Simulation size 16: 437 ms 

- Simulation size 32: 440 ms 

This optimality in execution performance is a great indicator of how the MASS CUDA 

library can leverage the parallelizable potential of Game of Life since the execution time 

remained near constant as simulation sizes grew. 

 

4.4. Current Problems 

Social Network 

Due to the ‘exchangeAll’ function requiring an argument of neighbors, the ‘neighbor’ 

member of PlaceState is not sufficient for the use case of Place and PlaceState in the 

Social Network application. Brian has been notified of this bug and it should be fixed and 

ready for use through my next quarter of work on Social Network. 

 

5.  Conclusion 

5.1. Summary 

Over the past summer quarter of development, I have successfully implemented 

the Game of Life benchmark application and have validated my implementation using 5 

different valid test cases for simulation runs. This validation exercise also produced 5 

different visualizations of the state of the grid after 10 generations. Although I am not 

familiar with the execution performance of Game of Life on MASS C++, I imagine that 

the implementation on MASS CUDA reveals better performance metrics.  

 



Omar Ahmed CSS 497: Summer 2023 Term Report 

19 | P a g e  
 

I have also implemented a sizable portion of the Social Network benchmark 

application which is ported from its MASS C++ implementation to MASS CUDA. While 

I have not produced execution performance figures after my brief time of work on the 

application, I am confident that once my implementation is complete through Fall 

quarter, the performance metrics for the Social Network application will be as impressive 

as the Game of Life figures. 

 

5.2. Future Development 

My future development plans are to continue with my efforts to implement and validate 

the Social Network benchmark application through Fall quarter. My validation work will 

include producing some visualization output for reference. I will then be working 

primarily on porting and implementing the VDT benchmark application from its MASS 

C++ implementation to a new MASS CUDA implementation.  

 

By achieving my end goal, there will only be 3 more benchmark applications 

implemented using the MASS CUDA library. 

 

 

 

 

 

 

 



Omar Ahmed CSS 497: Summer 2023 Term Report 

20 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 
 

Code Location 

The code location for Game of Life and Social Network applications is located under the 

‘oahmed_develop’ branch at following repo location: 

https://bitbucket.org/mass_application_developers/mass_cuda_appl/src/oahmed_develop/ 

My implementation of Game of Life is found under the GameOfLife directory in 

‘GameOfLife_dev’. 

https://bitbucket.org/mass_application_developers/mass_cuda_appl/src/oahmed_develop/


Omar Ahmed CSS 497: Summer 2023 Term Report 

21 | P a g e  
 

How to Run  

 Game of Life 

Code There is a reference to the Game of Life running instructions in the 

README.md file in the ‘GameOfLife_dev’ directory, but the two steps to reproduce my 

output are: 

- ‘make build’ 

- ‘make test’ 

 

Social Network 

 The Social Network application is still under development at this time and cannot 

be run! 

 


