
Page 1 12/8/2012

Multi-GPU MASS Library

Enabling fine-grained parallelism using agent-based programming on GPUs

Rob Jordan, MSCSSE

December 8, 2012

Abstract
The goal of the project is to implement the Multi-Agent Spatial Simulation (MASS) library in CUDA-C

using multiple Graphical Processing Units (GPUs) in order to realize a significant speedup over the

existing single GPU and multi-threaded versions. MASS is one component of the Sensor Cloud

Integration research effort lead by Professor Munehiro Fukuda at the University of Washington Bothell.

Though various versions of the MASS library have already been implemented in Java, none of the

versions have been able to achieve the level of performance required. We are hopeful that a multi-GPU

version can provide the requisite performance.

Introduction
We provide background information on General Purpose Computing on Graphics Processing Units using

NVIDIA’s CUDA architecture and then describe how this technology can be applied to the MASS library.

Next we will discuss the sample application, Wave2D, used throughout this project. Lastly, we will

conclude the introduction with a brief survey of related work distilled from an extensive literature

survey.

GPGPU with CUDA
Over the last ten years, GPUs have evolved into massively multi-threaded engines capable of performing

incredible amounts of parallel computation. Figure 1 shows the raw computation power of GPUs as

measured by Theoretical GFLOPs compared to Intel’s

mainstream CPUs. Researchers have begun harnessing this

computational power for tasks other than computer

graphics in what is known as general-purpose computing

on graphics processing units (GPGPU).

NVIDIA is a lead manufacturer of GPUs and has developed

Compute Unified Device Architecture (CUDA) in order to

facilitate GPGPU. Applications are written in C/C++ using

CUDA-C extensions, compiled using the NVIDIA compiler,

and then executed on a platform containing a CUDA-

capable GPU. Before CUDA, developers had to write

applications using the graphics-specific processing
Figure 1 GPU Performance

Multi-GPU MASS Library Rob Jordan

Page 2 11/11/2012

pipeline, which required using graphics domain concepts like texture shaders for non-graphics programs,

which was extremely difficult, time consuming, and error prone.

The general programming pattern for CUDA programs is a master-slave style as illustrated in Figure 2.

The CPU acts as the master and the GPU serves as the slave. The CPU initializes the program and copies

data from system memory to the GPU memory. The

program is executed on the GPU using GPU memory, and

then the results are transferred back to the host.

Due to their massively multi-threaded nature, GPUs are

exceptionally well-suited for multi-agent simulations and

models since, conceptually, each agent or location can be

mapped to an independent CUDA thread and executed in

parallel. Since GPUs are capable of thousands of parallel

threads running on highly tuned ALUs, the bottleneck in

programs tend to be bandwidth related. Memory

management is key to performance, especially once additional GPUs are added since all communication

must use the same PCI-e bus.

Multi-Agent Spatial Simulation (MASS) Library
MASS is a middleware library that provides job parallelization using entity-based programming. The Java

specification was written by Professor Fukuda as one component of the Sensor Cloud Integration

research effort. Though it is intended to be used for predicting temperatures in Eastern Washington

apple orchards in our research project, the library offers general parallelization for any multi-agent

spatial simulation model. Figure 3 shows the MASS library being used

to model temperature and air flows.

There are two primary entities in the MASS library: Agents and Places.

A Place is an abstract class that represents a fixed location in the

simulation space and can exchange data with other Places. Places (a

collection of Place entities) is a multi-dimensional array of elements.

Places are mapped to threads. Agents are also an abstract class;

however, an Agent represents the computational entities that can

migrate from Place to Place and interact with other Agents. Different

than Places, Agents are mapped to processes.

The MASS library includes an API that enables a developer to write

solutions that instruct all Agents or Places to call a certain function, or only a subset of all Agents or

Places to call a function. With these tools, a developer can create complex multi-agent simulations that

will automatically run in parallel.

To date, only a Java version of the MASS library running on a cluster of nodes has been implemented. A

single-GPU version is currently under construction, as well as a multi-node C++ version.

Copy data from
host to device(s)

Execute
CUDA kernel(s)

Copy data from
device(s) to host

CPU

Chipset

Sys
Mem

GPU

GPU
Mem

5-10 GB/s 50-80 GB/s

5 GB/s

Figure 2 CUDA Programming Pattern

Figure 3 MASS Agents and Places

Multi-GPU MASS Library Rob Jordan

Page 3 11/11/2012

Wave2D
Wave2D is an implementation of Schrodinger's Wave Dissemination model over two-dimensional space.

It is a time-stepped model that calculates the wave height for each cell in a finite grid space for a given

time period. The height z of a cell located at [i,j] at time t is determined by Schrodinger's wave formula:

z[i,j](t) = 2.0 * z[i,j](t-1) – z[i,j](t-2) + c^2 * (dt/dd)^2 *

 (z[i+1,j](t-1) + z[i-1,j](t-1) + z[i,j+1](t-1)

 + z[i,j-1](t-1) – 4.0 * z[i,j](t-2))

In short, the height of any cell is a function of its previous height and the previous heights of its four

cardinal neighbor cells.

It has been selected as a suitable test application for MASS for a number of factors. First, the wave

height calculation is relatively simple and straightforward to implement yet offers interesting

communication needs, namely the need for each cell to exchange its height with its neighbors. Without

this constraint, the parallelization of the algorithm

would be trivial. By requiring the exchange of data

among cells, the implementations must take into

account the transfer of data across threads and

processes, paying careful attention to the data

decomposition of the problem space. With multiple

GPUs connected on the PCI-e bus, this problem

involves managing a distributed grid over many

separate memory spaces, as illustrated by Figure 4.

Secondly, the two-dimensional nature of the

application maps perfectly to the intended MASS

domain of a spatial model. It also provides an easily

adjustable problem set with which to test the scalability of any solution since the simulation space

exhibits quadratic growth (i.e., an N x N simulation space). Small simulations can be hand-verified and

then the simulation space can be increased dramatically in order to push the system under test to its

limits.

Lastly, the intended use of the MASS library within the Sensor Cloud Integration project is to predict

temperatures in a wide two-dimensional space using a temperature prediction algorithm not entirely

unlike Schrodinger’s wave formula.

Related Work
The literature surveys targeted six aspects of the project: background on the Sensor Grid project and the

MASS library, general purpose computing using GPUs, domain decomposition strategies for multi-agent

simulations using multiple GPUs, communication versus computation strategies, programming strategies

specific to CUDA, and metrics.

Figure 4 Distributed Grid over GPUs

Multi-GPU MASS Library Rob Jordan

Page 4 11/11/2012

Articles [1] and [2] provide background information on the Sensor Grid research project led by Professor

Fukuda as well as the motivation behind the Multi-Agent Spatial Simulation (MASS) library. They

describe the basic programming style for creating MASS-based applications and how MASS contributes

to the overall research effort.

Articles, [3], [4], [5], and [6] provide the technical details of designing general purpose applications using

GPUs and CUDA. These articles described the history of GPUs and how they have evolved over the past

10 years from simple graphics processing elements into small-scale super computers in their own right.

These sources also describe CUDA programming and the different types of memory that CUDA exposes

through the API. Since memory bandwidth has been shown to be the dominant bottleneck in a CUDA

application, proper use of memory is essential to any

efficient solution.

Articles [7], [8], and [9], discuss efforts to map multi-

agent applications to GPUs with regards to different

domain decomposition strategies and how to best map

the entities to the GPU threads. The row domain data

decomposition strategy described by [7] fit this

project's needs precisely so it was selected as the

primary method for distributing work across the

multiple GPUs. This strategy breaks the domain into

stripes based on rows in order to minimize stripe neighbors, thereby minimizing communication, and

maps contiguous memory to each GPU so that GPU memory access can be streamlined. Figure 5

demonstrates how the global domain is broken into horizontal stripes using this strategy.

This same article [7] introduced a concept for handling border cells and their need to communicate with

neighbors that reside on a different node. Ghost cells (aka. halos and shadow cells in other literature)

are redundant copies of data on each GPU. In Figure 5, the Ghost cells are the hashed blue cells on GPU

1 and the hashed orange cells on GPU 2. They are not updated by each GPU but are used for read-only

memory access so that the border cells do not need to access memory on a different device. The

authors found significant performance

improvement using this technique so it was

incorporated into this project.

The last set of articles, [10] and [11],

discussed methods of optimizing a multi-

GPU solution by employing overlapping

communication and computation. Initial

performance timings of Multi-GPU MASS

showed that the communication overhead

was responsible for the overwhelming

majority of the execution time, so a method to reduce this aspect was needed. [11] discussed an

Figure 5 Row domain decomposition with Ghost Cells

Figure 6 Overlapping Communication and Computation

Multi-GPU MASS Library Rob Jordan

Page 5 11/11/2012

automated method of expanding the ghost cell region based on dynamically determined application

characteristics. The complexity of their solution did not seem to worth the effort at this stage of the

project. The other article [10], however, described a ghost exchange algorithm that fit my application

perfectly. In fact, they described my initial implementation attempt and its shortcomings and then

presented an optimized solution. The basic algorithm is shown in Figure 6 and utilizes CUDA execution

streams to provide simultaneous memory transfer and computation.

Implementation
The implementation strategy had three significant

milestones, following an evolutionary development

cycle where each successive stage of the process

builds upon the previous milestone.

Wave2D served as the test program that evolved

throughout this process, transforming from a

sequential program executed solely by the CPU to a

massively parallel program executed by multiple

GPUs coordinated by the CPU.

Milestone 1: w2dSequential
Milestone 1 was the baseline implementation of Wave2D in C. This program, w2dSequential, was highly

optimized for single-threaded execution and tuned for high performance. It is essentially as fast as

possible given the program environment and thus serves as the benchmark against which future

milestone implementations are compared.

Milestone 2: w2dMultiGpu
The second milestone implemented Wave2D using multiple

GPUs, resulting in the program w2dMultiGpu. Like

w2dSequential, w2dMultiGpu is highly optimized for Wave2D

and tuned for fast performance. It represents the upper

bound of performance for Wave2D on multiple GPUs. This

way, we can measure how efficiently the MASS library

implementation uses multiple GPUs.

Grid Data Structure

w2dMultiGpu introduced the Grid Data Structure,

implementing the row domain data decomposition strategy

as discussed in [7]. The structure itself is composed of a

hierarchy of inner structures: stripes, ranges and points and enables us to decompose the distributed

Places array into stripes across multiple GPUs while preserving the ability to reconstruct global array

coordinates.

M1

•w2dSequential

•Wave2D with sequential C

M2

•w2dMultiGpu

•Wave2D with multiple GPUs

M3

•w2dMass

•Wave2D with Multi-GPU MASS

Figure 7 Implementaion Milestones

Figure 8 Grid Structure

Multi-GPU MASS Library Rob Jordan

Page 6 11/11/2012

The grid_t struct contains multiple stripe_t structs that each represent the data for a particular GPU

device. The stripes are partitioned such that each stripe is the entire width of the grid. The height of the

grid is evenly distributed to each stripe with the exception of any remainder rows.

Each stripe contains the ghost data rows from its neighbors. The first stripe only has one ghost region,

the overlapping cells from its neighbor below, and similarly the last stripe only has one ghost region

from its neighbor above. All other stripes (i.e., the inner stripes) each have a ghost region for the upper

and lower neighbor. These regions are represented by the range_t struct. The core data region is also

represented by a range.

Lastly, the global locations in the ranges are recorded using the point_t struct, which aids in global and

local addressing offset.

The overlapping communication and computation algorithm from [10] and outlined in Figure 6 provided

the method for exchanging ghost cells between adjacent stripes.

Ghost Exchange Algorithm

The Ghost Exchange Algorithm, based on [9], uses overlapping communication and computation in

order to maximize the GPU compute potential and minimize communication overheads.

The lower ghost range from each stripe must be

sent to the upper ghost range of the neighbor

stripe below, and the upper ghost range must be

sent to the lower ghost range of the neighbor

above.

This complex interchange of data is facilitated by

using the host memory as a buffer where data is

copied into the corresponding row and then sent

back out to neighboring GPUs.

Since this process is carried out in parallel among

multiple GPUs, we must synchronize at various points along the process. Specifically, we synchronize

after the copy of data to the host buffer and then synchronize after the copy to the destination GPUs.

These two barriers ensure that at the end of the ghost exchange, each GPU contains updated ghost data

and can proceed to compute the inner cells.

Milestone 3: w2dMass
The last milestone involved two significant stages: create the Multi-GPU MASS Library and then

implement Wave2D using the library. The fundamental principles and lessons learned from the first two

milestones were incorporated and refactored into the generalized parallelization library, all the while

retaining the row domain data decomposition, ghost cells, and overlapping communication and

computation algorithms embedded into w2dMulitGpu.

Figure 9 Ghost Exchange Algorithm

Multi-GPU MASS Library Rob Jordan

Page 7 11/11/2012

Methods

Experimental Design
The experiments were performed on the hydra.uwb.edu server in the University of Washington

Distributed System Laboratory. This server contains two NVIDIA Tesla C1060 GPUs connected on the

PCI-e bus. These GPUs have a 1.3 Compute Capability, 4.0 GP global memory and 30 streaming

multiprocessor each. They are theoretically capable of 933.12 GLOPS (single precision).

Each of the milestone implementations were executed for four different simulation sizes (500, 1000,

1500, 2000), on one and on two GPUs, each for 5000 time steps. Each execution configuration was

performed 20 times and the results were averaged.

Metrics
The two metrics we focused on are total execution time and speedup. Execution time was measured as

simply the time in milliseconds from just after parameter parsing to the end of the simulation. Writing

the results to disk was excluded from the execution time.

Speedup represents how much faster the parallel implementation is over the sequential program, and is

simply the ratio of sequential execution time to parallel execution time.

Normally discussions involving performance of parallel programs involves the concept of efficiency,

which reflects the effect of adding additional threads or processes to a parallel program. Since

determining the number of runtime threads on a GPU is virtually impossible due to warp scheduling and

thread interleaving, efficiency is excluded from our metrics set.

Results
This section presents the results of the experiments. First the results for w2dMultiGpu are presented,

followed by the results for w2dMass.

w2dMultiGpu
The following charts present the execution results for w2dMultiGpu compared to w2dSequential.

w2dMultiGpu was executed using a single GPU as well as two GPUs.

Multi-GPU MASS Library Rob Jordan

Page 8 11/11/2012

w2dMass
The following charts present the execution results for w2dMass compared to w2dSequential. Like

w2dMultiGpu, w2dMass was executed using a single GPU as well as two GPUs.

0

100

200

300

400

500

600

500 1,000 1,500 2,000

Se
co

n
d

s

Simulation Size

Execution Time

Sequential 1GPU 2GPU

Figure 11 w2dMultiGpu Execution Time

0

20

40

60

80

100

120

140

160

180

500 1,000 1,500 2,000

Simulation Size

Speedup

1GPU 2GPU

Figure 10 w2dMultiGpu Speedup

0

100

200

300

400

500

600

500 1,000 1,500 2,000

Se
co

n
d

s

Simulation Size

Execution Time

Sequential 1GPU 2GPU

Figure 13 w2dMass Execution Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

500 1,000 1,500 2,000

Simulation Size

Speedup

1GPU 2GPU

Figure 12 w2dMass Speedup

Multi-GPU MASS Library Rob Jordan

Page 9 11/11/2012

Discussion
As expected, the performance of w2dSequential degrades as the simulation size increases. This is due to

the fact that the domain size grows quadratically yet the program remains sequential. Though the

number of elements increases, the time to process each element remains constant which results in the

accelerating time to process all elements.

GPUs, on the other hand, have incredible potential for providing significant performance improvements

in spatial simulation models as demonstrated by w2dMultiGpu. In stark contrast to the sequential

program, the GPU-based Wave2D simulations experienced relatively constant execution time regardless

of the simulation size. This constant time behavior is nothing short of incredible in the face of a data set

that is growing at a quadratic rate.

As Figure 11 illustrates, the speedup actually increases as the simulation size increases, thereby

demonstrating the scalability of the program. This result means that multi-GPU programs are a viable

means for performing large-scale spatial simulation computation. Though each GPU has limited

memory, we can simply plug more GPUs into a GPU server to scale out horizontally to solve larger and

larger problems. The limiting factor is now the host memory since it is used for the ghost exchange and

staging ground.

The w2dMultiGpu program validated the two research-based algorithms implemented based on the

literature survey. The row domain data decomposition with ghost cells strategy coupled with the

overlapping communication and computation algorithm solved the memory bottleneck problem that so

often plagues GPU programs.

Refactoring w2dMultiGpu into w2dMass while implementing the MASS library did not provide the level

of speedup that was expected. That being said, it is notable that the performance of two GPUs outpaced

the single GPU performance once the simulation size reached 1,000 by 1,000. In fact, the multi-GPU

solution did outperform the sequential program in all runs with two GPUs and a simulation size over

500. The parallel nature and scalability of GPUs must, at this point, overcome other limiting factors once

the simulation size reaches some tipping point.

Comparing the performance results between w2dMultiGpu and w2dMass reveals that though the

algorithms remained the same, one or more performance bottlenecks were introduced. One potential

bottleneck candidate is known as warp divergence. On the GPU, threads are executed in groups (or

warps) of 32. These 32 threads execute the exact same instruction at the same time; consequently, if

one thread branches then all other 31 threads must wait until it joins the main execution path again. As

such, overall execution time can be reduced by a factor of 31. Boundary conditions are the most

common location where these branches can occur and are thus very expensive.

There are two potential solutions to the warp divergence problem. First, the code can be refactored so

as to avoid branches and boundaries. While removing these conditions entirely is most likely entirely

impossible, any reduction can have a significant impact. A second solution is to group similar operations

into similar warps. For example, if boundary conditions cannot be avoided, it would be better to group

Multi-GPU MASS Library Rob Jordan

Page 10 11/11/2012

all threads that will execute along the boundary into the same warp so that there is no divergence. They

would all go down the boundary path, leaving the other warps to execute the main code path.

The second potential source for performance bottleneck is the lack of coalesced memory access. On the

GPU, memory transactions are per half-warp. This means that that all 16 threads attempt to read

memory in parallel. This memory access can be optimized if all threads read adjacent memory

addresses. Specifically, these reads can be coalesced if, and only if, the kth thread accesses the kth

memory element. This access pattern proves problematic for spatial simulation models since threads

tend to access the memory of adjacent locations rather than a single corresponding location. That is,

cells often need information from their surrounding neighbor cells and so this coalesced pattern breaks

down.

A potential solution to these memory access patterns is to use another type of memory known as

texture memory. Texture memory is optimized for exactly the neighbor memory access pattern seen in

spatial simulation models and so is an ideal fit for MASS. The problem is that, as of CUDA 4.0, texture

memory must be statically allocated, limiting its usefulness in a library that is supposed to provide the

flexibility to declare grid sizes at runtime. Additionally, MASS does not limit the developer to a fixed

number of Places collections, so the requirement to statically allocate the required memory proves

overly restrictive.

A second option to improve memory access times is to use shared memory to cache neighbor elements.

Shared memory is located on the device and provides extremely fast access. Furthermore, if is often the

case that multiple cells need to access the memory of a particular cell, so we only pay the memory copy

price once and then reuse the cached copy. The downside is the complexity of managing this additional

layer of memory, ensuring that it does not become stale and avoiding race conditions. Managing these

conditions is an area for future research.

Next Steps
Though w2dMultiGpu demonstrated the potential that GPUs have to offer for the MASS library, the

implementation of w2dMass failed to reach the target execution speed goals. On the bright side, it

appears that w2dMass increases speed as additional GPUs are added to the system. It would be

interesting to execute w2dMass on a server with more than two GPUs in order to verify this hypothesis.

The warp divergence and coalesced memory access are other areas for improvement that would benefit

from additional research and development. While far from rudimentary, the current w2dMass

implementation only tackles high-level memory access patterns. Lower level (i.e., thread- or block-level)

optimizations may significantly improve the program’s performance.

Another potential area for improvement is the introduction of standard object-oriented programming

techniques like abstraction and inheritance to faithfully implement the MASS library specification. As

previously mentioned, the Tesla GPU devices in the laboratory have a compute capability of 1.3, which

limits the programming techniques available to developers. Devices with compute capability of 2.0 or

Multi-GPU MASS Library Rob Jordan

Page 11 11/11/2012

higher enable the use of abstract classes and function pointers, as well as the linking compilation stage

which allows the code files to be separated into header and source files.

Multi-GPU MASS Library Rob Jordan

Page 12 11/11/2012

Bibliography
[1] M. Fukuda. Agent-based workbench for on-the-fly sensor-data analysis. Communications, Computers

and Signal Processing (PacRim), 2011 IEEE Pacific Rim Conference on: 333-339, August 2011

[2] J. Emau, T. Chuang, and M. Fukuda; A multi-process library for multi-agent and spatial simulation.
Communications, Computers and Signal Processing (PacRim), 2011 IEEE Pacific Rim Conference on,
369-375, August 2011

[3] E. Wu and Y. Liu. Emerging technology about GPGPU. Circuits and Systems, 2008. APCCAS 2008. IEEE
Asia Pacific Conference on: 618-622, November 2008

[4] NVIDIA. NVIDIA CUDA C Programming Guide. www.nvidia.com. NVIDIA, April 2012.

[5] NVIDIA. NVIDIA CUDA C Best Practices Guide. www.nvidia.com. NVIDIA, July 2012.

[6] J. Sanders and E. Kandrot. CUDA by Example. Upper Saddle River, NY: Addison-Wesley, 2011. Print. p.
73–80.

[7] M. Saetra and B. André. Shallow Water Simulations on Multiple GPUs. Proceedings of the 10th
International Conference on Applied Parallel and Scientific Computing 2: 56-66, 2012.

[8] Y. Liu, K. Shi, H. Deng, and E. Wu. A Multi-GPU Based Semi-Lagrangian Fluid Solver. Proceedings of the
10th International Conference on Virtual Reality Continuum and Its Applications in Industry, VRCAI
'11: 321-26, 2011.

[9] B. Aaby, K. Perumalla, and S. Seal. Efficient Simulation of Agent-based Models on Multi-GPU and
Multi-core Clusters. Proceedings of the 3rd International ICST Conference on Simulation Tools and
Techniques, SIMUTools '10: 1-10, 2010.

[10] D. Playne and K. Hawick. Asynchronous Communication Schemes for Finite Difference Methods on
Multiple GPUs. Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing: 763-768, May 2010.

[11] J. Meng and K. Skadron. Performance modeling and automatic ghost zone optimization for iterative
stencil loops on GPUs. Proceedings of the 23rd international conference on Supercomputing: 256-265,
June 2009.

Multi-GPU MASS Library Rob Jordan

Page 13 11/11/2012

Appendices

Source Code Management
w2dMultiGpu and w2dMass are under source code management on Assembla at

https://www.assembla.com/code/multi-gpu-mass/git/nodes. Professor Fukuda is an owner of the

project and can grant access to the project.

The project contains six branches as outlined in the following table:

Branch Description

Master Multi-GPU MASS Library

mass-sample A simple program showing how to use the Multi-GPU MASS Library

w2dMass Wave2D implemented using Multi-GPU MASS, as discussed in this paper

w2dMultiGpu Wave2D implemented using multiple GPUs (not MASS), as discussed in this
paper.

w2dSingleGpu Wave2D implemented using a single GPU (not MASS). Used as an
intermediate development step towards w2dMultiGpu.

w2dSingleTexture Proof of concept of using GPU texture memory to implement Wave2D. Uses
a single GPU.

Assembla uses git, which is an incredibly powerful source control management system. If you don’t

know git, I highly recommend investing the time to become familiar with it.

Local Source Code
Current versions of the source code can be found in the dslab directory on the uwb file servers. The

following table outlines the path to each project. All paths are relative to dslab home (~dslab).

Project Path

Multi-GPU MASS Library MASS/multi-gpu-mass/master

w2Mass MASS/multi-gpu-mass/w2dMass

w2dSequential SensorGrid/Applications/Wave2D/C/w2dSequential

w2dSingleGpu SensorGrid/Applications/Wave2D/GPU/w2dSingleGpu

w2dMultiGpu SensorGrid/Applications/Wave2D/GPU/w2dMultiGpu

Compiling
Each of the GPU solutions require that the NVIDIA CUDA toolkit and developer drivers be installed.

CUDA downloads are available here: https://developer.nvidia.com/cuda-downloads.

The systems in the dslab should already have these prerequisites installed. If not, contact the CSS

Systems Engineer to have them installed.

w2dMass, w2dMultiGpu, w2dSingleGpu, mass-sample are all make-enabled. That is, simply execute

Multi-GPU MASS Library Rob Jordan

Page 14 11/11/2012

$ make

in the project root folder. This command will build two versions of the program: a release version with

very limited (if any) debugging information and a debug version that generally provides verbose

debugging information. The compiled programs will be placed into the project’s bin/ directory.

If compiling on hydra.uwb.edu, you need to make a slight adjustment to the makefile because the nvcc

compiler is installed in a non-standard location on hydra. Comment out (using #) the standard nvcc

compiler location and uncomment the hydra nvcc install location.

Execution
CUDA programs can be executed just like any other C/C++ program. No special invocation is required.

Each of the programs take a number of command line arguments. To see the usage, simply execute the

program without any parameters. All parameter options will be written to standard out.

