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Abstract 
The goal of the project is to implement the Multi-Agent Spatial Simulation (MASS) library in CUDA-C 

using multiple Graphical Processing Units (GPUs) in order to realize a significant speedup over the 

existing single GPU and multi-threaded versions. MASS is one component of the Sensor Cloud 

Integration research effort lead by Professor Munehiro Fukuda at the University of Washington Bothell. 

Though various versions of the MASS library have already been implemented in Java, none of the 

versions have been able to achieve the level of performance required. We are hopeful that a multi-GPU 

version can provide the requisite performance. 

Introduction 
We provide background information on General Purpose Computing on Graphics Processing Units using 

NVIDIA’s CUDA architecture and then describe how this technology can be applied to the MASS library. 

Next we will discuss the sample application, Wave2D, used throughout this project. Lastly, we will 

conclude the introduction with a brief survey of related work distilled from an extensive literature 

survey. 

GPGPU with CUDA 
Over the last ten years, GPUs have evolved into massively multi-threaded engines capable of performing 

incredible amounts of parallel computation. Figure 1 shows the raw computation power of GPUs as 

measured by Theoretical GFLOPs compared to Intel’s 

mainstream CPUs. Researchers have begun harnessing this 

computational power for tasks other than computer 

graphics in what is known as general-purpose computing 

on graphics processing units (GPGPU).  

NVIDIA is a lead manufacturer of GPUs and has developed 

Compute Unified Device Architecture (CUDA) in order to 

facilitate GPGPU. Applications are written in C/C++ using 

CUDA-C extensions, compiled using the NVIDIA compiler, 

and then executed on a platform containing a CUDA-

capable GPU. Before CUDA, developers had to write 

applications using the graphics-specific processing 
Figure 1 GPU Performance 
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pipeline, which required using graphics domain concepts like texture shaders for non-graphics programs, 

which was extremely difficult, time consuming, and error prone. 

The general programming pattern for CUDA programs is a master-slave style as illustrated in Figure 2. 

The CPU acts as the master and the GPU serves as the slave. The CPU initializes the program and copies 

data from system memory to the GPU memory. The 

program is executed on the GPU using GPU memory, and 

then the results are transferred back to the host.  

Due to their massively multi-threaded nature, GPUs are 

exceptionally well-suited for multi-agent simulations and 

models since, conceptually, each agent or location can be 

mapped to an independent CUDA thread and executed in 

parallel. Since GPUs are capable of thousands of parallel 

threads running on highly tuned ALUs, the bottleneck in 

programs tend to be bandwidth related. Memory 

management is key to performance, especially once additional GPUs are added since all communication 

must use the same PCI-e bus. 

Multi-Agent Spatial Simulation (MASS) Library 
MASS is a middleware library that provides job parallelization using entity-based programming. The Java 

specification was written by Professor Fukuda as one component of the Sensor Cloud Integration 

research effort. Though it is intended to be used for predicting temperatures in Eastern Washington 

apple orchards in our research project, the library offers general parallelization for any multi-agent 

spatial simulation model. Figure 3 shows the MASS library being used 

to model temperature and air flows. 

There are two primary entities in the MASS library: Agents and Places. 

A Place is an abstract class that represents a fixed location in the 

simulation space and can exchange data with other Places. Places (a 

collection of Place entities) is a multi-dimensional array of elements. 

Places are mapped to threads. Agents are also an abstract class; 

however, an Agent represents the computational entities that can 

migrate from Place to Place and interact with other Agents. Different 

than Places, Agents are mapped to processes.  

The MASS library includes an API that enables a developer to write 

solutions that instruct all Agents or Places to call a certain function, or only a subset of all Agents or 

Places to call a function. With these tools, a developer can create complex multi-agent simulations that 

will automatically run in parallel. 

To date, only a Java version of the MASS library running on a cluster of nodes has been implemented. A 

single-GPU version is currently under construction, as well as a multi-node C++ version. 
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Figure 2 CUDA Programming Pattern 

Figure 3 MASS Agents and Places 
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Wave2D 
Wave2D is an implementation of Schrodinger's Wave Dissemination model over two-dimensional space. 

It is a time-stepped model that calculates the wave height for each cell in a finite grid space for a given 

time period. The height z of a cell located at [i,j] at time t is determined by Schrodinger's wave formula: 

z[i,j](t) = 2.0 * z[i,j](t-1) – z[i,j](t-2) + c^2 * (dt/dd)^2 *  

           ( z[i+1,j](t-1) + z[i-1,j](t-1) + z[i,j+1](t-1)  

           + z[i,j-1](t-1) – 4.0 * z[i,j](t-2) ) 

 

In short, the height of any cell is a function of its previous height and the previous heights of its four 

cardinal neighbor cells. 

It has been selected as a suitable test application for MASS for a number of factors. First, the wave 

height calculation is relatively simple and straightforward to implement yet offers interesting 

communication needs, namely the need for each cell to exchange its height with its neighbors. Without 

this constraint, the parallelization of the algorithm 

would be trivial. By requiring the exchange of data 

among cells, the implementations must take into 

account the transfer of data across threads and 

processes, paying careful attention to the data 

decomposition of the problem space. With multiple 

GPUs connected on the PCI-e bus, this problem 

involves managing a distributed grid over many 

separate memory spaces, as illustrated by Figure 4. 

Secondly, the two-dimensional nature of the 

application maps perfectly to the intended MASS 

domain of a spatial model. It also provides an easily 

adjustable problem set with which to test the scalability of any solution since the simulation space 

exhibits quadratic growth (i.e., an N x N simulation space). Small simulations can be hand-verified and 

then the simulation space can be increased dramatically in order to push the system under test to its 

limits. 

Lastly, the intended use of the MASS library within the Sensor Cloud Integration project is to predict 

temperatures in a wide two-dimensional space using a temperature prediction algorithm not entirely 

unlike Schrodinger’s wave formula. 

Related Work 
The literature surveys targeted six aspects of the project: background on the Sensor Grid project and the 

MASS library, general purpose computing using GPUs, domain decomposition strategies for multi-agent 

simulations using multiple GPUs, communication versus computation strategies, programming strategies 

specific to CUDA, and metrics. 

 

Figure 4 Distributed Grid over GPUs 
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Articles [1] and [2] provide background information on the Sensor Grid research project led by Professor 

Fukuda as well as the motivation behind the Multi-Agent Spatial Simulation (MASS) library. They 

describe the basic programming style for creating MASS-based applications and how MASS contributes 

to the overall research effort. 

Articles, [3], [4], [5], and [6] provide the technical details of designing general purpose applications using 

GPUs and CUDA. These articles described the history of GPUs and how they have evolved over the past 

10 years from simple graphics processing elements into small-scale super computers in their own right.  

These sources also describe CUDA programming and the different types of memory that CUDA exposes 

through the API. Since memory bandwidth has been shown to be the dominant bottleneck in a CUDA 

application, proper use of memory is essential to any 

efficient solution.  

Articles [7], [8], and [9], discuss efforts to map multi-

agent applications to GPUs with regards to different 

domain decomposition strategies and how to best map 

the entities to the GPU threads. The row domain data 

decomposition strategy described by [7] fit this 

project's needs precisely so it was selected as the 

primary method for distributing work across the 

multiple GPUs. This strategy breaks the domain into 

stripes based on rows in order to minimize stripe neighbors, thereby minimizing communication, and 

maps contiguous memory to each GPU so that GPU memory access can be streamlined. Figure 5 

demonstrates how the global domain is broken into horizontal stripes using this strategy. 

This same article [7] introduced a concept for handling border cells and their need to communicate with 

neighbors that reside on a different node. Ghost cells (aka. halos and shadow cells in other literature) 

are redundant copies of data on each GPU. In Figure 5, the Ghost cells are the hashed blue cells on GPU 

1 and the hashed orange cells on GPU 2. They are not updated by each GPU but are used for read-only 

memory access so that the border cells do not need to access memory on a different device. The 

authors found significant performance 

improvement using this technique so it was 

incorporated into this project. 

The last set of articles, [10] and [11], 

discussed methods of optimizing a multi-

GPU solution by employing overlapping 

communication and computation. Initial 

performance timings of Multi-GPU MASS 

showed that the communication overhead 

was responsible for the overwhelming 

majority of the execution time, so a method to reduce this aspect was needed. [11] discussed an 

Figure 5 Row domain decomposition with Ghost Cells 

Figure 6 Overlapping Communication and Computation 
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automated method of expanding the ghost cell region based on dynamically determined application 

characteristics. The complexity of their solution did not seem to worth the effort at this stage of the 

project. The other article [10], however, described a ghost exchange algorithm that fit my application 

perfectly. In fact, they described my initial implementation attempt and its shortcomings and then 

presented an optimized solution. The basic algorithm is shown in Figure 6 and utilizes CUDA execution 

streams to provide simultaneous memory transfer and computation. 

Implementation 
The implementation strategy had three significant 

milestones, following an evolutionary development 

cycle where each successive stage of the process 

builds upon the previous milestone.  

Wave2D served as the test program that evolved 

throughout this process, transforming from a 

sequential program executed solely by the CPU to a 

massively parallel program executed by multiple 

GPUs coordinated by the CPU. 

Milestone 1: w2dSequential 
Milestone 1 was the baseline implementation of Wave2D in C. This program, w2dSequential, was highly 

optimized for single-threaded execution and tuned for high performance. It is essentially as fast as 

possible given the program environment and thus serves as the benchmark against which future 

milestone implementations are compared. 

Milestone 2: w2dMultiGpu 
The second milestone implemented Wave2D using multiple 

GPUs, resulting in the program w2dMultiGpu. Like 

w2dSequential, w2dMultiGpu is highly optimized for Wave2D 

and tuned for fast performance. It represents the upper 

bound of performance for Wave2D on multiple GPUs. This 

way, we can measure how efficiently the MASS library 

implementation uses multiple GPUs. 

Grid Data Structure 

w2dMultiGpu introduced the Grid Data Structure, 

implementing the row domain data decomposition strategy 

as discussed in [7]. The structure itself is composed of a 

hierarchy of inner structures: stripes, ranges and points and enables us to decompose the distributed 

Places array into stripes across multiple GPUs while preserving the ability to reconstruct global array 

coordinates. 

M1 

•w2dSequential 

•Wave2D with sequential C 

M2 

•w2dMultiGpu 

•Wave2D with multiple GPUs 

M3 

•w2dMass 

•Wave2D with Multi-GPU MASS 

Figure 7 Implementaion Milestones 

Figure 8 Grid Structure 
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The grid_t struct contains multiple stripe_t structs that each represent the data for a particular GPU 

device. The stripes are partitioned such that each stripe is the entire width of the grid. The height of the 

grid is evenly distributed to each stripe with the exception of any remainder rows.  

Each stripe contains the ghost data rows from its neighbors. The first stripe only has one ghost region, 

the overlapping cells from its neighbor below, and similarly the last stripe only has one ghost region 

from its neighbor above. All other stripes (i.e., the inner stripes) each have a ghost region for the upper 

and lower neighbor. These regions are represented by the range_t struct. The core data region is also 

represented by a range. 

Lastly, the global locations in the ranges are recorded using the point_t struct, which aids in global and 

local addressing offset. 

The overlapping communication and computation algorithm from [10] and outlined in Figure 6 provided 

the method for exchanging ghost cells between adjacent stripes. 

Ghost Exchange Algorithm 

The Ghost Exchange Algorithm, based on [9], uses overlapping communication and computation in 

order to maximize the GPU compute potential and minimize communication overheads. 

The lower ghost range from each stripe must be 

sent to the upper ghost range of the neighbor 

stripe below, and the upper ghost range must be 

sent to the lower ghost range of the neighbor 

above.  

This complex interchange of data is facilitated by 

using the host memory as a buffer where data is 

copied into the corresponding row and then sent 

back out to neighboring GPUs. 

Since this process is carried out in parallel among 

multiple GPUs, we must synchronize at various points along the process. Specifically, we synchronize 

after the copy of data to the host buffer and then synchronize after the copy to the destination GPUs. 

These two barriers ensure that at the end of the ghost exchange, each GPU contains updated ghost data 

and can proceed to compute the inner cells. 

Milestone 3: w2dMass 
The last milestone involved two significant stages: create the Multi-GPU MASS Library and then 

implement Wave2D using the library. The fundamental principles and lessons learned from the first two 

milestones were incorporated and refactored into the generalized parallelization library, all the while 

retaining the row domain data decomposition, ghost cells, and overlapping communication and 

computation algorithms embedded into w2dMulitGpu.  

Figure 9 Ghost Exchange Algorithm 
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Methods 

Experimental Design 
The experiments were performed on the hydra.uwb.edu server in the University of Washington 

Distributed System Laboratory. This server contains two NVIDIA Tesla C1060 GPUs connected on the 

PCI-e bus. These GPUs have a 1.3 Compute Capability, 4.0 GP global memory and 30 streaming 

multiprocessor each. They are theoretically capable of 933.12 GLOPS (single precision).  

Each of the milestone implementations were executed for four different simulation sizes (500, 1000, 

1500, 2000), on one and on two GPUs, each for 5000 time steps. Each execution configuration was 

performed 20 times and the results were averaged. 

Metrics 
The two metrics we focused on are total execution time and speedup. Execution time was measured as 

simply the time in milliseconds from just after parameter parsing to the end of the simulation. Writing 

the results to disk was excluded from the execution time. 

Speedup represents how much faster the parallel implementation is over the sequential program, and is 

simply the ratio of sequential execution time to parallel execution time.  

Normally discussions involving performance of parallel programs involves the concept of efficiency, 

which reflects the effect of adding additional threads or processes to a parallel program. Since 

determining the number of runtime threads on a GPU is virtually impossible due to warp scheduling and 

thread interleaving, efficiency is excluded from our metrics set. 

Results 
This section presents the results of the experiments. First the results for w2dMultiGpu are presented, 

followed by the results for w2dMass. 

w2dMultiGpu 
The following charts present the execution results for w2dMultiGpu compared to w2dSequential. 

w2dMultiGpu was executed using a single GPU as well as two GPUs. 
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w2dMass 
The following charts present the execution results for w2dMass compared to w2dSequential. Like 

w2dMultiGpu, w2dMass was executed using a single GPU as well as two GPUs. 
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Discussion 
As expected, the performance of w2dSequential degrades as the simulation size increases. This is due to 

the fact that the domain size grows quadratically yet the program remains sequential. Though the 

number of elements increases, the time to process each element remains constant which results in the 

accelerating time to process all elements. 

GPUs, on the other hand, have incredible potential for providing significant performance improvements 

in spatial simulation models as demonstrated by w2dMultiGpu. In stark contrast to the sequential 

program, the GPU-based Wave2D simulations experienced relatively constant execution time regardless 

of the simulation size. This constant time behavior is nothing short of incredible in the face of a data set 

that is growing at a quadratic rate.  

As Figure 11 illustrates, the speedup actually increases as the simulation size increases, thereby 

demonstrating the scalability of the program. This result means that multi-GPU programs are a viable 

means for performing large-scale spatial simulation computation. Though each GPU has limited 

memory, we can simply plug more GPUs into a GPU server to scale out horizontally to solve larger and 

larger problems. The limiting factor is now the host memory since it is used for the ghost exchange and 

staging ground. 

The w2dMultiGpu program validated the two research-based algorithms implemented based on the 

literature survey. The row domain data decomposition with ghost cells strategy coupled with the 

overlapping communication and computation algorithm solved the memory bottleneck problem that so 

often plagues GPU programs. 

Refactoring w2dMultiGpu into w2dMass while implementing the MASS library did not provide the level 

of speedup that was expected. That being said, it is notable that the performance of two GPUs outpaced 

the single GPU performance once the simulation size reached 1,000 by 1,000. In fact, the multi-GPU 

solution did outperform the sequential program in all runs with two GPUs and a simulation size over 

500. The parallel nature and scalability of GPUs must, at this point, overcome other limiting factors once 

the simulation size reaches some tipping point. 

Comparing the performance results between w2dMultiGpu and w2dMass reveals that though the 

algorithms remained the same, one or more performance bottlenecks were introduced. One potential 

bottleneck candidate is known as warp divergence. On the GPU, threads are executed in groups (or 

warps) of 32. These 32 threads execute the exact same instruction at the same time; consequently, if 

one thread branches then all other 31 threads must wait until it joins the main execution path again. As 

such, overall execution time can be reduced by a factor of 31. Boundary conditions are the most 

common location where these branches can occur and are thus very expensive. 

There are two potential solutions to the warp divergence problem. First, the code can be refactored so 

as to avoid branches and boundaries. While removing these conditions entirely is most likely entirely 

impossible, any reduction can have a significant impact. A second solution is to group similar operations 

into similar warps. For example, if boundary conditions cannot be avoided, it would be better to group 
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all threads that will execute along the boundary into the same warp so that there is no divergence. They 

would all go down the boundary path, leaving the other warps to execute the main code path. 

The second potential source for performance bottleneck is the lack of coalesced memory access. On the 

GPU, memory transactions are per half-warp. This means that that all 16 threads attempt to read 

memory in parallel. This memory access can be optimized if all threads read adjacent memory 

addresses. Specifically, these reads can be coalesced if, and only if, the kth thread accesses the kth 

memory element. This access pattern proves problematic for spatial simulation models since threads 

tend to access the memory of adjacent locations rather than a single corresponding location. That is, 

cells often need information from their surrounding neighbor cells and so this coalesced pattern breaks 

down. 

A potential solution to these memory access patterns is to use another type of memory known as 

texture memory. Texture memory is optimized for exactly the neighbor memory access pattern seen in 

spatial simulation models and so is an ideal fit for MASS. The problem is that, as of CUDA 4.0, texture 

memory must be statically allocated, limiting its usefulness in a library that is supposed to provide the 

flexibility to declare grid sizes at runtime. Additionally, MASS does not limit the developer to a fixed 

number of Places collections, so the requirement to statically allocate the required memory proves 

overly restrictive. 

A second option to improve memory access times is to use shared memory to cache neighbor elements. 

Shared memory is located on the device and provides extremely fast access. Furthermore, if is often the 

case that multiple cells need to access the memory of a particular cell, so we only pay the memory copy 

price once and then reuse the cached copy. The downside is the complexity of managing this additional 

layer of memory, ensuring that it does not become stale and avoiding race conditions. Managing these 

conditions is an area for future research. 

Next Steps 
Though w2dMultiGpu demonstrated the potential that GPUs have to offer for the MASS library, the 

implementation of w2dMass failed to reach the target execution speed goals. On the bright side, it 

appears that w2dMass increases speed as additional GPUs are added to the system. It would be 

interesting to execute w2dMass on a server with more than two GPUs in order to verify this hypothesis. 

The warp divergence and coalesced memory access are other areas for improvement that would benefit 

from additional research and development. While far from rudimentary, the current w2dMass 

implementation only tackles high-level memory access patterns. Lower level (i.e., thread- or block-level) 

optimizations may significantly improve the program’s performance. 

Another potential area for improvement is the introduction of standard object-oriented programming 

techniques like abstraction and inheritance to faithfully implement the MASS library specification. As 

previously mentioned, the Tesla GPU devices in the laboratory have a compute capability of 1.3, which 

limits the programming techniques available to developers. Devices with compute capability of 2.0 or 
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higher enable the use of abstract classes and function pointers, as well as the linking compilation stage 

which allows the code files to be separated into header and source files. 
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Appendices 
 

Source Code Management 
w2dMultiGpu and w2dMass are under source code management on Assembla at 

https://www.assembla.com/code/multi-gpu-mass/git/nodes. Professor Fukuda is an owner of the 

project and can grant access to the project. 

The project contains six branches as outlined in the following table: 

Branch Description 

Master Multi-GPU MASS Library 

mass-sample A simple program showing how to use the Multi-GPU MASS Library 

w2dMass Wave2D implemented using Multi-GPU MASS, as discussed in this paper 

w2dMultiGpu Wave2D implemented using multiple GPUs (not MASS), as discussed in this 
paper. 

w2dSingleGpu Wave2D implemented using a single GPU (not MASS). Used as an 
intermediate development step towards w2dMultiGpu. 

w2dSingleTexture Proof of concept of using GPU texture memory to implement Wave2D. Uses 
a single GPU. 

 

Assembla uses git, which is an incredibly powerful source control management system. If you don’t 

know git, I highly recommend investing the time to become familiar with it.  

Local Source Code 
Current versions of the source code can be found in the dslab directory on the uwb file servers. The 

following table outlines the path to each project. All paths are relative to dslab home (~dslab). 

Project Path 

Multi-GPU MASS Library MASS/multi-gpu-mass/master 

w2Mass MASS/multi-gpu-mass/w2dMass 

w2dSequential SensorGrid/Applications/Wave2D/C/w2dSequential 

w2dSingleGpu SensorGrid/Applications/Wave2D/GPU/w2dSingleGpu 

w2dMultiGpu SensorGrid/Applications/Wave2D/GPU/w2dMultiGpu 

 

Compiling 
Each of the GPU solutions require that the NVIDIA CUDA toolkit and developer drivers be installed. 

CUDA downloads are available here: https://developer.nvidia.com/cuda-downloads. 

The systems in the dslab should already have these prerequisites installed. If not, contact the CSS 

Systems Engineer to have them installed. 

w2dMass, w2dMultiGpu, w2dSingleGpu, mass-sample are all make-enabled. That is, simply execute  
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$ make 

in the project root folder. This command will build two versions of the program: a release version with 

very limited (if any) debugging information and a debug version that generally provides verbose 

debugging information. The compiled programs will be placed into the project’s bin/ directory. 

If compiling on hydra.uwb.edu, you need to make a slight adjustment to the makefile because the nvcc 

compiler is installed in a non-standard location on hydra. Comment out (using #) the standard nvcc 

compiler location and uncomment the hydra nvcc install location. 

Execution 
CUDA programs can be executed just like any other C/C++ program. No special invocation is required.  

Each of the programs take a number of command line arguments. To see the usage, simply execute the 

program without any parameters. All parameter options will be written to standard out. 

 


