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1 Introduction

The Distributed Systems Laboratory (DSL) at the University of Washington Bothell has long
pursued the vision of scalable agent-based computation across large-scale graph networks to
handle real-world problem solving. In order to address a multitude of parallelization challenges
left unaddressed from various shared-memory programming environments, the DSL began
creation of the parallelization library known as the Multi-Agent Spatial Simulation (MASS) in
2010 [1]. Multi-agent parallelized systems are useful to analyze emergent properties in complex
systems that involve entities (agents) operating concurrently with independent sets of
instructions that each agent carries with it [2]. Applications leveraging such novel techniques for
parallelization seek to prioritize scalability, locality, and decentralized control which effectively
allow for exceptionally efficient computation speeds as datasets and their affiliated properties
grow in number.

While MASS is simultaneously expanding its Agent-Based Modeling (ABM) methodologies to
support C++ and CUDA operations, the work done here will focus primarily on the Java-based
library which allows autonomous agents to spawn, move, interact, and compute operations
across a distributed memory cluster. Each variant of the library is intended for more nuanced
purposes. The CUDA library is intended for ultra-high performance in massively parallel ABM
simulations. The C++ library is purposed for large-scale ABM simulations that include operations
that CUDA cannot perform. Finally, the Java-specific library is tailored to handle interactive
computation on distributed data structures and while preferring optimized parallel performance
on large data sets, it is not explicitly dedicated to ultra-high performance compared C++ or
CUDA.

In order to practicalize computation based on distributed data structures, the MASS library is
applied toward its own graph database. The MASS library supports input queries similar to
other industry-standard graph databases like Neo4j and ArangoDB by utilizing declarative input
guery grammar inspired by Neo4j’s Cypher query language [3]. In essence, declarative query
grammar rules allow a user to input simple and understandable statements describing “what”
they are looking for, as opposed to imperative methods which explicitly include the step-by-step
details for “how” the database will create, acquire, or manipulate the specified data [4]. MASS
aims to support a familiar declarative input syntax for ease of use by the querier that is
thereafter translated into imperative instruction sets to deploy agents and execute in parallel
across the compute node cluster autonomously.

Prior work in recent years for the DSL has implemented several core Cypher clause
functionalities [5] along with other criticalities for a distributed graph network. Michelle Dea
worked on identifying similar databases for performance comparison and benchmarking [6, 7].
Shenyan (Lilian) Cao provided support for the MATCH clause which specifies the patterns to
search for within the database [7, 8]. Yuan (Chris) Ma focused on upgrading the graph storage
layer to be distributed and support multi-user access [7, 9]. Aatman Prajapati afterward
implemented key functionality for adding filtering constraints to the MATCH clause with 2
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underlying variants of the WHERE clause [10, 11]. These important additions allow for search,
filtering logic, and data return of the graph network but the ability to update vertex nodes and
their respective relationship edges through updating clauses such as DELETE and UPDATE
remain to be implemented.

Ensuring these update functionalities are addressed would allow for expanded capability of the
MASS library while allowing for a more comprehensive analysis of its translation pipeline which
highlights declarative query input to imperative parallelized agent execution. To determine
MASS’s framework and methodologies as viable in the greater academic and industry space, it is
called for to perform an examination of similar queries across industry-standard alternatives
such as Neo4j which leverages underlying usage of the RAFT consensus protocol [12, 13, 14]
and ArangoDB which uses alternative ACID (Atomicity, Consistency, Isolation, Durability)
compliant single-node transaction protocols [14, 15]. The MASS framework currently prioritizes
scalability and distributed local agent-execution over that of strict global coordination and
consistency methods. While current work on DELETE intends to focus on data availability and
guery processing progress, future work in MASS may explore extensions to incorporate fault-
tolerance or consensus mechanisms similar to Neo4j and ArangoDB.

It is the primary objective of this research to implement new functionality to the MASS library
through functioning update clauses such as DELETE and SET. Then it will be prudent to compare
the functionality of these implemented clauses against similar queries in Neo4j and ArangoDB in
order to illustrate the comparative operations between MASS and commercially deployed
alternatives. An analysis will need to be performed in order to showcase whether MASS stands
ahead or behind its competitor’s for ABM simulations within graph databases. Furthermore, an
implementation of a CALL clause which would allow for pre-defined methods and subqueries to
be deployed within a query would be both helpful and fully encompassing.

2 Background & Motivation

2.1 Graph Databases vs. Relational Databases

Before assessing MASS and its competing database frameworks, we can look at why they each
utilize an underlying property graph architecture. Traditional relational databases have long
served as the backbone of data management; however, their performance efficiency begins to
degrade in highly connected datasets like social networks and scientific simulations such as
biological interaction networks. One of the primary challenges regarding efficiency in relational
databases are due to heavy reliance on join operations, which are used to reconstruct
relationships by matching keys across multiple data tables. While join operations can be
effective in very particularly structured datasets, they become increasingly expensive as data
complexity and connectivity grow. Each join operation requires scanning, hashing, and sorting
large tables to establish links and pairing. As a result, work involving multi-hop graph traversals
can incur a substantial computational overhead and usage of available memory. With this in
mind, graph databases can be better suited for these highly connected data types. Asplundh
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and Sandell [17] showed that with semi-structured and densely linked data that graph
databases outperformed relational databases. Furthermore, Jain, Khanchandani, and Rodrigues
analyzed Neo4j as a representative of graph databases and MySQL as a representative of
relational databases and found that the graph database outperformed the relational database
by up to 146 times when querying complex and large datasets.

2.2 Challenges in Graph Databases

In graph databases by storing relationship edges as first-class architectural components,
traversal across vertex nodes can be performed without the use of join operations. This
advantage has made platforms like Neo4j and ArangoDB popular for applications involving social
networks, biological interaction networks, recommendation systems, and large-scale knowledge
graphs. While these systems provide efficient graph network centered data models that use
declarative query languages on the front-end, they still rely on centralized or tightly coordinated
transaction protocols such as Neo4j’s use of RAFT consensus for cluster replication, or
ArangoDB’s single-leader transaction manager to maintain consistency [12-15]. While both of
these coordination methods are essential for ACID compliance and correctness, they can
impose synchronization overhead that can hinder scalability in massively parallel or compute-
intensive environments.

2.3 Agent-Based Solutions

This inefficiency of a heavy communication overhead is one of the primary motivating factors
for the implementation of the MASS parallelization library. MASS aims to avoid monolithic
database architecture to specialize in highly connected and large-scale dataset handling. Rather
than focusing on a coordination-heavy transactional process, MASS'’s architecture relies on
swarms of lightweight agents executing imperative instructional logic autonomously across the
distributed memory space. Through utilizing control of targeted agent deployment and
minimizing global communicative synchronization, MASS aims to exploit fine-grained
parallelism, decentralized decision-making, and dynamic adaptability. As seen in table 1 below,
MASS’s architecture development stands to place parallelism and scalability as primary goals
and optimizations for implementation.



Language Cypher AQL Cypher

(Declarative) (Declarative + Imperative) Declarative-to-
Imperative + agents
Execution Centralized Centralized + Hybrid Fully Distributed
Model Property Graph Property Graph/ Property Graph
Multi-Model
Parallelism Low Medium -> High High
Scalability Medium Medium -> High High

Table 1: High-Level Comparison of Neo4j, ArangoDB, & MASS

Like Neo4j, MASS will support and mimick a declarative query interface that uses Cypher syntax
for CREATE, MATCH, WHERE, and soon DELETE, SET, and CALL clauses. After translating the
declarative query into an imperative instruction set called an execution plan, distribution of
agents permits MASS to combine the simple usability of modern graph networks while
leveraging the gains of parallel performance in High-Performance Computing (HPC) oriented
simulation frameworks. Work to extend MASS'’s ability to handle updating clauses is not simply
a necessity for being a feature-complete library, but also essential for understanding and
comparing how a highly-parallelized agent-based architecture can compare with industry
alternatives for both design and ultimately execution performance.

3 Previous Work

Shenyen Cao previously implemented work for CREATE and MATCH clause functionality which
enabled pattern matching across the distributed property graph. In her whitepaper [8] Cao
designed mechanisms for translating Cypher-like declarative patterns into executable agent-
based searches, particularly focusing on label matching, variable bindings, and edge traversal
logic across vertex nodes. This allowed the system to interpret user queries in the Cypher form
MATCH (a)-[r]->(b) which shows a vertex node a and b with a directionally outbound
relationship pointing from vertex node a to vertex node b. The framework then systematically
deploys agents that explore graph neighborhoods in a parallelized fashion and then collects
intermediate resultant data between execution step phases that satisfy the matching query
conditions.

Cao’s work was further solidified in a joint publication presented at KNBigData 2024,
coauthored with Michelle Dea, Yuan Ma, and Professor Munehiro Fukuda. In that paper, Cao’s
MATCH clause functionality was demonstrated as an essential stage in building an end-to-end




pipeline from Cypher query input to agent execution. This contribution established the earliest
executable components of MASS’s declarative-to-imperative pipeline model.

Building directly on Cao’s MATCH clause functionality, Aatman Prajapati added support for the
WHERE clause to enable constraint filtering logic. His implementation accounted for multiple
variants of logical expressions such as boolean comparison operators. Aatman notably designed
and created a stack-based parsing algorithm to evaluate nested logical expressions by
decomposing the WHERE clause into postfix notation which is otherwise known as Reverse
Polish Notation. His initial work enabled efficient expression evaluation during agent execution.

After developing the stack-based algorithm, Prajapati extended his work to implement an
optimized tree-based filtering system, which constructed an abstract syntax tree (AST) from the
WHERE clause and traversed it recursively to evaluate expressions. The tree-based approach
which leveraged a significantly improved three-value logic system allows for the dynamic
pruning of incorrect paths for agent traversal, which reduced the number of active agents and
therefore lead to less overall computational overhead [11]. This critical work by Prajapati
constrains the overall query search and importantly focuses computation to intermediately
return vertex information that successfully matches the provided query.

The 2024 KNBigData publication by Ma, Cao, Dea, and Fukuda collectively framed the MASS
framework’s foundational architecture as a declarative-to-imperative pipeline, with each
researcher improving critical functionality. Their paper introduced a multi-stage framework that
included query parsing, AST generation, execution planning, and agent deployment. This broad
architecture set the context for future expansion to support updating clauses like DELETE and
SET, which remain to be fully implemented. The authors discussed future possibilities of
enabling deletion via a hypothetical PropertyGraphPlaces.deleteVertex() method, although that
functionality was not implemented at the time of the papers writing.

Cao’s whitepaper also briefly discussed design concerns for updating clauses which
acknowledged that supporting deletion in a distributed context would require careful handling
of concurrency and data consistency during agent operations [8]. These insights lay the
conceptual groundwork for the job being undertaken in this report for implementing DELETE
clause functionality. This thesis will involve adding accurate query actions of DELETE and SET
functionalities to the graph database. To do this will require consideration for accurate and up-
to-date data representation in vertex nodes and their relationship edge pairings among agents
in local neighborhoods while also controlling for mutual exclusion such that agents will not work
on the same vertex node simultaneously. A careful consideration of methods to craft this
functionality will need to be considered accordingly to ensure correctness and avoid race
conditions. A synchronization strategy will need to be articulated that will prevent multiple
agents from concurrently modifying the same vertex or its edges. Once an agent enters a vertex
node to perform a deletion, other agents must be temporarily blocked from access. Either
atomic operations or a locking mechanism will be critical to maintain data integrity and ensure
accurate updates across the graph network.



4  Implementation

To understand and contribute to the MASS framework, an investigation into its declarative-to-
imperative underlying translation pipeline was a necessity. As was stated previously, MASS uses
a multi-stage pipeline to transform declarative Cypher-style queries into a parallel agent-based
execution plan. The process is illustrated in Figure 1 below, and has been broken down into 7
key stages.
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Figure 1: Query Translation Pipeline from Input to Execution

Stage 1: Input Query

A user at the application layer submits a declarative Cypher-style query such as the
example MATCH (n:Person)-[r:KNOWS]->(m:Person) WHERE m.age > 30 DETACH DELETE m
RETURN n.name. Parenthesis surround vertex nodes while square brackets surround
relationship edges and arrow notation showcases directionality of the relationship. This
notation describes the declarative “what” the querier is looking for but leaves it to MASS for
“how” that imperative logic will be orchestrated under-the-hood.

Stage 2: Parse Tree Creation

MASS in it’s current form utilizes ANTLR4 (ANother Tool for Language Recognition version 4) to
break down the query into lexical components and is parsed correlating to specific Cypher
language grammar rules. What is generated is a parse tree, otherwise known as a concrete
syntax tree, which includes each and every token of the original input including punctuation,
carriage line returns, space characters, and special markers including but not limited to the End
of File (EOF). This phase ensures that the query was entered in a legitimately recognized format
for Cypher statements and that there are no errors. An example formatted rule for what a
DELETE entry’s syntax must abide by is seen in Figure 2.



Figure 2: Cypher.g4 File Grammar Rule for DELETE

Each node in the parse tree is correlated to a specially formatted Cypher rule and the root node
is the oC_Cypher rule, where “oC” in these rules stands for the “openCypher” standard. This
accepted format for “oC” rules is an open-source project that helps spread the correct format of
the Cypher language in each respective graph database system [18]. Each token will establish a
node in the parse tree, and while it can seem cluttered, the tree will hold the accurate tokenized
version of the entire representation of the query. Figure 3 below is a visualized representation
of a sample parse tree highlighting the DELETE clause associated specifics within the red circle.

Figure 3: Parse Tree (Concrete Syntax Tree) with DELETE Branch Circled

Stage 3: PropertyGraphCypherVisitor Traverses Parse Tree

The PropertyGraphCypherVisitor (PGVC) class implements ANTLR’s visitor interface. It traverses
the parse tree that was created in stage 2 recursively and builds the abstract syntax tree (AST).
The visitor will ignore nodes related to superficial grammar and extracts the semantic meaning
of the original query. This can be thought of as trimming out the excess grammatical
components to get at the heart of the query meaning. The PGVC carries with it the “ctx” or
context of the parse tree branch that remains to be recursively traversed for that section of the
tree. Figure 4 below shows the PGVC constructor with an example visitation to its root node of



oC_Cypher in addition to a visitation of an updating clause of which DELETE is one of. When
visiting these rule encounters, logic may dictate to visit an alternative local method, but the end
result will be the return of a newly generated type of AST node such as the CypherDeleteClause.

PropertyGraphCypherVisitor
w CypherCompilerContext());

E t wisitdDC CyphercCypherPar
n visitOC Statement(ctx.oC_Statement());

itoC_UpdatingClause(Cypherpar
x.0C_Create());

x.0C_Merge());

Figure 4: PropertyGraphCypherVisitor Methods Return AST Nodes

Stage 4: Abstract Syntax Tree

The AST holds the core semantic context of the original query. At its root is the
CypherStatement class which extends the CypherAstBase class. This CypherStatement class
holds children that are the other AST clause nodes generated via the PGVC parse tree traversal.
The CypherStatement lives within the PropertyGraphCypherQuery wrapper class which acts as a
higher-level controller for building and executing the corresponding execution plan. The
purpose of these AST nodes are to simplify each clause concept into more easily translatable
operations for later execution stages.

Stage 5: ExecutionPlanBuilder Traverses AST

Within the PropertyGraphCypherQueryVisitorContext wrapper class, the ExecutionPlanBuilder
is created, generates a new ExecutionPlan, and then traverses the AST producing a resultant
ExecutionStep node in the ExecutionPlan corresponding to the clause node being visited in the
AST. The following code in figure 5 was drafted in the ExecutionPlanBuilder visitation of the



CypherDeleteClause in the AST. The ctx argument holds the shared state of the actual property
graph, a carrying forward of the ExecutionPlanBuilder itself, as well as the ExecutionPlan being
operated on and constructed. It specifies the collection of the variable expressions queried for
as a part of the Cypher rule shown previously in figure 2.

tionStep visitDeleteClause(Prop

String> deleteTargets = clause.getExpressions().stream

.map(expression {
.gethame();

new PropertyGraphCypherhNotImplemented(“Delete expressio

.collect(Collectors.toSet(});

return new DeleteExecutionStep(clause.isDetach(), deleteTargets);

Figure 5: ExecutionPlanBuilder Method to Create DeleteExecutionStep

Stage 6: ExecutionPlan

The root of the ExecutionPlan is a base node type of ExecutionStep which is a non-instantiable
interface class. Multiple types of ExecutionSteps are derived from this base class. Notably the
DefaultExecutionStep is an abstract class used for leaf nodes that don’t have children while the
ExecutionStepWithChildren class obviously has child nodes respectively. A subtype of the
ExecutionStepWithChildren class is the concrete class SeriesExecutionStep which is generated
when the children steps necessarily need to run in series. For example, the matching and
filtering of MATCH and WHERE clause stages need to complete before DELETE and RETURN logic
occurs, and therefore the root node would likely implement a SeriesExecutionStep for that
reason. Data is passed through these steps as a PropertyGraphCypherResult object which
effectively allows for intermediate collections of data that can then be transferred between
stages and then modified or extended.

Stage 7: PropertyGraphAgents

PropertyGraphAgents are distributed across the shared memory of the property graph which is
partitioned across a compute node cluster. Depending on the type of ExecutionStep that would
currently be executing, a different variant group of the PropertyGraphAgent class would be
deployed. The PropertyGraphAgent has different motives to complete when deployed for a
DELETE operation compared to MATCH or WHERE and would rely on a different make-up of the
AgentlnitArgs class which is handed to it. In DELETE ideally the AgentlnitArgs is setup for
containing the node ID’s (ItemID) of the PropertyVertexPlace’s that have been traveled to in the
MATCH/WHERE phase through the intermediate returnPath result.
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ip;
bject[ fromRelationship;
nextVertex;

AgentInitArgs( -
-pathResult = new Ar
.constraintsMap
.evalTreeRoot =
.isEvaluated =

.isDetachClause isDetachClause;
eleteTargets = deleteTargets;

Figure 7: AgentlnitArgs Class for DELETE PropertyGraphAgents Will Carry Target ID's to Perform DELETE Work

Stages 2-7: Declarative-To-Imperative Pipeline

To sum up the pipeline, in the GraphManager class outside of the mass_java_core engine on the
application side of the framework, the GraphManager.queryHandler function effectively begins
the chain reaction of the declarative-to-imperative pipeline. In figure 8 below, line 244
encompasses stages 2-4 which creates a new context to carry the PropertyGraphPlaces graph,
the ExecutionPlanBuilder, and the current form of the ExecutionPlan. Line 247 encompasses
stages 5-7 which then return the result of the query which is formatted as rows of information
defined in the PropertyGraphCypherResult class.

id queryHandler(String queryString
long startTime = System.currentTimeMillis();

new PropertyGraphCypherQueryContext( .graph);

'y query = PropertyGraphCypherQuery.parse(queryString);

sult results = query.execute(ctx);

Figure 8: GraphManager queryHandler Core Function Aspects
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5 Evaluation

In order to evaluate the DELETE clause implementation in MASS, there will be reuse of three
successfully utilized datasets previously by Prajapati [10, 11] to test execution time for speed as
well as memory usage to monitor overall thread communication workloads in closely identically
property graph network environments. The datasets are stored as CSV files containing vertex
nodes and relationship edges which can be uploaded to MASS thanks to the prior work by Dea
[6] and Cao [8]. The datasets scale across 103 for the IMDB movie dataset and 10* for the
BioSnap and Shipments datasets. The BioSnap dataset is a smaller scale biomedical dataset
while the Shipments dataset is a synthetically crafted dataset by Prajapati for larger scale that
fits the needs of the testing environment with greater vertex node and relationship quantities.

IMDB 1,097 nodes 8,130 edges 103 103 Non-
synthetic

BioSNAP 10,825 nodes 174,978 edges 104 105 Non-
synthetic
Shipments 30,000 nodes 40,000 edges 104 104 Synthetic

Figure 9: Three Datasets - IMDB, BioSNAP, & Shipments

While a dataset representing 10° has not yet been selected, the SNAP Datasets via Stanford
Large Network Dataset Collection [19] stands as an excellent repository to search through for
data groupings that can accommodate the kind of densely linked structure at the quantity of
scale necessary to put the MASS framework to the test. Finding a suitable dataset in the 10°
order of magnitude will allow for a more comprehensive scalability test for update clause
operations such as DELETE and SET respectively. After ensuring correct functionality, the use of
initial test data will allow for the algorithm to be updated as necessary and finally directly
compared to the identical datasets in Neo4j and ArangoDB for execution speed and memory
overhead comparisons.

6 Conclusion

There are still core aspects of the DELETE clause pipeline that need to be implemented, but the
Autumn 2025 quarter has set off to a great start. A large amount of research time was needed
on the MASS declarative-to-imperative pipeline initially to assess how it’s designed and how it
functions. This research enabled the depth of understanding of the complex framework and
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layers of translation and interdependencies between classes that are required to make
knowledgeable edits and contributions to the MASS library.

This project has deepened my understanding of distributed systems, query processing pipelines,
and the architectural complexity behind multiple stages of query translations. Through
extensive exploration of the MASS framework, I’'ve learned how MASS Cypher queries are
parsed, translated into abstract syntax trees, and ultimately executed via a parallel agent
distribution plan. Gaining this foundational insight has been crucial in preparing me to further
implement and plan for update clauses in a way that will accurately perform the task at hand,
while respecting the complexities of concurrent operations at scale. The challenges faced so far
have seemed aggressively present, but in knowledgeable reflection appear surmountable.

The next step for Winter Quarter 2026 will be definitive code addition and implementation
initially for the completion of singular vertex node deletion. To do that correctly an accuracy
inspection of the deletion target ItemID’s passed from the MATCH/WHERE phase to the DELETE
phase during the intermediate data transfer will be mandatory. Furthermore, the conceptual
design will need to be drafted for a more complicated DELETE execution. This can involve
multiple hops or agent traversal across vertex nodes where agents may encounter concurrency
issues for acting on the same vertex node. An algorithm for confirming exclusive rights to
operate on that node will be necessary. Lastly, the underlying theme in developing an algorithm
will refrain from costly global consensus measures. Instead, the aim will be to necessarily
support high resource availability through localized decision-making for responding to individual
agent requests for data acces. This methodology should ensure that the progress for query
processing is not hindered and is instead systematically resolved.
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8 Appendix

Committed work for DELETE clause can be found in the ryanmi/ryan-delete-clause branch of
mass_java_core.

https://bitbucket.org/mass library developers/mass java core/branch/ryanmi/ryan-delete-
clause
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