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1 Introduction 
 
The Distributed Systems Laboratory (DSL) at the University of Washington Bothell has long 
pursued the vision of scalable agent-based computation across large-scale graph networks to 
handle real-world problem solving. In order to address a multitude of parallelization challenges 
left unaddressed from various shared-memory programming environments, the DSL began 
creation of the parallelization library known as the Multi-Agent Spatial Simulation (MASS) in 
2010 [1]. Multi-agent parallelized systems are useful to analyze emergent properties in complex 
systems that involve entities (agents) operating concurrently with independent sets of 
instructions that each agent carries with it [2]. Applications leveraging such novel techniques for 
parallelization seek to prioritize scalability, locality, and decentralized control which effectively 
allow for exceptionally efficient computation speeds as datasets and their affiliated properties 
grow in number. 
 
While MASS is simultaneously expanding its Agent-Based Modeling (ABM) methodologies to 
support C++ and CUDA operations, the work done here will focus primarily on the Java-based 
library which allows autonomous agents to spawn, move, interact, and compute operations 
across a distributed memory cluster. Each variant of the library is intended for more nuanced 
purposes. The CUDA library is intended for ultra-high performance in massively parallel ABM 
simulations. The C++ library is purposed for large-scale ABM simulations that include operations 
that CUDA cannot perform. Finally, the Java-specific library is tailored to handle interactive 
computation on distributed data structures and while preferring optimized parallel performance 
on large data sets, it is not explicitly dedicated to ultra-high performance compared C++ or 
CUDA. 
 
In order to practicalize computation based on distributed data structures, the MASS library is 
applied toward its own graph database. The MASS library supports input queries similar to 
other industry-standard graph databases like Neo4j and ArangoDB by utilizing declarative input 
query grammar inspired by Neo4j’s Cypher query language [3]. In essence, declarative query 
grammar rules allow a user to input simple and understandable statements describing “what” 
they are looking for, as opposed to imperative methods which explicitly include the step-by-step 
details for “how” the database will create, acquire, or manipulate the specified data [4]. MASS 
aims to support a familiar declarative input syntax for ease of use by the querier that is 
thereafter translated into imperative instruction sets to deploy agents and execute in parallel 
across the compute node cluster autonomously. 
 
Prior work in recent years for the DSL has implemented several core Cypher clause 
functionalities [5] along with other criticalities for a distributed graph network. Michelle Dea 
worked on identifying similar databases for performance comparison and benchmarking [6, 7]. 
Shenyan (Lilian) Cao provided support for the MATCH clause which specifies the patterns to 
search for within the database [7, 8]. Yuan (Chris) Ma focused on upgrading the graph storage 
layer to be distributed and support multi-user access [7, 9]. Aatman Prajapati afterward 
implemented key functionality for adding filtering constraints to the MATCH clause with 2 
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underlying variants of the WHERE clause [10, 11]. These important additions allow for search, 
filtering logic, and data return of the graph network but the ability to update vertex nodes and 
their respective relationship edges through updating clauses such as DELETE and UPDATE 
remain to be implemented.  
 
Ensuring these update functionalities are addressed would allow for expanded capability of the 
MASS library while allowing for a more comprehensive analysis of its translation pipeline which 
highlights declarative query input to imperative parallelized agent execution. To determine 
MASS’s framework and methodologies as viable in the greater academic and industry space, it is 
called for to perform an examination of similar queries across industry-standard alternatives 
such as Neo4j which leverages underlying usage of the RAFT consensus protocol [12, 13, 14] 
and ArangoDB which uses alternative ACID (Atomicity, Consistency, Isolation, Durability) 
compliant single-node transaction protocols [14, 15]. The MASS framework currently prioritizes 
scalability and distributed local agent-execution over that of strict global coordination and 
consistency methods. While current work on DELETE intends to focus on data availability and 
query processing progress, future work in MASS may explore extensions to incorporate fault-
tolerance or consensus mechanisms similar to Neo4j and ArangoDB. 
 
It is the primary objective of this research to implement new functionality to the MASS library 
through functioning update clauses such as DELETE and SET. Then it will be prudent to compare 
the functionality of these implemented clauses against similar queries in Neo4j and ArangoDB in 
order to illustrate the comparative operations between MASS and commercially deployed 
alternatives. An analysis will need to be performed in order to showcase whether MASS stands 
ahead or behind its competitor’s for ABM simulations within graph databases. Furthermore, an 
implementation of a CALL clause which would allow for pre-defined methods and subqueries to 
be deployed within a query would be both helpful and fully encompassing. 
 

2 Background & Motivation 
 
2.1 Graph Databases vs. Relational Databases 
 
Before assessing MASS and its competing database frameworks, we can look at why they each 
utilize an underlying property graph architecture. Traditional relational databases have long 
served as the backbone of data management; however, their performance efficiency begins to 
degrade in highly connected datasets like social networks and scientific simulations such as 
biological interaction networks. One of the primary challenges regarding efficiency in relational 
databases are due to heavy reliance on join operations, which are used to reconstruct 
relationships by matching keys across multiple data tables. While join operations can be 
effective in very particularly structured datasets, they become increasingly expensive as data 
complexity and connectivity grow. Each join operation requires scanning, hashing, and sorting 
large tables to establish links and pairing. As a result, work involving multi-hop graph traversals 
can incur a substantial computational overhead and usage of available memory. With this in 
mind, graph databases can be better suited for these highly connected data types. Asplundh 
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and Sandell [17] showed that with semi-structured and densely linked data that graph 
databases outperformed relational databases. Furthermore, Jain, Khanchandani, and Rodrigues 
analyzed Neo4j as a representative of graph databases and MySQL as a representative of 
relational databases and found that the graph database outperformed the relational database 
by up to 146 times when querying complex and large datasets. 
 
2.2 Challenges in Graph Databases 
 
In graph databases by storing relationship edges as first-class architectural components, 
traversal across vertex nodes can be performed without the use of join operations. This 
advantage has made platforms like Neo4j and ArangoDB popular for applications involving social 
networks, biological interaction networks, recommendation systems, and large-scale knowledge 
graphs. While these systems provide efficient graph network centered data models that use 
declarative query languages on the front-end, they still rely on centralized or tightly coordinated 
transaction protocols such as Neo4j’s use of RAFT consensus for cluster replication, or 
ArangoDB’s single-leader transaction manager to maintain consistency [12-15]. While both of 
these coordination methods are essential for ACID compliance and correctness, they can 
impose synchronization overhead that can hinder scalability in massively parallel or compute-
intensive environments. 
 
2.3 Agent-Based Solutions 
 
This inefficiency of a heavy communication overhead is one of the primary motivating factors 
for the implementation of the MASS parallelization library. MASS aims to avoid monolithic 
database architecture to specialize in highly connected and large-scale dataset handling. Rather 
than focusing on a coordination-heavy transactional process, MASS’s architecture relies on 
swarms of lightweight agents executing imperative instructional logic autonomously across the 
distributed memory space. Through utilizing control of targeted agent deployment and 
minimizing global communicative synchronization, MASS aims to exploit fine-grained 
parallelism, decentralized decision-making, and dynamic adaptability. As seen in table 1 below, 
MASS’s architecture development stands to place parallelism and scalability as primary goals 
and optimizations for implementation. 
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Table 1: High-Level Comparison of Neo4j, ArangoDB, & MASS 

 
Like Neo4j, MASS will support and mimick a declarative query interface that uses Cypher syntax 
for CREATE, MATCH, WHERE, and soon DELETE, SET, and CALL clauses. After translating the 
declarative query into an imperative instruction set called an execution plan, distribution of 
agents permits MASS to combine the simple usability of modern graph networks while 
leveraging the gains of parallel performance in High-Performance Computing (HPC) oriented 
simulation frameworks. Work to extend MASS’s ability to handle updating clauses is not simply 
a necessity for being a feature-complete library, but also essential for understanding and 
comparing how a highly-parallelized agent-based architecture can compare with industry 
alternatives for both design and ultimately execution performance. 
 

3 Previous Work 
 
Shenyen Cao previously implemented work for CREATE and MATCH clause functionality which 
enabled pattern matching across the distributed property graph. In her whitepaper [8] Cao 
designed mechanisms for translating Cypher-like declarative patterns into executable agent-
based searches, particularly focusing on label matching, variable bindings, and edge traversal 
logic across vertex nodes. This allowed the system to interpret user queries in the Cypher form 
MATCH (a)-[r]->(b) which shows a vertex node a and b with a directionally outbound 
relationship pointing from vertex node a to vertex node b. The framework then systematically 
deploys agents that explore graph neighborhoods in a parallelized fashion and then collects 
intermediate resultant data between execution step phases that satisfy the matching query 
conditions. 
 
Cao’s work was further solidified in a joint publication presented at KNBigData 2024, 
coauthored with Michelle Dea, Yuan Ma, and Professor Munehiro Fukuda. In that paper, Cao’s 
MATCH clause functionality was demonstrated as an essential stage in building an end-to-end 
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pipeline from Cypher query input to agent execution. This contribution established the earliest 
executable components of MASS’s declarative-to-imperative pipeline model. 
 
Building directly on Cao’s MATCH clause functionality, Aatman Prajapati added support for the 
WHERE clause to enable constraint filtering logic. His implementation accounted for multiple 
variants of logical expressions such as boolean comparison operators. Aatman notably designed 
and created a stack-based parsing algorithm to evaluate nested logical expressions by 
decomposing the WHERE clause into postfix notation which is otherwise known as Reverse 
Polish Notation. His initial work enabled efficient expression evaluation during agent execution. 
 
After developing the stack-based algorithm, Prajapati extended his work to implement an 
optimized tree-based filtering system, which constructed an abstract syntax tree (AST) from the 
WHERE clause and traversed it recursively to evaluate expressions. The tree-based approach 
which leveraged a significantly improved three-value logic system allows for the dynamic 
pruning of incorrect paths for agent traversal, which reduced the number of active agents and 
therefore lead to less overall computational overhead [11]. This critical work by Prajapati 
constrains the overall query search and importantly focuses computation to intermediately 
return vertex information that successfully matches the provided query. 
 
The 2024 KNBigData publication by Ma, Cao, Dea, and Fukuda collectively framed the MASS 
framework’s foundational architecture as a declarative-to-imperative pipeline, with each 
researcher improving critical functionality. Their paper introduced a multi-stage framework that 
included query parsing, AST generation, execution planning, and agent deployment. This broad 
architecture set the context for future expansion to support updating clauses like DELETE and 
SET, which remain to be fully implemented. The authors discussed future possibilities of 
enabling deletion via a hypothetical PropertyGraphPlaces.deleteVertex() method, although that 
functionality was not implemented at the time of the papers writing. 
 
Cao’s whitepaper also briefly discussed design concerns for updating clauses which 
acknowledged that supporting deletion in a distributed context would require careful handling 
of concurrency and data consistency during agent operations [8]. These insights lay the 
conceptual groundwork for the job being undertaken in this report for implementing DELETE 
clause functionality. This thesis will involve adding accurate query actions of DELETE and SET 
functionalities to the graph database. To do this will require consideration for accurate and up-
to-date data representation in vertex nodes and their relationship edge pairings among agents 
in local neighborhoods while also controlling for mutual exclusion such that agents will not work 
on the same vertex node simultaneously. A careful consideration of methods to craft this 
functionality will need to be considered accordingly to ensure correctness and avoid race 
conditions. A synchronization strategy will need to be articulated that will prevent multiple 
agents from concurrently modifying the same vertex or its edges. Once an agent enters a vertex 
node to perform a deletion, other agents must be temporarily blocked from access. Either 
atomic operations or a locking mechanism will be critical to maintain data integrity and ensure 
accurate updates across the graph network. 
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4 Implementation 
 
To understand and contribute to the MASS framework, an investigation into its declarative-to-
imperative underlying translation pipeline was a necessity. As was stated previously, MASS uses 
a multi-stage pipeline to transform declarative Cypher-style queries into a parallel agent-based 
execution plan. The process is illustrated in Figure 1 below, and has been broken down into 7 
key stages. 
 

 
Figure 1: Query Translation Pipeline from Input to Execution 

Stage 1: Input Query 
 
 A user at the application layer submits a declarative Cypher-style query such as the 
example MATCH (n:Person)-[r:KNOWS]->(m:Person) WHERE m.age > 30 DETACH DELETE m 
RETURN n.name. Parenthesis surround vertex nodes while square brackets surround 
relationship edges and arrow notation showcases directionality of the relationship. This 
notation describes the declarative “what” the querier is looking for but leaves it to MASS for 
“how” that imperative logic will be orchestrated under-the-hood. 
 
Stage 2: Parse Tree Creation 
 
MASS in it’s current form utilizes ANTLR4 (ANother Tool for Language Recognition version 4) to 
break down the query into lexical components and is parsed correlating to specific Cypher 
language grammar rules. What is generated is a parse tree, otherwise known as a concrete 
syntax tree, which includes each and every token of the original input including punctuation, 
carriage line returns, space characters, and special markers including but not limited to the End 
of File (EOF). This phase ensures that the query was entered in a legitimately recognized format 
for Cypher statements and that there are no errors. An example formatted rule for what a 
DELETE entry’s syntax must abide by is seen in Figure 2. 
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Figure 2: Cypher.g4 File Grammar Rule for DELETE 

Each node in the parse tree is correlated to a specially formatted Cypher rule and the root node 
is the oC_Cypher rule, where “oC” in these rules stands for the “openCypher” standard. This 
accepted format for “oC” rules is an open-source project that helps spread the correct format of 
the Cypher language in each respective graph database system [18]. Each token will establish a 
node in the parse tree, and while it can seem cluttered, the tree will hold the accurate tokenized 
version of the entire representation of the query. Figure 3 below is a visualized representation 
of a sample parse tree highlighting the DELETE clause associated specifics within the red circle. 
 
 
 

 
Figure 3: Parse Tree (Concrete Syntax Tree) with DELETE Branch Circled 

 
Stage 3: PropertyGraphCypherVisitor Traverses Parse Tree 
 
The PropertyGraphCypherVisitor (PGVC) class implements ANTLR’s visitor interface. It traverses 
the parse tree that was created in stage 2 recursively and builds the abstract syntax tree (AST). 
The visitor will ignore nodes related to superficial grammar and extracts the semantic meaning 
of the original query. This can be thought of as trimming out the excess grammatical 
components to get at the heart of the query meaning. The PGVC carries with it the “ctx” or 
context of the parse tree branch that remains to be recursively traversed for that section of the 
tree. Figure 4 below shows the PGVC constructor with an example visitation to its root node of 
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oC_Cypher in addition to a visitation of an updating clause of which DELETE is one of. When 
visiting these rule encounters, logic may dictate to visit an alternative local method, but the end 
result will be the return of a newly generated type of AST node such as the CypherDeleteClause. 
 

 
Figure 4: PropertyGraphCypherVisitor Methods Return AST Nodes 

 
Stage 4: Abstract Syntax Tree 
 
The AST holds the core semantic context of the original query. At its root is the 
CypherStatement class which extends the CypherAstBase class. This CypherStatement class 
holds children that are the other AST clause nodes generated via the PGVC parse tree traversal. 
The CypherStatement lives within the PropertyGraphCypherQuery wrapper class which acts as a 
higher-level controller for building and executing the corresponding execution plan. The 
purpose of these AST nodes are to simplify each clause concept into more easily translatable 
operations for later execution stages. 
 
Stage 5: ExecutionPlanBuilder Traverses AST 
 
Within the PropertyGraphCypherQueryVisitorContext wrapper class, the ExecutionPlanBuilder 
is created, generates a new ExecutionPlan, and then traverses the AST producing a resultant 
ExecutionStep node in the ExecutionPlan corresponding to the clause node being visited in the 
AST. The following code in figure 5 was drafted in the ExecutionPlanBuilder visitation of the 
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CypherDeleteClause in the AST. The ctx argument holds the shared state of the actual property 
graph, a carrying forward of the ExecutionPlanBuilder itself, as well as the ExecutionPlan being 
operated on and constructed. It specifies the collection of the variable expressions queried for 
as a part of the Cypher rule shown previously in figure 2. 
 

 
Figure 5: ExecutionPlanBuilder Method to Create DeleteExecutionStep 

 
Stage 6: ExecutionPlan 
 
The root of the ExecutionPlan is a base node type of ExecutionStep which is a non-instantiable 
interface class. Multiple types of ExecutionSteps are derived from this base class. Notably the 
DefaultExecutionStep is an abstract class used for leaf nodes that don’t have children while the 
ExecutionStepWithChildren class obviously has child nodes respectively. A subtype of the 
ExecutionStepWithChildren class is the concrete class SeriesExecutionStep which is generated 
when the children steps necessarily need to run in series. For example, the matching and 
filtering of MATCH and WHERE clause stages need to complete before DELETE and RETURN logic 
occurs, and therefore the root node would likely implement a SeriesExecutionStep for that 
reason. Data is passed through these steps as a PropertyGraphCypherResult object which 
effectively allows for intermediate collections of data that can then be transferred between 
stages and then modified or extended. 
 
Stage 7: PropertyGraphAgents 
 
PropertyGraphAgents are distributed across the shared memory of the property graph which is 
partitioned across a compute node cluster. Depending on the type of ExecutionStep that would 
currently be executing, a different variant group of the PropertyGraphAgent class would be 
deployed. The PropertyGraphAgent has different motives to complete when deployed for a 
DELETE operation compared to MATCH or WHERE and would rely on a different make-up of the 
AgentInitArgs class which is handed to it. In DELETE ideally the AgentInitArgs is setup for 
containing the node ID’s (ItemID) of the PropertyVertexPlace’s that have been traveled to in the 
MATCH/WHERE phase through the intermediate returnPath result. 
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Figure 6: PropertyVertexPlace shows a Unique ID Available for All Vertex Nodes 

 
Figure 7: AgentInitArgs Class for DELETE PropertyGraphAgents Will Carry Target ID's to Perform DELETE Work 

 
Stages 2-7: Declarative-To-Imperative Pipeline 
 
To sum up the pipeline, in the GraphManager class outside of the mass_java_core engine on the 
application side of the framework, the GraphManager.queryHandler function effectively begins 
the chain reaction of the declarative-to-imperative pipeline. In figure 8 below, line 244 
encompasses stages 2-4 which creates a new context to carry the PropertyGraphPlaces graph, 
the ExecutionPlanBuilder, and the current form of the ExecutionPlan. Line 247 encompasses 
stages 5-7 which then return the result of the query which is formatted as rows of information 
defined in the PropertyGraphCypherResult class. 
 

 
Figure 8: GraphManager queryHandler Core Function Aspects 
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5 Evaluation 
 
In order to evaluate the DELETE clause implementation in MASS, there will be reuse of three 
successfully utilized datasets previously by Prajapati [10, 11] to test execution time for speed as 
well as memory usage to monitor overall thread communication workloads in closely identically 
property graph network environments. The datasets are stored as CSV files containing vertex 
nodes and relationship edges which can be uploaded to MASS thanks to the prior work by Dea 
[6] and Cao [8]. The datasets scale across 103 for the IMDB movie dataset and 104 for the 
BioSnap and Shipments datasets. The BioSnap dataset is a smaller scale biomedical dataset 
while the Shipments dataset is a synthetically crafted dataset by Prajapati for larger scale that 
fits the needs of the testing environment with greater vertex node and relationship quantities.  
 
 

 
Figure 9: Three Datasets - IMDB, BioSNAP, & Shipments 

While a dataset representing 105 has not yet been selected, the SNAP Datasets via Stanford 
Large Network Dataset Collection [19] stands as an excellent repository to search through for 
data groupings that can accommodate the kind of densely linked structure at the quantity of 
scale necessary to put the MASS framework to the test. Finding a suitable dataset in the 105 
order of magnitude will allow for a more comprehensive scalability test for update clause 
operations such as DELETE and SET respectively. After ensuring correct functionality, the use of 
initial test data will allow for the algorithm to be updated as necessary and finally directly 
compared to the identical datasets in Neo4j and ArangoDB for execution speed and memory 
overhead comparisons. 

 

6 Conclusion 
 
There are still core aspects of the DELETE clause pipeline that need to be implemented, but the 
Autumn 2025 quarter has set off to a great start. A large amount of research time was needed 
on the MASS declarative-to-imperative pipeline initially to assess how it’s designed and how it 
functions. This research enabled the depth of understanding of the complex framework and 
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layers of translation and interdependencies between classes that are required to make 
knowledgeable edits and contributions to the MASS library. 
 
This project has deepened my understanding of distributed systems, query processing pipelines, 
and the architectural complexity behind multiple stages of query translations. Through 
extensive exploration of the MASS framework, I’ve learned how MASS Cypher queries are 
parsed, translated into abstract syntax trees, and ultimately executed via a parallel agent 
distribution plan. Gaining this foundational insight has been crucial in preparing me to further 
implement and plan for update clauses in a way that will accurately perform the task at hand, 
while respecting the complexities of concurrent operations at scale. The challenges faced so far 
have seemed aggressively present, but in knowledgeable reflection appear surmountable. 
 
The next step for Winter Quarter 2026 will be definitive code addition and implementation 
initially for the completion of singular vertex node deletion. To do that correctly an accuracy 
inspection of the deletion target ItemID’s passed from the MATCH/WHERE phase to the DELETE 
phase during the intermediate data transfer will be mandatory. Furthermore, the conceptual 
design will need to be drafted for a more complicated DELETE execution. This can involve 
multiple hops or agent traversal across vertex nodes where agents may encounter concurrency 
issues for acting on the same vertex node. An algorithm for confirming exclusive rights to 
operate on that node will be necessary. Lastly, the underlying theme in developing an algorithm 
will refrain from costly global consensus measures. Instead, the aim will be to necessarily 
support high resource availability through localized decision-making for responding to individual 
agent requests for data acces. This methodology should ensure that the progress for query 
processing is not hindered and is instead systematically resolved. 
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8 Appendix 
 
Committed work for DELETE clause can be found in the ryanmi/ryan-delete-clause branch of 
mass_java_core. 
 
https://bitbucket.org/mass_library_developers/mass_java_core/branch/ryanmi/ryan-delete-
clause 
   
 

https://bitbucket.org/mass_library_developers/mass_java_core/branch/ryanmi/ryan-delete-clause
https://bitbucket.org/mass_library_developers/mass_java_core/branch/ryanmi/ryan-delete-clause
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