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A Geographical Information System (GIS) is a vital software tool used across numerous domains 

to help store, manage, analyze, and visualize geospatial data.  One of the core functions of the GIS 

is its ability to query, enabling  scientists and researchers to analyze and discover underlying 

patterns and associations among various data layers.  However, it is extremely time and 

computationally intensive to process complex spatial GIS queries on a single standalone system 

sequentially. Therefore, in this capstone project we parallelize GIS queries using an agent-based 

parallelization framework,  Multi-Agent Spatial Simulation (MASS), and further explore the idea 

of incorporating computational geometry algorithms such as closest pair of points, range search 

and minimum spanning tree to GIS queries using agent propagation.  

  

The major motivation behind integrating MASS library and GIS queries stems from the results of 

previous research in comparing MASS with other popular big data streaming tools. This research 

observed that agent-based computation using MASS yielded competitive performance and 

intuitive parallelization when introduced into data structures such as graphs. To verify this 

hypothesis of agent’s superiority, we now would like to utilize MASS Agents in GIS queries where 

agents utilize computational geometry problems to find results of GIS queries through propagation 

over MASS Places spread across different computing nodes.  

  



 

 
 

The significant contributions of this capstone project are to demonstrate GIS queries as a practical 

application of  agent-based data analysis. Further, this project focuses on migrating the previous 

implementation of MASS-GIS system from Amazon Web Services (AWS) to the University of 

Washington Bothell computational clusters consisting of 24 computing nodes to achieve 

scalability and fine-grained partitioning of the GIS datasets suitable for agent-based parallel GIS 

queries. Sequential and parallel, attribute and spatial GIS queries are designed and implemented 

in this project using contextual query language (CQL) modules from GeoTools (open-source GIS 

package) and MASS. Additionally, we also extend and integrate the previous research on 

computational geometry algorithms using MASS to GIS queries. Algorithms such as the closest 

pair of points are incorporated into GIS queries to find the closest cities within a certain distance 

from a given city. Likewise range search is used to find all the cities in a  given country given the 

range of geographical bounds of a country and minimum spanning tree is extended to find the 

shortest path between two points on a map. Lastly, we evaluate the performance of parallel agent-

based GIS queries implemented using MASS. The results show that agent-based GIS queries using 

MASS-CQL and the closest pair of points algorithm are time efficient. Furthermore, MASS based 

GIS queries using computational geometry algorithms of the closest pair of points and range search 

provide 100% accuracy. However better optimization techniques need to be applied to improve 

the performance of agent-based GIS queries using the range search algorithm.  
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Chapter 1  

Introduction 

1.1  Geographical Information System (GIS) 

A Geographical Information System (GIS) is a software system that manages, visualizes, analyzes, 

and stores geographic data. GIS enables every object present in it to be connected to a location on 

the earth’s surface which is further depicted on a map [3]. As shown in Figure 1, the GIS software 

depicts data on a map by overlaying multiple layers of different types of geographic data (such as 

water bodies, streets, and buildings) over one another on a base map.  

 

 

Figure 1: Overlaying different features of the real world on top of each other in the GIS 

environment [3]. 

 

One of the primary functions of the GIS is the ability to query, enabling the analysis and discovery 

of underlying patterns and relationships among various data layers. Hence, it finds applications in 

all location-centric disciplines such as transportation, meteorology, environmental studies, disaster 

management, satellite imaging, urban planning, etc.  

 

Owing to the wide range of applicability of GIS, the sources of geographical data are enormous. 

Researchers and scientists analyzing these large-scale datasets using the GIS software are 

constantly challenged to query it in a time-efficient manner. Parallelizing GIS queries and 

executing them over a large dataset distributed across a cluster of computing nodes presents a 
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compelling research opportunity with the potential to provide time-efficient GIS query processing 

[2].  Therefore, in this capstone project we parallelize GIS queries using an agent-based 

parallelization framework,  Multi-Agent Spatial Simulation (MASS) [1] and also explore the idea 

of incorporating computational geometry algorithms to GIS queries.   

 

1.2 Motivation 

The major motivation behind parallelizing GIS queries with the MASS library stems from the 

previous research carried out in comparing MASS with other popular big data streaming tools by 

Prof. Munehiro Fukuda and his team at the University of Washington, Bothell. It was observed in 

this research that agent-based computation using MASS did not outperform conventional text data 

streaming but yielded competitive performance and intuitive parallelization when introduced into 

data structures such as graphs [4]. To verify this hypothesis of agent’s superiority, the MASS 

research has been focused on solving basic computational geometry problems such as the closest 

pair of points, range search using KDTree and graph algorithms of minimum spanning tree using 

agents [5]. As a further step in this research endeavor, we now would like to practically implement 

this work in GIS where agents make use of some computational geometry problems (such as 

finding the shortest distance between two points on map) over GIS in response to user queries.  

 

Some studies also indicated that parallel GIS queries using parallelization frameworks such as 

MPI, MapReduce and Hadoop showed faster performance on parallel spatial queries compared to 

sequential execution on a single node [6][7]. Thus, based on the fact that MASS provides 

competitive performance in comparison to MapReduce and Spark in graph-based applications [4], 

implementing MASS in GIS queries is a promising research direction.  

 

1.3 Problem Definition  

This capstone project builds upon the previous implementation of the MASS-GIS system carried 

out by M. Sieling [11]. The previous implementation focuses on GIS data division and parallel 

data retrieval using MASS across only eight Amazon Elastic Compute Cloud (EC2) instances. 

However, this system encountered issues and failed to execute on the University of Washington 

Bothell computational clusters. 
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In this project, we first migrate the previous version of the MASS-GIS system from eight (8) EC2 

instances on Amazon Web Services (AWS) to the University of Washington Bothell 

computational clusters consisting of 24 computing nodes. The benefits of this migration are 

twofold: one we can evaluate the performance of the system with more servers and achieve fine-

grained partitioning of the GIS datasets suitable for agent-based parallel GIS queries, and second 

that it will enable the execution of the MASS-GIS system in a heterogeneous environment across 

cloud and non-cloud clusters in future. Additionally, we also replaced the raster image backdrop 

of the world with a tiled map from OpenStreetMap (an open-source project for creating 

geographical databases) [14] to depict specific details of the geographic locations on the map as 

compared to just having terrain and land boundaries. 

 

Thereafter, we implement sequential attribute, spatial, and aggregate GIS queries (combining 

attribute and spatial GIS queries). These queries are executed over multiple layers of GIS datasets 

at once using contextual query language (CQL) modules from GeoTools [12], an open-source 

library for GIS and the results are visualized on the map.  

 

Our approach to parallelizing attribute and spatial GIS queries can be broadly divided into two 

categories: 1. using the CQL module and MASS Places (a distributed array assigned over a cluster, 

each element in the Places matrix represents a fragment of the GIS dataset). 2. using computational 

geometry algorithms and MASS Agent [1] (executable instance that moves parallelly across places 

and interacts with other agents and places) propagation on MASS Places. 

 

In our first parallelization approach, we divide the large GIS data across MASS Places on different 

computing nodes using the GIS dataset division algorithm by M. Sieling [11].  We then execute 

spatial or attribute GIS queries using the CQL module and MASS [1], on each of the GIS data 

fragments.  The results of the queries are collected from the remote nodes and sent to the master 

node using MASS and visualized on the map using GeoTools. 

 

In our second approach to parallelization, we extend and apply computational geometry algorithms 

to MASS-GIS systems to execute spatial queries and gather responses back using MASS Agents. 

Algorithms such as the closest pair of points [15] that is used to find all the cities (represented as 
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points) within a certain distance of the given city, range search [15]  to find all the cities 

(represented as points) within a certain geographical latitude and longitude positions and minimum 

spanning tree [16] to find the shortest path between two geographical coordinates, are integrated 

as spatial queries in the MASS GIS system. 

 

We evaluate these parallel attribute and spatial GIS queries using MASS with datasets obtained 

from various government websites consisting of 300K and 500K data points for CPU scalability 

analysis. Lastly, we present our inferences on the performance of agent-based GIS queries using 

MASS. 

 

1.4 Report Structure 

The report that follows provides a detailed overview of the important concepts that form the basis 

of this project in chapter 2. Chapter 3 discusses the related research. Chapter 4 details our design 

and implementation strategies in parallelizing GIS queries using MASS and GeoTools. We present 

our results and evaluate the performance of  agent-based GIS queries using MASS in chapter 5. 

The conclusion and some insightful inferences drawn from our experiments along with potential 

research directions are discussed in chapter 6. 
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Chapter 2 

 Background 

In this chapter we provide a comprehensive summary of the important concepts that form the basis 

of our project. 

 

2.1 Geographical Information System Data 

GIS stores data in either raster or vector formats as using these types would help represent the real-

world data accurately. Raster dataset as depicted in Figure 2 is a collection of cells or pixels which 

make up a grid structure [17]. Each cell in the raster data represents a geographical location and 

values in it are the attributes and properties of that area. Raster data is used when the information 

to be displayed is continuous across a region like landscapes or terrains, rainfall trends. 

 

 

Figure 2: Raster data composed of pixels that display terrain information [17] [18]. 

 

On the other hand, vector data is used to depict real world features in the GIS like houses, roads, 

rivers (objects present on landscapes in the real world) [19]. Each object in vector data has a 

geometrical shape and a coordinate position as shown in Figure 3. For example, Seattle is 

represented by a point at a given x, y coordinate location in GIS using the cities vector data files. 

The vector object or feature can be represented using a point, line or polygon. GIS applications 

categorize vector features into layers. Each of the vector features / objects in the same layer have 

the same geometry and properties. Eg: Cities in the world that are represented using points. Thus 

in most of the GIS applications, the real world is decomposed into multiple layers of feature data 

(vector format) which are overlaid over one another onto the base map (raster format). 
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Figure 3: A point object in GIS vector data represented by its X, Y and Z coordinates which can 

represent a city on a map [19]. 

 

2.2 Geographical Information System Queries 

GIS queries can be broadly classified into two types, which are attribute based and spatial queries. 

Attribute queries select information from the data associated with the feature or from spatial 

databases integrated into the GIS software. Attributes that are queried can be a string, numeric or 

boolean data type. The results of an attribute-based query are highlighted on the map. Spatial 

queries select spatial features on the basis of their spatial relationships to other features in the GIS 

vector data. There are three different classes of spatial queries based on the spatial relationship that 

are used in the query, which are proximity, direction and topological spatial query [20]. Proximity 

spatial queries are when spatial relationships in the query are distance based. They can be 

expressed quantitatively as a metric and qualitatively as using verbal measures such as very far or 

near. Direction based spatial queries look for spatial features based on directions provided by the 

user as input. Lastly, topological spatial query is based on spatial relations that remain unaffected 

by transformations like stretching, shifting, rotating, or bending. They are based on topological 

relations such as adjacency, containment and intersection. 

 

2.3  GIS Querying Languages 

Query languages used to query the GIS data depend on the way in which it is queried. When GIS 

data is queried using an user interface provided by the GIS application like in QGIS, the UI 

translates the user query into the one that is understood by the GIS datastore like SQL. Another 

scenario would be when a spatial GIS database like PostGIS [21] is directly queried then Structured 
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Query Language (SQL) is used or when modules provided by libraries are used to query the 

shapefiles containing vector data then modules like Contextual Query Language (CQL) [12] are 

used. 

 

2.4  GeoTools 

GeoTools [22] is an open-source library written in JAVA that provides tools to manage GIS data.   

In our project we utilize GeoTools to read GIS vector data from shapefiles, manipulate this 

geospatial information from shapefiles as JAVA objects, query GIS data, serialize the GIS query 

results on remote, deserialize the GIS data on the master node and to visualize the query results on 

the map. We also use GeoTools to build large graphs from the GIS vector features representing 

streets or railroads of the United States and process the graph to implement the minimum spanning 

tree algorithm. 

 

2.5  Multi-Agent Spatial Simulation (MASS)  

Multi-Agent Spatial Simulation abbreviated as MASS [1] is an agent based parallel computing 

library for multi-agent and spatial simulation across a cluster of computing nodes. It was  designed 

and developed at University of Washington Bothell by Prof. Munehiro Fukuda and his team. Many 

research projects have been undertaken to apply the MASS library to real world problems such as 

bioinformatics, climate analysis and influenza epidemic simulations that comprise of big data.  

MASS library has two major components called Places and Agents[1]. MASS Places represent a 

distributed matrix allocated over a cluster and MASS Agents are executable instances that move 

parallelly across MASS Places, collecting information by interaction with other MASS Agents and 

MASS Places. MASS library defines GraphPlaces, VertexPlaces and GraphAgents that are 

employed when data processed is maintained in a graph data structure. The distributed graph data 

structure is known as GraphPlaces which is an extension of MASS Places[4]. The MASS 

GraphPlaces are made up of MASS VertexPlaces. Vertices of the graph data structure are mapped 

to MASS VertexPlace which contain information about the edges from the vertex and vertex itself. 

MASS GraphAgents, extended from MASS Agents base class, move across MASS VertexPlace 

to execute computations or exchange information. 
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Chapter 3 

 Related Works 

This chapter outlines the existing agent-based models that provide built-in support to GIS and 

discusses various research endeavors aimed at parallelizing GIS. It differentiates these efforts from 

our approach in this capstone project. 

 

3.1 Sequential Agent-based Models Integrated with GIS and Their Implementation of GIS 

Queries 

Agent-based modeling (ABM) is effective in simulating complex systems wherein agents interact 

with other agents and the environment under a given set of rules. The collective behavior of agents 

give rise to patterns that aid deeper analysis of the system.  Therefore, it is important to study the 

GIS system and its queries from the perspective of ABM. This section describes some well-known 

agent-based models that have been integrated with GIS such as NetLogo [9] [23] [24], Recursive 

Porous Agent Simulation Toolkit (Repast J) [25],  MASON [27] [28] and AnyLogic [29] in detail.  

 

3.1.1 NetLogo 

Netlogo is a popular agent-based modeling system that provides support for GIS integration. It 

uses a variant of Logo programming language and is based on a structured, hierarchical program 

model [9]. Two basic components in Netlogo are patches and turtles. Patches are cells in the 

NetLogo environment whereas turtles are agents (executable programs) that move across the 

patches. In order to work on GIS data in NetLogo, the first step is to import the vector and raster 

data into the NetLogo environment. Next, map vector features into the Netlogo patches 

components, draw polygons or appropriate geometrical objects representing various geographic 

regions in the Netlogo space [23]. Once these procedures are completed, agents move across and 

interact with  patches and other agents to complete the task. Netlogo also provides modules to 

implement spatial and attribute queries in GIS wherein the user can query some parts of the vector 

feature (patches) or the complete dataset. One of its major drawbacks is that it doesn’t have code 

parallelization support and hence can cause performance issues when running simulations on large 

amounts of GIS data [24].  
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Figure 4: Texas map displayed on Netlogo GIS integrated system [23]. 

 

3.1.2 Repast Simphony 

Repast Simphony [25] is an open-source library for agent-based simulations. It is built in Java. 

The concepts of contexts, projections, and queries in Repast Simphony provide a suitable 

environment for GIS integration. Context is a data structure used to organize agents representing 

GIS objects, it can be thought of as a bag full of agents based on set semantics. It contains 

projections that define relationships between agents. An in-built feature, Geography projection, is 

employed to group agents with the same spatial geometry (points, lines and polygons) into a 

geographic layer. This geography projection can be used to implement spatial and attribute queries. 

An example would be to query all agents with a specific spatial geometry [26]. Additionally, 

Repast Simphony provides support for continuous GIS agent space where the agent locations are 

represented using real numbers which is well suited for the GIS. The Repast HPC extension of 

Repast Simphony supports distributed and parallel processing. 

 

3.1.3 Multi Agent Simulation of Neighborhood (MASON) 

Multi Agent Simulation of Neighborhood (MASON) is an open-source Java library for agent-

based modeling. MASON has a GIS extension called Geo-MASON to support GIS functionalities. 

GeoMASON is designed to have the utility, model, and visualization layer. The utility layer 

provides support for importing GIS data into MASON.  Model layer contains the attribute 

information of the GIS vector data (geometry of the underlying features) and their metadata. Visual 

layer contains modules for displaying the GIS data. MASON supports network, discrete and 

continuous agent spaces. GeoMASON also provides good documentation to implement spatial 
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queries in GIS data. In GeoMASON computation and visualization components are separated 

therefore the time required in processing GIS data is less. MASON can also be hosted in a 

distributed system across a cluster of computing nodes and can be run in parallel using the message 

passing interface with the distributed MASON extension. 

 

3.1.4 AnyLogic 

This is another agent-based modeling framework and provides in-built GIS support. The GIS 

implementation is using OpenMap which is a JAVA visualization toolkit for geospatial data. It 

provides support to Tiled and Shapefile maps. It also provides inbuilt modules to define different 

elements of GIS such as a point, route or a region. Further, it provides support to spatial and 

attribute queries. It  provides inbuilt methods to place agents on a map and move them across the 

map along the defined routes in search of a specific destination.  Modules that calculate the 

distance between two agents,  return the current latitude and longitude position of the agent and 

also return status of the agent based on whether it is moving are implemented.   

 

There have been research studies in implementing distributed and parallel agent-based models 

using Repast HPC [25][26] in geospatial data. However not much work has been found in the 

literature that implements a full-scale GIS software with all the functionalities of data loading, 

querying and processing, visualization and exporting, using the existing ABM frameworks on 

distributed parallel setup of multiple nodes.  Table 1 summarizes and compares different ABM 

frameworks that support GIS. From Table 1 we can infer that AnyLogic [29]  and distributed 

MASON can be considered to benchmark the performance of MASS-GIS queries   

 

Table 1: Summary of Agent Based Frameworks integrated with GIS. 

Comparison 

parameters 

NetLogo [9] Repast 

Simphony 

[25][26] 

MASON 

[27][28] 

AnyLog

ic [29] 

MASS 

[1] 

Implementation 

language 

Scala, 

Java 

Java Java Java Java 
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Documentation Detailed Detailed Detailed Detailed Detailed 

Raster data 

support 

GIS 

extension 

Yes GeoMASO

N extension 

Yes Yes 

Vector data 

support 

GIS 

extension 

Yes GeoMASO

N extension 

Yes Contribution of 

this project 

Spatial query Yes  Yes Yes Yes Contribution of 

this project 

Parallel  

and distributed 

platform support 

No Yes, using 

Repast 

HPC 

Yes, using 

distributed 

MASON 

Yes  Contribution of 

this project  

Concurrent 

user support  

No No No No No 

 

3.2 Parallelization of GIS and Parallel GIS queries 

This section presents a detailed study on some efforts to parallelize GIS and GIS queries. 

 

3.2.1 Research Study Using MPI-Based Framework for Processing Spatial Vector Data in 

GIS On Heterogeneous Distributed Systems 

In this research endeavor [6], the GIS data is distributed across multiple computing nodes in the 

cloud and local environment. Communication between the local and cloud servers take place 

through the Internet. The system has a master node that is responsible for scheduling tasks and 

predicting execution time. The master node and the worker nodes process GIS data stored in a 

distributed file system. The MPI framework is composed of the following components: execution 

time predictor, schedulers and C++ wrapper library that implements MPI. Each of the spatial 

vector files is considered as a task. The master node begins by processing the spatial files. 

Information such as file size and number of vertices is extracted from the spatial data files and 

imported into the distributed file system. Files (tasks) are arranged according to the number of 

vertices in the spatial data. The scheduler assigns the files to the MPI processes in the increasing 
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number of spatial vertices (files with smaller number of vertices are assigned first). Each MPI 

process performs its assigned task in the master and worker nodes and calculates the execution 

time of the completed task in order to predict the execution time of the uncompleted tasks. The 

framework also creates an execution time prediction model. Next, the scheduler assigns tasks / 

files with the next lowest number of vertices and execution time to the MPI processes.  The results 

of the experiments showed that the framework processed the spatial data 12.9 times faster than the 

sequential execution [6]. 

 

3.2.2  Parallel Spatial Query Processing for Big Spatial Data using MapReduce. 

This research endeavor implements a unique solution to process spatial queries over big spatial 

data named VegaGiStore [7]. In this solution the spatial data is first divided into multiple blocks 

based on a threshold size and geographic space and distributed over a cluster of nodes. In each 

node, each piece of spatial data is stored sequentially allowing geographically close spatial objects 

to be placed together. Thus, this organization would reduce the number of I/O operations for spatial 

queries and support multiple concurrent spatial user queries. Next the solution applies a distributed 

spatial index for pruning the search space. Lastly, an indexing and MapReduce data processing 

architecture is used for computation in spatial data. This experiment was  carried out using the 

Hadoop distributed file system and MapReduce framework. The results showed that average 

spatial query performance increased by 10.3 -13.5 better than single node databases. 

 

3.3. Differentiate our approach from other existing implementations of GIS. 

The difference between our approach to GIS and GIS queries with the ones studied in the literature 

review in sections 3.1 and 3.2 are as follows:   

● Though there have been many agent-based models integrated with GIS and state-of-the-art 

open-source GIS tools, many of them such as Swarm, NetLogo and Mesa are sequential in 

nature Swarm [8], NetLogo [9] and Mesa [10]. Our approach using MASS library as 

described in chapter 4 implements a parallel solution using agents.  

● The existing parallel integrations of agent-based models with GIS don’t utilize the 

computational geometry algorithms for efficient spatial query processing. However, our 

approach utilizes the benefits of computational geometry algorithms such as, the  closest 

pair of points, range search and minimum spanning tree. 
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● The current ABM libraries that provide support for parallel GIS operations do not include 

any optimizations for reducing the number of agent movements in query processing. The 

MASS based GIS system organizes the geospatial data based on geographical coordinates. 

This ensures that data is not randomly distributed across nodes and reduces the number of 

agent movements. For instance, if the GIS is queried for countries near the United States 

of America, then most of the data pertaining to the United States and countries near it will 

reside on one node or in the worst-case scenario on the next node. This will help in reducing 

agent movement as opposed to data being randomly distributed across all the computing 

nodes in the cluster where agents need to migrate to every node on the cluster to fetch for 

results. 

● None of the agent-based libraries integrated with GIS support concurrent user queries. The 

MASS-GIS solution organizes geospatial data across distributed systems such that  the 

underlying design will also support concurrent user queries when it is implemented in the 

future. For example, two users can query for data pertaining to different regions of the 

world concurrently as the data for these regions reside on different nodes.  

● Hadoop is a batch processing system. Therefore, the current implementation of GIS 

parallelization using Hadoop and MapReduce is not suitable for GIS queries involving real 

time data processing. 

● MPI based parallel GIS, requires the use of low-level designer code to parallelize it. 

However, our implementation uses JAVA which is a widely used high level programming 

language (easier to code). 
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Chapter 4  

Implementation 

In this chapter, we discuss the bug fixes employed in migrating the basic version of the MASS-

GIS system from Amazon Web Services (AWS) cloud  to the University of Washington Bothell 

(UWB) internal lab cluster in section 4.1. We provide details about our implementation of 

sequential GIS queries in section 4.2. In section 4.3, we outline a summary of our approach to 

parallelize GIS queries. Further in sections 4.4, 4.5, 4.6 and 4.7 we focus on the design and 

implementation strategies used in our approach to agent-based attribute, spatial, and aggregate GIS 

queries using MASS.  

 

4.1 Migrate the basic version of the MASS-GIS system from AWS to the UWB cluster  

The basic version of MASS-GIS implementation by M Sieling [11], was carried out on 8 AWS 

EC2 instances. It implemented the basic functionalities of distributing the GIS data and rendering 

map fragments in parallel from 8 EC2 instances. However, this implementation is quite primitive, 

and the partitioning of the GIS data was too coarse. To achieve time-efficient performance for 

large scale complex GIS queries, it is important to have fine grained distribution of GIS datasets 

over a bigger cluster system. Thus, given the monetary resource constraints in continuing our 

implementation in AWS on a larger cluster system we decided to migrate the basic version of the 

MASS-GIS system into UWB internal cluster. This migration will enable us to evaluate the 

performance of the system on 24 servers and achieve fine-grained partitioning of the GIS datasets 

suitable for agent-based parallel GIS queries. Additionally, it will help us evaluate the MASS-GIS 

system on a non-cloud platform as well. 

 

Following bug fixes were made while migrating the MASS-GIS system from AWS cloud to 

internal lab environment at UWB:  

● Fixing MASS initialization errors: Compilation errors in initializing the MASS core library 

were encountered while executing the MASS-GIS system in the UWB lab environment. 

This error was because the mass library was not initialized using the appropriate 

constructor.   
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● Fixing hardcoded file path: File not found exceptions we encountered as the file paths to 

read and save the map differed from the AWS environment to the internal UWB lab 

environment. Hardcoded file paths were fixed. 

● Missing dependencies in documentation: Documentation didn’t mention XQuartz, an 

open-source graphics framework, as a dependency when executing the code.  Errors caused 

by missing XQuartz software were fixed  once it was installed.  

● Error in displaying distributed map images: The code to visualize the map, distributed 

across MASS Places displayed an empty screen. This was because the map fragments 

retrieved from MASS Places were getting corrupted in subsequent sections of code that 

combined the map fragments. This bug was fixed by making another copy of the map 

fragments retrieved from MASS Places and using it to combine and display the map. 

● Incomplete map image: Some parts of the map were missing when the MASS-GIS system 

was executed on multiple nodes. This was because the code to spawn MASS Agents and 

migrate them to MASS Places was not successful in migrating MASS Agents to all the 

MASS Places containing map fragments. As a result, when subsequent sections of the code 

tried to display map fragments, some of them were missing and displayed null pointer 

exceptions. This problem was remedied by creating new agents and assigning one agent 

per MASS Place. Agents in each of the MASS Place containing map fragments returned 

the map fragment to the master node and a complete map was displayed. 

● We replaced the raster image backdrop of the world, depicting only borders of continents 

and water bodies, with a tiled map from OpenStreetMap. The OpenStreetMap is an open-

source project for creating geographical databases. It provides tile service which is a web-

service for map tiles. These map tiles are raster images that have specific details of a 

geographic location for instance country and state boundaries with labels, roads in a 

specific neighborhood, highways, etc. Thus, this would provide more information about 

the geographic locations to the user as opposed to just having terrain and land boundaries 

without labels depicted from the previously implemented raster image. 

 

In conclusion, the migration from 8 AWS EC2 instances to the UWB cluster helped in scaling the 

MASS-GIS system across 24 nodes. This effort also helped in dividing the large GIS datasets into 

400 fragments and distributing it across 24 nodes within a small amount of time.  Moreover, the 
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user can now utilize the GIS map and retrieve extremely specific details of location. Figure 5 

depicts the previous  and current MASS-GIS UI  after migration (zoomed version with cities, 

national parks, US states). 

 

 

Figure 5:  Previous (no labels and details) and current MASS-GIS UI (can zoom to view details). 

 

4.2  Sequential GIS queries 

The sequential GIS queries are implemented using the contextual query language module from 

GeoTools. The shapefile is first read using an interface FileDataStore [31] provided by the 

GeoTools library. A SimpleFeatureSource object is created to access the geospatial information in 

the shapefiles as JAVA objects. Further, we create a SimpleFeatureCollection [34] object, which 

is a collection of vector features and provides support for executing spatial and attribute queries. 

Attribute and spatial CQL queries are defined and applied to the collection of vector features 

(SimpleFeatureCollection). The CQL query applies constraints to the collection of features and 

returns a subset of selected features in the  SimpleFeatureCollection  format. The resultant subset 

is added to the map as a layer with a specified geometry and color using the 
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org.geotools.map.FeatureLayer [37][38] and org.geotools.styling.Style [39] libraries. The feature 

layer contents are displayed by the MapContent object from org.geotools.map.Map [35] [36] 

library.  

4.3 Summary of our parallelization strategies for GIS queries 

As illustrated in Figure 6, our approach to parallelizing GIS queries can be broadly divided into 

two categories: (1) using the contextual query language (CQL) module and MASS Places and (2) 

using computational geometry algorithms and MASS Agent  propagation on MASS Places. In our 

first approach, we implement attribute and spatial GIS queries.  However, in the second approach, 

we implement only spatial GIS queries using computational geometry algorithms of closest pair 

of points, range search and minimum spanning tree. 

 

 

Figure 6: Taxonomy of parallel GIS queries implemented in MASS. 

 

4.4 Parallel Attribute and Spatial GIS Queries using CQL Module and MASS Places 

The design for attribute and spatial GIS queries in 2D space using MASS and CQL utilizes  MASS 

Places, and the toFilter() method from GeoTools library that defines a constraint to be verified 
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against an instance of a GIS feature vector data.  The GeoTool’s toFilter() method can be used to 

place spatial and attribute constraints on the GIS vector features. 

 

The design comprises 5 stages which are i. import GIS vector data,  ii. vector data division and 

distribution, iii. attribute / spatial query on MASS Places using CQL, iv. query results serialization, 

v. query results deserialization, vi. results visualization on GIS map as described in Figure 7. The 

sequence diagram in Figure 8 describes the implementation of design phases in detail. The boxes 

in the sequence diagram in Figure 8 represent the different classes implementing the code and 

arrows indicate the control flow across these classes.   

 

Figure 7: Design for parallel attribute and spatial queries using Contextual Query Language and 

MASS. 
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Figure 8: Sequence diagram for parallel attribute and spatial queries using contextual query 

language (CQL) and MASS. 

 

The design phases along with implementation details in the sequence diagram from Figure 7 and 

Figure 8 respectively are detailed through steps i to vi. 

 

i. Import GIS vector data:   

This step represents phase i from the design diagram in Figure 7 and phase 1 from the sequence 

diagram in Figure 8. In this step, the main program initializes the MASS library and creates MASS 

Places. The configuration details provided by the user, containing the number of horizontal rows 

and columns to divide the map and location of input shape files to be processed are stored in the 

MASS-GIS system.  
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ii. Vector data division and distribution:   

Phase ii from the design diagram in Figure 7 and phase 2 from the sequence diagram in Figure 8 

is carried out in this step. In this step the GIS data in shapefiles is divided and distributed across 

MASS Places on different computing nodes.  

 

iii. Attribute / spatial query on places using CQL:   

Once the vector data is distributed across various nodes, CQL queries are executed on individual 

GIS data fragments maintained across MASS Places . Queries are defined as a String in the main 

function and passed as arguments to the  places.callAll() function to execute in parallel across 

MASS Places. Figure 9 shows an example syntax of the parallel spatial and attribute CQL queries 

that were implemented in the MASS-GIS system. The phase iii from the design diagram in Figure 

7 and  phase 3 from the sequence diagram in Figure 8 is implemented in this phase. 

 

// Displays Seattle on the map 

String query ="CITY_NAME LIKE 'Seattle%'"; 

// Displays all the cities within 500 kilometers from the point (Bombay) . Note that distance 

// conversion is not accurate in CQL. A potential bug in GeoTools 

String query = ""DWITHIN(the_geom, POINT(72.82599639892578 19.07699966430664), 5, 

kilometers)"; 

Figure 9: CQL queries executed on MASS-GIS system. 

 

iv. Query results serialization :  

The results obtained from the CQL query at each MASS Place on the remote computing nodes, 

take a similar format as if it was an output from Java Database Connectivity (JDBC) queries. Since 

they are not serializable, they are converted into a List<String> and thereafter sent back to the 

master node as shown in phase 4 and iv of the design and sequence diagram in Figure 7 and Figure 

8 respectively. 
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v. Query results deserialization :  

The query results obtained as a List<String>  from different computing nodes in the master node 

needs to be converted into the vector data format as geometrical shapes to be displayed on the GIS 

map. This is achieved by using the GeoTools library in this step. The phase v and 5 in the design 

and sequence diagram from Figure 7 and Figure 8 represents this step. 

 

vi. Query result visualization on GIS map: 

The deserialized GIS vector data is added as a feature layer and visualized on the map using the 

libraries provided by GeoTools. A tiled map from OpenStreetMap (an open-source tool that 

exposes APIs for raster map images) is used as a backdrop to display labels / names  of the location. 

The phase vi and 6  in the design and sequence diagram from Figure 7 and Figure 8 represents this 

step.  

 

The results of attribute, spatial and aggregate (combining attribute and spatial) GIS queries 

implemented using CQL and MASS library are presented in Figure 10 through Figure 16. 

Particularly, Figure 10 and Figure 11 depict the findings of an attribute GIS query to search the 

city Seattle. This GIS query uses the “like” operator to query for the city with the name Seattle. 

Further, Figure 12 presents the results of an attribute GIS query aimed at finding all cities in the 

United States. Here, we observe that only the cities in the United States are marked on the map.   

 

The results of spatial GIS queries are presented in Figures 13 through Figure 16. These spatial 

queries utilize the distance within and bounding box spatial operators. Figure 13 shows the 

outcomes of the spatial query to find all the mineral resources within 500 miles from the city 

Mumbai. Figure 14 depicts the results of the spatial GIS query to find cities within 100 kilometers 

from Seattle. The queries in Figure 13 and Figure 14 use the distance within operator. An 

illustrative example of the bounding box operator is shown in Figure 15 that depicts the spatial 

query to find all cities within the bounding box. Lastly, an example of  aggregate query is presented 

in Figure 16 that applies the bounding box spatial operator and searches for the cities with attribute 

“CNTRY_NAME” as United States. 
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Figure 10: Attribute based GIS query to find the city Seattle. 

  

 

Figure 11: Attribute based GIS query to find the city Seattle (zoomed view). 
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Figure 12: Attribute based GIS query to find all cities in the United States on the map. 

 

 

Figure 13: Spatial GIS query to find all minerals resources within 500 miles from the city 

Mumbai. 
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Figure 14: Spatial GIS query to find city within 100 kilometers from Seattle. 

 

 

Figure 15: Spatial GIS query to find all the countries within the bounding box. 
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Figure 16: Aggregate GIS query combining attribute and spatial query to find all the cities within 

the bounding box and has the “CNTRY_NAME” attribute set to “United States.” 

 

4.5 Closest Pair of Points: Parallel Spatial GIS Query using MASS Agent Propagation  

In this GIS query we extend and modify the MASS based closest pair of points algorithms [15] to 

find the closest points (cities) within a certain distance of a given point (city). This algorithm 

demonstrates the practical applications of the MASS based closest pair points algorithm.  

 

The design consists of 5 phases: i. import vector data in the MASS-GIS environment, ii. extract 

vector data within 1 latitude and longitude coordinate position from the given point, iii. compute 

all the cities with a given distance from a point /city using agent propagation, and iv. visualize the 

results on the map as shown in Figure 17. The sequence diagram in Figure 18 describes the control 

flow across the class implementations. 
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Figure 17:  Design for spatial GIS query to find the cities within a certain distance from a given 

city using agent propagation. 
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Figure 18: Sequence diagram for parallel agent-based query to find all the points /cities within a 

given distance of a point / city. 

 

The design phases along with implementation details in the sequence diagram from Figure 17 and 

Figure 18 respectively are detailed through steps i to iv. 

 

i. Import vector data in GIS environment:  

The GIS vector data (cities information) present in the shapefile is read into the MASS-GIS system 

using the GeoTools library as represented in phase i and 1 in the design and sequence diagram in 

Figure 17 and Figure 18 respectively. 
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ii. Extract vector data within +/- 1.0 latitude and longitude coordinate position from the given 

point:  

After reading the vector information from the shapefile, we iterate over each of the vector data and 

extract the X and Y coordinate information (latitude and longitude) of all the vector data points 

(cities).  Next, we consider only those points (cities) whose coordinates are within +1 and -1 

latitude and longitude coordinate positions of the given point.  This is because cities that lie within 

50 miles of a given city have latitude and longitude coordinate positions in the range of +/-1 

coordinates.  To find points that are at a larger than 50 miles from a given point we can increase 

the range of latitude and longitude coordinates. For example, if points within 100 miles from a 

given location need to be chosen then we can consider points within +/- 2 latitude and longitude 

coordinate position. The X and Y coordinates (latitude and longitude) of a point are converted to 

the type  edu.uw.bothell.css.dsl.MASS.Point [1] and stored in a List<MASS.Point>.  This step is 

depicted in phase ii and 2 in the design and sequence diagram in Figure 17 and Figure 18 

respectively. 

 

iii. Compute all the cities with a given distance (50 miles) from a point /city using agent 

propagation: 

In this phase, MASS SpacePlaces are created at each of the selected points (cities) in the 

List<MASS.Point> (points / cities that lie within +/- 1 latitude and longitude coordinate positions 

from the given point / city).  MASS SpacePlaces extend MASS.Places and have additional methods 

that support complex agent propagation methods [15].   Each MASS SpacePlace represents a city 

(point). MASS Agents are created at each MASS SpacePlace. These MASS Agents propagate on 

MASS SpacePlaces representing cities and calculate the distance between the original / given city 

and the city to which they propagated. If the distance is less than 50 miles, the point is added to 

the result which is a list of MASS points and returned to the main function. The orthodromic 

distance [42], shortest distance between two points on a sphere, is used for distance calculation 

between two points as we are using latitude and longitude coordinates. This step is depicted in 

phase iii and 3, 4, 5, 6 in the design and sequence diagram in Figure 17 and Figure 18 respectively. 
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iv. Visualize the results on the map :  

The result, a list of MASS points  that are within 50 miles of a specified point is converted to vector 

data format and visualized on the map using the GeoTools library. This step is depicted in phase 

iv and 7 in the design and sequence diagram in Figure 17 and Figure 18 respectively. 

 

Figure 19 illustrates the results of the spatial GIS query to find all the cities within 50 miles from 

Drammen, Norway. The cities of Oslo, Moss, Skien, Tønsberg and Lillestrøm are highlighted as 

results on the map. On computing the air travel distance from Drammen to these cities we observe 

that all the cities are within 50 miles from Drammmen, Norway and the GIS query provides 100% 

accuracy. The results of the computation are summarized in Table 2. 

 

 

Figure 19: Results of the spatial GIS query to find all the cities  within 50 miles from Drammen. 
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Table 2: Air travel distance from Drammen in miles to other cities displayed on the map, 

obtained from google search. 

Sl.no City Air travel distance from Drammen in 

miles 

1 Oslo 22 

2 Moss  27 

3 Skien 42 

4 Tonsberg 34 

5 Lillestrøm 32.8 

 

4.6  Range Search: Parallel spatial GIS query using MASS Agent propagation to find all 

points (cities) within a given range 

This spatial GIS query is a practical application of the range search computational geometry 

algorithm.  We extend and modify the MASS based range search algorithm [15].  The range search 

algorithm returns a subset of points from a given set of points that lies within the specified range. 

In this GIS query, we query for cities within a country. This is done by supplying the geographical 

bounds of a country and using range search to determine all the cities represented as points that lie 

within this geographic bound. The geographic bounds of a country are determined by considering 

the country as a polygon and using the four coordinate points of the polygon to determine the 

minimum of all the X and Y coordinates and maximum of all the X,  and Y coordinates. For 

instance, the geographic bounds of Australia  are  minX : 113.7751361 ,   maxX: 153.62521, minY 

= -42.9911371 and maxY = -12.5328931. We find all the cities in Australia within this range.  
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The design phases as described in Figure 20 are: i. import vector data in the GIS environment,  ii. 

create a text file with x and y coordinates of all the cities in the world, iii. range search using agent 

propagation and KDTree, iv. display the results of range search on the map. 

 

The design phases from Figure 20  are detailed through steps i to iv. 

i. Import vector data in GIS environment:  

As shown in phase 1 from Figure 20, the vector data / shapefile with the cities information is read 

and stored in the GIS environment using the GeoTools library. 

 

ii. Create a text file with x and y coordinates of all the cities in the world: The SimpleFeature 

The vector data representing cities is converted into an object of type 

org.locationtech.jts.geom.Point [41]. The X and Y coordinates of the points (cities) are extracted  

and written into a file “points.txt”. This step is represented by phase 2 in the design diagram in 

Figure 20. 

 

iii. Range search using agent propagation and KDTree: The range search algorithm using 

KDTree and agents, implemented by V.Mohan [10] is run on these points / city coordinates with 

the minX, maxX, minY and maxY range. The algorithm outputs a list of points of type 

MASS.Point2D that lie within the specified range.  For instance, the range minX : 113.7751361 ,   

maxX: 153.62521, minY = -42.9911371 and maxY = -12.5328931 representing the geographical 

bounds of Australia is specified to find all the cities (points) within Australia. The only changes 

that were made to the agent-based range search algorithm was to change all the integer input points 

and range to type double.  This step is represented by phase 3 in the design diagram in Figure 20. 

 

iv.  Display the results of range search on the map:   

The result of the range search algorithm is a list of points of type ArrayList<Point2D> which is 

converted to vector data type using GeoTools library and displayed on the map.  This step is 

represented by phase 4 in the design diagram in Figure 20. 
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Figure 20: Design for the GIS query to find all the cities in Australia using Range Search 

algorithm that uses MASS Agents and KDTree. 

 

The results of the range search GIS query to find all the cities given the geographical bounds of 

Australia are shown in Figure 21 and Figure 22. From the results we observe that the range search 

query provides 100% accuracy as no cities outside the boundaries of Australia are displayed on 

the map. 
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Figure 21: Results for range search using KDTree to find all the cities located in a country 

(Australia) using agent propagation (world map view). 

 

 

Figure 22: Results for range search using KDTree to find all the cities located in a country 

(Australia) using agent propagation (zoomed view). 

 

4.7 Minimum Spanning Tree: Parallel spatial GIS query using MASS Agent propagation to 

Find the Shortest Path from a Source to Destination  

In this GIS query we find the shortest path between the source and destination by modifying and 

extending the minimum spanning tree algorithm using MASS Agents [16].  This GIS query can 

be further modified to apply in domains like transportation and delivery where it can be used to 

find the minimum cost of laying roads, travel itinerary planning to visit all the tourist destinations 

in a city by traveling a minimum distance. The implementation of shortest path GIS query is 

designed to work on connected and disconnected graphs. However, it requires an existence of a 

path from the source to the destination. The different design phases as shown in the Figure 23 are 
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import vector data, graph generation using GeoTools, create input file (DSL file), compute shortest 

path using minimum spanning tree algorithm,  process the results of minimum spanning tree 

algorithm, and visualize the results on the map. The sequence diagram in Figure 24 describes the 

control flow across the class implementations. 

 

Figure 23: Design for GIS query to find the shortest path from a source to destination by 

propagating agents over a graph using the minimum spanning tree algorithm. 
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Figure 24: Sequence diagram for parallel spatial query to find the shortest path from source to 

destination using MASS based minimum spanning tree algorithm. 

 

The design phases along with implementation details in the sequence diagram from Figure 23 and 

Figure 24 respectively are detailed through steps i to vi. 

 

i. Import vector data:  

As depicted in phase 1 of Figure 23 and Figure 24, the program execution starts by first importing 

and storing the GIS vector data in shapefiles consisting of roads or railroads data into the MASS-

GIS system. 
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ii.  Generate graph using GeoTool:   

Each instance of the imported vector data is of type MultiLineString [44] geometry (each 

multilinestring is made up of many lines) which represents paths. We iterate over each of the vector 

features and build a graph representing a network of roads / railroads. We utilize the GeoTools 

library to build a graph where roads represent the edges, endpoints of the roads form the vertices 

and length of the roads are the edges weights.  This process is carried out in phase 2 of the design 

and sequence diagram in Figure 23 and Figure 24 respectively. 

 

iii. Create  input file (DSL file) : 

Next, we traverse the generated graph to create an input file (DSL file) consisting of all the 

outgoing edges from the vertex along with their corresponding edge weights as shown in Figure 

25.  The input file is created by using two adjacency lists, one to store all adjacent vertices and the 

other to store edge weights of the adjacent vertex, and then traversing the adjacency lists to write 

all the adjacent vertices and their corresponding edge weights into an input file called graph.dsl.  

The input file has the format: <vertex_number>=<adjacent_vertexNumber>,<edge_weight> as 

shown in Figure 25. This step represents phase 3 of the design and sequence diagram in Figure 23 

and Figure 24 respectively. 

 

 

Figure 25: Input graph DSL file. 
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iv. Compute minimum spanning tree:  

MASS [1] library is initialized in this step and the input file (DSL file) is processed to create MASS 

VertexPlace at each vertex. GraphAgents are initialized at the source and destination VertexPlace. 

The GraphAgents propagate across VertexPlace and calculate the minimum spanning tree using 

the algorithm implemented by C. Tsui [16]. However, there is one change to this algorithm. 

GraphAgents stop computation as soon as the destination node is present in the minimum spanning 

tree. Thus, a minimum spanning tree from a given source to destination is the shortest path. The 

output of the minimum spanning tree algorithm is a String Array of edges from source to the 

destination with minimum weight ( minimum distance). This step is pictorially represented in 

phase 4 and 5 of the design diagram and phases 4-7 of sequence diagram in Figure 23 and Figure 

24 respectively. 

 

v. Process the results of minimum spanning tree algorithm :   

The String Array of edges obtained as results from the minimum spanning tree algorithm need to 

be sorted in the order that they occur in the path from source to the destination to be visualized on 

the map. An adjacency list containing the adjacent vertices and their corresponding weights is 

created.  Breadth first traversal is applied on this adjacency list and sequence of vertices in the path 

from source to destination stored in a list. This step is pictorially represented in phase 6 of the 

design diagram and phases 8-9 of sequence diagram in Figure 23 and Figure 24 respectively. 

 

vi. Visualize the results on the map: 

We iterate through the list containing the ordered sequence of vertices in the path from source to 

destination and create the vector data and visualize it on the map using the GeoTools library in red 

color. The base map containing all the roads are  also visualized in black to show the selected path 

from source to destination. This step is pictorially represented in phase 7 of the design diagram 

and phase 10 of sequence diagram in Figure 23 and Figure 24 respectively. 

 

The results of the shortest path GIS query to find the shortest path from Everett Avenue to Hoyt 

Avenue in Everett, WA are shown in Figure 26. These results are verified using Google Maps as 

shown in Figure 27. From the results in Figure 26 and Figure 27 we observe that the shortest path 
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query using minimum spanning tree provides 100% accuracy as the results from Google maps 

match the results obtained using this query in the MASS-GIS system. 

 

 

Figure 26: Results of the shortest path GIS query to find the shortest path from Everett Avenue 

to Hoyt Avenue in Everett, WA. 

 

 

Figure 27: Results of the shortest path GIS query to find the shortest path from Everett Avenue 

to Hoyt Avenue in Everett, WA using Google maps. 
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Chapter 5 

 Verification 

This chapter details the benchmark results of the MASS-CQL based GIS queries and 

computational geometry algorithm-based MASS GIS queries.  

 

5.1 Execution Environment 

The benchmark is carried out on 24 computing nodes in the University of Washington Bothell 

(UWB) internal lab environment.  These computing nodes are 64-bit Linux servers mounted on a 

central filesystem. The java programs are run using OpenJDK version "11.0.18" and Apache 

Maven 3.6.3.    

 

5.2  Input Datasets 

The datasets from various government repositories were considered to test the performance of the 

agent-based GIS queries implemented in this project. Table 3 summarizes these datasets.  

Table 3: Summary of the input GIS datasets used for performance evaluation. 

Name 

of 

dataset 

Description of the GIS 

query 

Type of GIS 

query 

Dataset 

size  

Source 

Cities Attribute GIS query to 

find all the cities with 

“country” attribute equal 

to united states   

MASS-CQL  

based GIS 

queries 

2,533 

instances 

(points) 

MASS application bitbucket 

repository [48] 

Cities Spatial GIS query to find 

cities within 100 

kilometers of Seattle 

MASS-CQL  

based GIS 

queries 

2,533 

instances 

(points) 

MASS application bitbucket 

repository [48] 

Mineral 

resourc

es 

Spatial GIS query to find 

mineral resources within 

100 kilometers of a given 

MASS-CQL  

based GIS 

queries 

304,632 

instances 

(points) 

U.S. Geological Survey 

government website. The 

dataset contains information 
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coordinate location about metallic and 

nonmetallic mineral 

resources throughout the 

world[49]  

Fire 

occurre

nces 

Closest Pair of Points: 

Spatial query to find the 

closest places of fire 

occurrences given a 

coordinate position. 

MASS based 

computationa

l geometry 

algorithm 

GIS query 

572,834 

instances 

(points) 

US department of agriculture 

government website. The 

data points represent fire 

occurrence locations where 

wildland fires have 

historically occurred [50]  

Populat

ed 

Cities 

Range search: Spatial 

query to find all the cities 

located within the range 

of geographical bound ( 

geographical bound of 

Australia) using agent 

propagation 

MASS based 

computationa

l geometry 

algorithm 

GIS query 

7,342 Natural Earth website. The 

data points represent major 

populated cities in the world 

[51]. 

Railroa

ds 

Minimum Spanning Tree: 

Spatial query to find the 

shortest path from a 

source to destination by 

propagating agents over a 

graph using the minimum 

spanning tree algorithm 

MASS based 

computationa

l geometry 

algorithm 

GIS query 

250,411 

vertices 

and 

250411 +  

edges 

United States department of 

transportation website [52]. 

Data consists of railroads 

from 50 states, the District of 

Columbia, Mexico, and 

Canada. 

 

5.3 Performance Evaluation for CQL-MASS based GIS query 

i. Attribute GIS query: The GIS dataset consisting of 2,533 cities is divided into 10 rows and 40 

columns and distributed across 1, 2, 3, 4, 6, 12, 18 and 24 computing nodes. A CQL query to find 

all the cities with CNTRY_NAME attribute “United States” is executed on each of the fragments 
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of  data in parallel. From Figure 28 (and see Appendix B (B.1)) we observe that the execution time 

decreases as the number of nodes used to run the query increases.  This pattern indicates that 

parallelization has helped achieve CPU scalability. 

 

ii. Spatial GIS query:  The GIS dataset of “cities” containing 2,533 cities is divided into 10 rows 

and 40 columns and distributed across 1, 2, 3, 4, 6, 12, 18 and 24 computing nodes. A spatial query 

to find all the cities within 100 kilometers distance from the coordinate positions of Seattle is 

executed in parallel using CQL module and MASS Places. Similar to the attribute GIS query, 

Figure 29 (and see Appendix B (B.2)) shows a reduction in execution time when the number of 

computing nodes increases.  

 

To further verify this behavior of improved performance in parallel CQL-MASS GIS query, we 

execute a spatial GIS query to find all the occurrences of mineral resources within 100 kilometers 

distance from a coordinate position, on the mineral resources dataset. This dataset consists of 

304,632 instances, much larger compared to the “cities” dataset. Figure 30 (and see Appendix B 

(B.3))  indicates a significant reduction in execution time when the number of computing nodes 

increases. From Figure 30, we observe that the time taken to execute the same spatial GIS query 

on a large dataset of 304,632 instances using 24 nodes (2492 milliseconds) is comparatively equal 

to the time taken to execute the query on 2,533 instances using 24 nodes (2,030 milliseconds) with 

difference a few milliseconds. This indicates that parallelization of GIS queries is suitable for large 

datasets and gives results in considerably less time.  Additionally, from Figure 30, we observe that 

the time taken to execute the query sequentially on one node increases to 6000 milliseconds 

(304,632 instances) from 4,500 milliseconds (2,533 instances). This signals the need to parallelize 

GIS queries for large scale data. In conclusion, parallelization using MASS has made the spatial 

and attribute query using CQL time efficient.  
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Figure 28: Graph depicting performance of attribute-based CQL-MASS GIS query to find cities 

with CNTRY_NAME attribute “United States”. 

 

 

Figure 29: Graph depicting performance of spatial CQL-MASS GIS query to find all the cities 

within 100 kilometers distance from the coordinate positions of Seattle. 
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Figure 30: Graph depicting performance of spatial CQL-MASS GIS query to find all the 

occurrences of mineral resources within 100 kilometers distance from a coordinate position. 

 

5.4 Performance Evaluation for GIS Query Using Closest Pair of Points  

The GIS query to find the places of fire occurrence within 100 miles of a given coordinate location 

is executed on the fire occurrences dataset of 572,834 instances. The performance of the query is 

evaluated by executing it on  1, 2, 3, 4, 6, 12, 18 and 24 computing nodes.  Figure 31 (and see 

Appendix B (B.4))  depicts a line graph indicating the query performance. From  Figure 31, we 

observe that there is a significant decrease in query execution time from 27,657 milliseconds on a 

single node to 13,318 milliseconds on 24 nodes. Hence, this indicates that parallelization has 

improved the performance of the GIS query.  However,  the CPU and memory usage was very 

high while executing the query, this can be attributed to the large number of MASS Places created 

across 24 nodes. If we optimize the amount of MASS Places created to execute this query, we can 

obtain better results and further reduce the amount of time taken to execute the query. 
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Figure 31: Graph depicting performance of spatial query to find the places of fire occurrence 

within 100 miles of  a given coordinate location. 

 

5.5 Performance Evaluation for GIS Query Using Range Search  

The GIS query to find all the cities located within the given range of geographical coordinates i.e 

geographical bounds of the country Australia is executed on 7,342 cities in the world using 1 to 

20 computing nodes. The benchmark was carried out on only 20 nodes rather than up to 24 nodes 

because the query took longer time to execute as the number of nodes increased. The range search 

GIS query constructs a KDTree and then propagates agents over it to find the results. The time 

taken to construct the KDTree, perform range search and the total time taken are measured and 

presented on a graph in Figure 32.   

 

From Figure 32 (and see Appendix B (B.5)), we observe that the time taken to construct the tree 

exceeds the time taken to execute range search to a large extent. Therefore, there is a need to 

improve the performance of the tree construction algorithm which would in turn improve the 

execution performance of the range search query.  The  time taken to execute the range search 

algorithm increases with the increase in the number of nodes. Thus, this indicates that 

parallelization has not improved the performance of the query.  The range search algorithm using 

MASS agents is equivalent to the bounding box query defined by the CQL library.  The range 
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search algorithm takes 93,067 milliseconds for 7,342 instances whereas the MASS-CQL query 

takes 2,492 milliseconds for 30,4632 instances. From these results we can infer that bounding box 

CQL query has better performance than range search. Efforts to measure the spatial scalability of 

the range search GIS query were not successful. Parallel range search queries failed to execute in 

reasonable time of 15 minutes on large datasets of mineral resources and fire occurrences on 2 

nodes. The execution had to be stopped owing to the extremely large amounts of time taken to 

execute the query. However, this query executed in less than 15 minutes on one node. Therefore, 

GIS datasets larger than 572,834 instances are required to measure the spatial scalability which are 

not readily available.  In conclusion, the range algorithm using MASS Agents is not suitable for 

GIS queries and must be further optimized given that the equivalent bound box query using CQL 

executes faster. 

 

Figure 32: Graph depicting the performance of the range search GIS query to find cities in the 

range of geographical coordinates of Australia. 

 

5.6 Performance evaluation for minimum spanning tree computational geometry algorithm-

based MASS-GIS query 

We execute the spatial GIS query to find a shortest path from a given source to destination on the 

railroads dataset consisting of 250,411 vertices and more than 250,411 edges on 1, 2, 3, 4, 5 and 
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24 computing nodes.  The dataset consists of railroads from 50 states across the United States.  

Figure 33 (and see Appendix B (B.6, B.7))  provides a graphical representation of this result.  

 

The shortest path GIS query using minimum spanning tree completed its execution in 1175.038,  

57.769 ,130.189 , 159.598 seconds with 1, 3, 4 and 24 agents respectively on one computing node. 

Thus, it indicates that the query executes the fastest when run with 3 agents. The reason for this 

behavior is because 3 agents are optimal for finding the shortest path and when more than 3 agents 

are employed an additional amount of time is spent on exchanging information between agents 

and killing additional agents on a node. From Figure 33 we observe that the time taken to execute 

the query on one node using 3 agents (57.769 seconds) is less than the time taken to execute on 

one node with 1 agent (1,175.038 seconds). This indicates that parallelization on one computing 

agent using multiple agents provides an improvement in performance. The execution performance 

of the query decreases when run on more than 3 computing nodes. This is because the query is run 

in parallel on only 3 computing nodes at a time, an additional amount of time is required for agent 

migration when computing nodes are increased. The optimum result is achieved when the query 

is executed on 3 nodes in parallel with 3 agents executing independently taking advantage of the 

computing resources on all the three nodes.   

 

Figure 33: Graph depicting the performance of the shortest path GIS query. 
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5.7 Summary 

From the performance measurements as conducted in section 5.3 through 5.6, we can summarize 

the strengths and challenges of agent-based GIS as follows: 

● The results of benchmarking indicate that there is significant performance improvement in 

executing parallel attribute and spatial MASS-CQL queries across 24 computing nodes 

(section 5.4) on small and large datasets.  

● Time taken to execute MASS-CQL queries sequentially on large datasets is considerably 

high and therefore this establishes the need for parallelization. 

● The results indicate the time taken to execute the same spatial GIS query on a large dataset 

of 304,632 instances and 24 nodes (2492 milliseconds) is comparatively equal to the time 

taken to execute the query on 2,533 instances and 24 nodes (2030 milliseconds) with 

difference a few milliseconds. This parallelization has made GIS queries time efficient. 

● Parallel GIS query using MASS agent propagation and closest pair of points algorithms 

across 24 nodes are faster compared to its execution on 1 node. 

●  Parallelization of GIS queries using range search algorithms degrade the performance of 

the GIS query.  

● Parallelization of GIS queries using the minimum spanning tree algorithm provides fastest 

execution performance when run on 3 computing nodes using 3 agents. 
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Chapter 6 

Conclusion  

The achievements and future plans of this research are summarized below. 

 

6.1 Summary 

This project successfully demonstrates GIS queries as a practical application of agent-based data 

analysis. The literature review differentiates our work from other agent-based approach from the 

viewpoint of parallelization. A significant contribution of this capstone project was to migrate the 

MASS-GIS system to a scalable non-cloud cluster architecture of 24 nodes, implement spatial, 

attribute and aggregate GIS queries using CQL, computational geometry algorithms and MASS 

library, and benchmark their performance on large datasets obtained from government 

organizations.   

 

The results of the performance evaluation showed that MASS-based GIS queries using the closest 

pair of points to find cities within a certain distance from a given city and parallel MASS-CQL 

achieved CPU scalability as the time taken to execute the query decreased with the increase in 

number of computing nodes. The parallel GIS query to find the shortest path using minimum 

spanning provided improved performance when run on 3 nodes using 3 agents compared to its 

sequential implementation using one agent. Furthermore, MASS-based GIS queries using 

computational geometry algorithms of the closest pair of points and range search provided 100% 

accuracy.  However, agent-based GIS query using range search was not time efficient and took 

considerable time to execute. Optimization techniques must be applied to shortest path query using 

minimum spanning tree to provide improved performance on more than 3 nodes. 

 

6.2 Future Work 

The following four tasks are being planned: 

● Though MASS based GIS queries proved to be a success, however the MASS-GIS system 

lacks a good UI that will be easy to use. This was because the focus of this project was on 

improving the efficiency of backend business logic of GIS queries.  This could be a 

potential future work. 
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● A major drawback of the CQL library is that it doesn’t provide built-in support for direction 

based ( east of a particular point) and complex temporal GIS queries ( find the average 

sales in a particular geographical location in the last 30 days).   MASS-based GIS queries 

utilizing agents can be applied to address this limitation. 

● The MASS-based GIS queries implemented in this project must be benchmarked against  

other commercial or open-source GIS services.  

● The  GIS queries using range search and minimum spanning tree implemented in this 

project should be optimized. 
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Appendix A: Installation 

The code to setup and run the MASS-GIS queries is currently present in the mass_java_appl 

bitbucket repository under the branch gis_queries_sahana 

(https://bitbucket.org/mass_application_developers/mass_java_appl/src/gis_queries_sahana/Appl

ications/gis_queries/).  

 

The following steps need to be followed to install, build, and run the parallel spatial and attribute-

based MASS-GIS queries. 

1.  Download  / clone the MASS core library from mass_java_core bitbucket repository.  

2. Navigate to the downloaded MASS core library folder and install it using the command: “mvn 

-DskipTests clean package install”. 

3. Download / clone  mass_java_appl repository and checkout the gis_queries_sahana branch using 

the command “git checkout gis_queries_sahana”. 

4. Navigate to the pom.xml file under “/gis_quries/Applications/gis_database/” and add the 

appropriate path of the GIS query to be run under mainClass  tag.   

• To run the parallel attribute and spatial GIS query using MASS and CQL. Add the path of 

Cities.java class under mainClass tag in pom.xml as shown in Figure 34. 

 

Figure 34: Pom.xml file configuration to run parallel GIS queries using MASS and CQL. 

• To run the parallel GIS query using MASS-based closest pair of points algorithms. Add 

the path of GisClosestCities.java class under mainClass tag in pom.xml as shown in Figure 

35. 

https://bitbucket.org/mass_application_developers/mass_java_appl/src/gis_queries_sahana/Applications/gis_queries/
https://bitbucket.org/mass_application_developers/mass_java_appl/src/gis_queries_sahana/Applications/gis_queries/
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Figure 35: Pom.xml configuration file to run the parallel GIS query using MASS-based 

closest pair of points algorithm. 

• To run the parallel GIS query using MASS-based range search algorithm. Add the path of 

KD_TreeRangeSearch.java class under mainClass tag in pom.xml as shown in Figure 36. 

 

Figure 36: Pom.xml configuration file to run the parallel GIS query using MASS-based 

range search algorithm. 

• The code to run the shortest path GIS query using minimum spanning tree is present under 

“/minimum_spanning_tree/Graphs/BFS1/” folder. The code is present in a separate folder 

as the latest mass core version (1.4.3-SNAPSHOT) has bugs and displays thread failed 

exception while running code that uses MASS GraphPlaces ( as in the case of minimum 

spanning tree GIS query). Currently, the code executes successfully with MASS core 

version 1.4.0-SNAPSHOT. Once the bug fixes in MASS core version 1.4.3-SNAPSHOT 

are complete the shortest path GIS query can be added to the same folder as other GIS 

queries. The pom.xml in “/minimum_spanning_tree/Graphs/BFS1/” folder can be 

compiled to run the shortest path GIS query. 
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Figure 37: Pom.xml configuration file to run the parallel GIS query using MASS-based 

range search algorithm. 

5. Compile the pom.xml file using the command “mvn package”. 

6.  Navigate to the target directory containing the jar file using the command: “cd target”  and 

create the nodes.xml file with the appropriate .ssh private key, hostname, masshome and username. 

The detailed instructions to create the nodes.xml file is provided in the MASS JAVA developers 

guide in https://depts.washington.edu/dslab/MASS/.  Figure 38 depicts a sample nodes.xml file. 

 

Figure 38: Sample nodes.xml configuration file. 

7. Run the GIS queries using following commands in the target directory. 

• Command for MASS-CQL GIS query:  

java -jar gis_database-1.0-SNAPSHOT.jar -f 

/home/NETID/saha2094/gis_sahana/Applications/gis_database/input1 -htc 1 -vtc 2 

 Here in this command -f is a required parameter specifying the path of the input folder,   

-htc is the number of horizonatl divisions to divide the GIS map, -vtc is the number of 

vertical  divisions to divide the GIS map. 

https://depts.washington.edu/dslab/MASS/


 

58 

• Command for GIS query using closest points and range search: 

java -jar gis_database-1.0-SNAPSHOT.jar 

• Command for GIS query to find shortest path using minimum spanning tree: 

java -jar BFS2-1.0-SNAPSHOT.jar <source_node> <destination_niode>   

Example: java -jar BFS2-1.0-SNAPSHOT.jar 1 57 . 
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Appendix B: Results 

The results of parallel MASS-GIS queries in section 5.3 through 5.6 are detailed in a tabular format 

in this section. 

 

B.1. The results of performance evaluation for CQL-MASS based GIS query to find cities with 

CNTRY_NAME attribute “United States” are presented in a tabular format in Table 4. 

 

Table 4: Summary of the execution time taken by attribute based CQL-MASS GIS query to find 

cities with CNTRY_NAME attribute “United States”. 

Number of nodes Time in milliseconds 

1 4589 

2 2688 

3 2376 

4 2113 

6 2119 

12 2088 

18 2004 

24 1980 

 

B.2. The results of performance evaluation for CQL-MASS based GIS query to find all the cities 

within 100 kilometers distance from the coordinate positions of Seattle are presented in a tabular 

format in Table 5. 
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Table 5: Summary of the execution time taken by spatial CQL-MASS GIS query to find all the 

cities within 100 kilometers distance from the coordinate positions of Seattle. 

Number of nodes Time in milliseconds 

1 4589 

2 3006 

3 2545 

4 2804 

6 2124 

12 2088 

18 2040 

24 2030 

 

B.3. The results of performance evaluation for CQL-MASS based GIS query to find all the 

occurrences of mineral resources within 100 kilometers distance from a coordinate position are 

presented in a tabular format in Table 6. 

 

Table 6: Summary of the execution time taken by spatial CQL-MASS GIS query to find all the 

occurrences of mineral resources within 100 kilometers distance from a coordinate position. 

Number of nodes Time in milliseconds 

1 6118 

2 6144 

3 4288 

4 4556 

6 4487 

12 2964 

18 2891 

24 2492 
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B.4. The results of performance evaluation for MASS based GIS query using closest pair of points 

algorithm to find the places of fire occurrence within 100 miles of  a given coordinate location are 

presented in a tabular format in Table 7. 

 

Table 7: Summary of the execution time taken by the spatial GIS query to find the places of fire 

occurrence within 100 miles of  a given coordinate location. 

Number of nodes Time in milliseconds 

1 27657 

2 25359 

3 23274 

4 23176 

6 22831 

12 20284 

18 19086 

24 13318 

 

B.5 The results of performance evaluation for range search GIS query to find cities in the range of 

geographical coordinates of Australia are presented in a tabular format in Table 8. 

 

Table 8: Summary of the execution time taken by the range search GIS query to find cities in the 

range of geographical coordinates of Australia. 

Number of 

nodes 

Tree Construction (time in 

milliseconds) 

Range search (time in 

milliseconds) 

Total (time in 

milliseconds) 

1 262 307 5733 

2 22437 659 28103 

3 30145 1009 36730 

4 35190 1136 41690 
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5 39072 1479 46526 

6 40737 1769 49080 

7 39737 1513 45274 

8 43831 1737 50139 

9 42705 1636 49392 

10 46121 1611 52884 

11 46061 1843 53395 

12 44820 2039 52218 

13 47643 1736 54663 

14 56576 7037 68494 

15 51020 12593 69341 

16 52227 8319 67274 

17 61192 8000 74973 

18 64774 8842 80750 

19 67807 8542 84314 

20 75518 9916 93067 

 

B.6 The results of performance evaluation for shortest path GIS query using 3 MASS Agents are 

presented in a tabular format in Table 9. 

 

Table 9: Summary of the execution time taken by the shortest path query using 3 MASS Agents  

Number of nodes Time in seconds 

1 57.769 

2 53.231 

3 52.936 

4 64.705 

5 92.476 
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24 154.978 

 

B.7 The results of performance evaluation for shortest path GIS query using 1 MASS Agent are 

presented in a tabular format in Table 10. 

 

Table 10: Summary of the execution time taken by the shortest path query using 1 MASS Agent.  

Number of nodes Time in seconds 

1 1175.038 

2 901.643 

3 930.454 

4 977.012 

5 970.812 

24 1214 
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