
Sarah Panther CSS 499 : Winter 2020 Term Paper

Benchmarking MASS C++: An Overview of the Current
Programs and Current Plan for Improvement

Table of Contents
Purpose 1

Summary of Progress 2
MASS C++ During the Time of This Work 2

A Brief Comparison of the Programmability of MASS C++ and FLAME 3

Completed and In-Progress Benchmarks 3
Game of Life 3

Simulation Program 4
Output 4
Runtime Comparison to FLAME Game of Life 5

Tuberculosis 5
Simulation Program 6

Initialization 6
Simulation 6

Runtime Comparison to FLAME Tuberculosis 7
Self-Organizing Neural Network 8

Simulation Program 8
Initialization 8

Looking Forward: Plan for Spring Break and Spring Quarter 8
Goals for Spring Break 8
Goals for Spring Quarter 9

Purpose

The purpose of my research project is to qualitatively and quantitatively compare the three
multi-agent simulation platforms MASS C++, RepastHPC, and FLAME by accomplishing the
following tasks:

● investigating, correcting, and rewriting as necessary the following seven benchmarks:
○ Game of Life
○ Brain Grid
○ Tuberculosis
○ Social Networks
○ Bail In/Bail Out

1

Sarah Panther CSS 499 : Winter 2020 Term Paper

○ MatSim
○ VDT

● measuring the execution performance and runtime of the benchmark programs across

the three simulation platforms

● conducting a quantitative analysis of the benchmarks using the following criteria:
○ Lines of code for agent descriptions, spatial descriptions, and overall benchmark

programs
○ Percentage of parallelization boilerplate code
○ User involvement/level of needed knowledge to create new simulations

● co-authoring a journal paper with my advisor

My goal for winter quarter was to correct and rewrite the benchmarks for MASS C++.

Summary of Progress

Currently, the following benchmarks have been completed for MASS C++:

● Game of Life
● Tuberculosis

The following benchmarks are in progress for MASS C++:

● Social Networks
● Brain Grid

These programs will be unit-tested near the end of the research project.

Concerning the specifications for the benchmarks, the MatSim specification was altered to
include details for the random road system generation/initialization program, and the updated
version was sent to Dr. Fukuda for review.

MASS C++ During the Time of This Work

The following outline details the version of MASS C++ used to edit, create, run, and test the
benchmarks:

● Game of Life - ‘dev’ branch version
● Tuberculosis - ‘master’ branch version
● Brain Grid (in-progress) - ‘dev’ branch version

2

Sarah Panther CSS 499 : Winter 2020 Term Paper

During this quarter, a single node with varying numbers of threads was used, as MASS C++’s
multi-node capabilities were being repaired, having been lost due to an OS change at the
beginning of the quarter.

A Brief Comparison of the Programmability of MASS C++ and FLAME

From the user perspective, writing an agent-based model (ABM) for MASS C++ and for FLAME
differ the most when considering the design of the model. This is because FLAME only utilizes
Agents, and MASS C++ uses both Agents and Places.

In FLAME, a major difficulty is translating a simulation that considers space and relative
location to its model. Additionally, tracking state changes such as growth and distance between
Agents becomes an expensive transaction as Agents, whether dynamic or static, can only
communicate using messages. On top of this, Agents will look at all existing messages of the
specified type that exists globally if filters are not used.

For non-computing scientists, using FLAME to simulate certain models that need strong spatial
awareness, such as Tuberculosis, may find it difficult to translate certain aspects of their
simulation to a purely Agent-based platform.

In MASS C++, the use of Places simplifies spatial consideration and state changes. Growth and
movement are easily tracked by storing data on a derived Place class and checking the state of
other Places using the current Place as a medium. Agents are used to traverse Places and collect
and modify data.

One possible difficulty that could be foreseen for non-computing scientists could be
determining which part of their models should be Agents and which part should be Places.
Because Agents aren’t able to communicate with each other, the user must use Places to store
any state or message that must be communicated to other Places or Agents.

A non-computing scientist may assume that any live entity in their simulation (a neuron, a
bacteria, an animal, etc.) should be represented by a derived Agent class, when in reality, MASS
C++’s programming model would be more adept to handle a different organization of
information - for example, instead of the entire neuron being an Agent, using Agents only to
represent the growing ends of a neuron and using these Agents to change the state of the Places
it traverses over.

Completed and In-Progress Benchmarks

Game of Life

3

Sarah Panther CSS 499 : Winter 2020 Term Paper

The specification for this benchmark is the rules for Conway’s Game of Life.

The simulation program may be found at the following address in the repository mass_cpp_appl
on the “SARAH-MASS-GAME-OF-LIFE” branch:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/SARAH-MASS-GA
ME-OF-LIFE/Benchmarks/MASS/MASS_GameOfLife/

This program was originally written by Craig Shih and edited by me.

Simulation Program

In this program, a 2-D, square simulation grid of size ‘n’ by ‘n’ is initialized, where each square
in the grid is represented by a Life Place. Each Life Place can be considered a static agent; each
Life does not change position but does change state as each executes a sequence of state
functions for each iteration.

‘n’ side length of the grid and number of iterations to run the simulation are specified by the
user as input parameters.

Each Life is initialized to be alive or dead, with a random, deterministic 50% chance of being
initialized as alive. Then, each Life checks its Moore neighbors in the state function
getBoundaryHealthStatus() and sets its next state (alive or dead) based on Conway’s Game of Life
rules in the function computeDeadOrAlive() .

The Life Places use the MASS C++ Place function getOutMessage() to check their neighbors’
statuses, and Places. exchangeBoundary() was used to update the shadow space with a boundary
width of 1.

Output

The output for the simulation of a 10 by 10 grid for 10 iterations using a single node is shown in
Figure 1.

4

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/SARAH-MASS-GAME-OF-LIFE/Benchmarks/MASS/MASS_GameOfLife/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/SARAH-MASS-GAME-OF-LIFE/Benchmarks/MASS/MASS_GameOfLife/

Sarah Panther CSS 499 : Winter 2020 Term Paper

Figure 1. Output for MASS C++ Game of Life for a grid size of 100 for 10 iterations

Runtime Comparison to FLAME Game of Life

This program and the FLAME version were both used to simulate a grid size of 10,000 for 10
iterations, and the runtimes are as follows:

● MASS C++ (1 node, 1 thread)
○ 0.431231 seconds

● FLAME (1 node)

○ 12.066 seconds

The FLAME version takes an order of magnitude longer to run as compared to the MASS C++
version.

 An important note to make for this result is that, for the FLAME version, filters were not used
in the XML model template. This probably made the FLAME version unnecessarily slower.

Tuberculosis

The specification for this benchmark can be found at the following address in the mass_cpp_appl
repository on the “master” branch:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmark_
Specifications/

5

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmark_Specifications/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmark_Specifications/

Sarah Panther CSS 499 : Winter 2020 Term Paper

The code for this program can be found at the following address in the same repository on the
“SARAH-MASS-TUBERCULOSIS” branch:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/SARAH-MASS-TUB
ERCULOSIS/Benchmarks/MASS/MASS_Tuberculosis/Sarah_V2/

This program was entirely rewritten by me to follow the specification.

Simulation Program

This program was designed to be as similar as the FLAME version as possible.

In this simulation, a 2-D square simulation grid of size ‘n’ by ‘n’ is initialized, with each grid
unit representing a TB_Place , or place in human lung tissue. ‘n’ grid side length and number of
iterations to run are specified by the user as input parameters.

Initialization

Four TB_Places are chosen to be blood vessels (entry point from which macrophages and t-cells
can enter the simulation space). These Places are located in the center of each quadrant in the
grid. One TCell Agent and one Macrophage agent are spawned for each blood vessel and are
migrated to those Places in order to spawn the necessary Agents. Then, 100 Macrophage Agents
are spawned deterministically randomly over the grid.

Simulation

For ‘day’ number of user specified iterations, the following sequence of events occurs each
iteration:

1. Bacteria grow every bacterialGrowth number of iterations. On these iterations, the
shadow space of width 1 is updated. Then, each TB_Place checks their neighbors’
out_messages for their bacterial state.

2. Time is advanced by decrementing each TB_Place’s chemokine level by 1 if greater than 0
and updating this TB_Place ’s bacterial state to reflect that of its neighbors. If their
neighbor has bacteria, this TB_Place updates its own state to containing bacteria.

3. Which immune cells to spawn at the end of the iteration through the blood cells is then
determined. These TB_Places are marked to spawn either a TCell or Macrophage
depending on the day number and the current state of the TB_Place .

6

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/SARAH-MASS-TUBERCULOSIS/Benchmarks/MASS/MASS_Tuberculosis/Sarah_V2/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/SARAH-MASS-TUBERCULOSIS/Benchmarks/MASS/MASS_Tuberculosis/Sarah_V2/

Sarah Panther CSS 499 : Winter 2020 Term Paper

a. The blood vessel may spawn a TCell if the day is greater than or equal to
tCellEntrance and if there are no TCells currently on that particular TB_Place .

b. The blood vessel may spawn a Macrophage if there currently are no Macrophages
on that particular TB_Place .

4. TCell and Macrophage Agents move to the neighboring Place with the highest chemokine
level by updating the shadow space using Places. exchangeBoundary() and each TB_Place
checking their neighbors’ out_message for their chemokine levels.

a. Only one TCell Agent and Macrophage Agent each may be contained by a
TB_Place at a time. Therefore, TB_Places approve one request for movement for
each type of immune cell and deny the rest.

5. Next, TCell Agents kill any chronically infected Macrophage Agents. Macrophage Agents
kill any bacteria present on the current TB_Place and change state accordingly to
infected, activated, chronically infected, or dead depending on their internal bacterial
state, whether they just killed a bacteria, and if there is TCell collocated on this Place.

a. Dead Macrophages are removed from the simulation and macrophages .manageAll()
is then called.

6. The chemokine levels for each TB_Place is updated. If a Macrophage that is infected,
activated, or chronically infected is present on this TB_Place or any of its neighbors, this
Place updates its chemokine level to the maxChemokine level.

a. The neighboring Places’ chemokine level is checked by swapping the shadow
space of width 1 using TB_Place .exchangeBoundary() and checking the
neighbors' out_messages.

7. If a Macrophage has died because of its internalBacteria exceeding the bacterialDeath
number, bacteria is spread to the neighboring TB_Places using
TB_Place .exchangeBoundary() and checking the neighbors’ out_messages.

8. Finally, new TCell and Macrophage Agents are spawned at the blood vessels as
determined at Step (3). These Agents are spawned by the invisible spawner Agents that
are located at the blood vessels that do not move, change state, or occupy space.

If graphical output is needed, all TB_Places , Macrophages , and TCells write out their state to XML
for the TBOut.java program to display at the end of each iteration.

Runtime Comparison to FLAME Tuberculosis

For the simulation of a grid size of 10,000 TB_Places for 10 iterations, the runtime for MASS C++
(1 node, 1 thread) was 1.863309 seconds. The runtime for FLAME (1 node) was 2.964 seconds.

7

Sarah Panther CSS 499 : Winter 2020 Term Paper

The MASS C++ port took about 63% of the time that FLAME needed to run the same simulation
- quite significantly faster.

An important note regarding this data - the FLAME Tuberculosis used filters to limit the
messages received by each Place to its Moore’s area. Although the FLAME Tuberculosis
program was about an order of magnitude longer than the FLAME Game of Life program, it
was about an order of magnitude faster.

Even with the use of filters, the MASS C++ simulation port was significantly faster than the
FLAME version of Tuberculosis.

Self-Organizing Neural Network

The specification for this agent-based model is located in the mass_cpp_appl repository on the
“master” branch:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmark_
Specifications/

This program is currently in-progress, and has not been finished yet.

Simulation Program

Currently for this program, a square simulation grid of ‘n’ by ‘n’ size is generated, with each
square in the grid represented by a Brain_Place Place.

Initialization

Each Brain_Place has a pointer to a Neuron object. During initialization, each Brain_Place
spawns the cell body (soma) of a neuron with a probability of E + I + N.

If the Place does not spawn a soma, its Neuron object is null, and it is considered empty (no
neuron or cell body parts occupying this Place). If the Place does spawn a soma, this Neuron is
assigned to be an excitatory Neuron with E probability, an inhibitory Neuron with I probability,
or a neutral Neuron with N probability.

If the Place has the soma of a Neuron, a GrowingEnd Agent is sent to that Place. This Agent
will spawn up to 7 GrowingEnd Agents for dendrites at random iterations and 1 GrowingEnd
Agent for the axon at a random iteration. This Agent resides on the Brain_Place that contains
the soma and does not move, existing only to spawn new GrowingEnds as needed.

8

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmark_Specifications/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmark_Specifications/

Sarah Panther CSS 499 : Winter 2020 Term Paper

Looking Forward: Plan for Spring Break and Spring Quarter

Goals for Spring Break

My plan for spring break is to complete the MASS C++ Self Organizing Neural Network
program and visualization and to send a video clip of the demo to Dr. Fukuda documenting its
performance.

Additionally, I plan to work on the sequential C++ initialization program for the MatSim
benchmark so I may complete the MASS C++ MatSim port and test my FLAME MatSim port.

Goals for Spring Quarter
My plan for spring quarter is to write the specification documents for the following ABMS:

● Bail-In, Bail-Out
● VDT

I also plan to complete the following benchmarks for MASS C++:

1. MatSim
2. Bail-In, Bail-Out
3. VDT

Finally, I plan to verify the MASS C++ Social Networks port completed by Josh Landron this
past quarter.

9

