
Software Revision Control for MASS

Git Basics, Best Practices

Matthew Sell, CSSE Student

MASS Research Participant, February 2014

What is revision control?

The obligatory Wikipedia definition:

“…revision control is any kind of practice that tracks and

provides control over changes to source code”

Why bother?

• Provides recovery of, or

reference to, previous

modifications to source files

• Allows for experimental

diversions (branches) with

possibility of merge back to

mainline (“sandbox”)

• Streamlines collaboration

between developers

• All the cool developers use it

• Maybe not, but if you work in a

professional software

development environment, you

WILL use revision control.

Become proficient with a VCS and you’ll never look back…

Misperceptions…
 “I already have a backup tool”

 Revision control is NOT a backup tool.

Although it can provide backups of your

code, don’t treat it that way.

 “It’s an added complexity that I don’t

need”

 The benefits outweigh the added effort;

much like using an IDE improves

productivity over a text editor.

 “I’m the only one working on this project

– I remember my changes”

 Ever wonder why something doesn’t work

after making a series of changes?

Everything seemed to work a couple of

weeks ago? Stop wondering and look at

the revision history!

 “My project is too small / simple”

 Small projects grow into bigger

ones frequently. Keep your project

under revision control from the

beginning.

 “I don’t make that many mistakes”

 Nobody is that good. Eventually

you will make a terrible mistake

and revision control will save the

day.

How it works, basics
1. Project starts life in a “repository” on a server

2. Existing code imported into the repository

3. Project “cloned” to a local “working directory” on a

development client

4. Files/directories updated in working copy

5. Changes “committed”, “pushed” to remote repository

6. Working copy “updated” to get peer commits

7. Repository “tagged” upon release or when reaching

major milestones

Best Practices
• Repository “mainline” code should ALWAYS compile

• NEVER commit code that won’t compile

• Don’t commit “work in progress”; commit only “completed” tasks

• Work on a “private” branch first

• ALWAYS provide useful comments when committing updates

• ALWAYS run unit tests before committing to repository

• You DID create unit tests for your modifications, right?

• Don’t forget to commit your unit tests, too!

• ALWAYS tag revisions provided to “customers”

Using Git

• “Pro Git”, Scott Chacon, Apress

 (http://git-scm.com/book)

• “Git – The Simple Guide”, Roger Dudler

(http://rogerdudler.github.io/git-guide)

 (http://rogerdudler.github.io/git-guide/files/git_cheat_sheet.pdf)

• “Git Cheat Sheet”, Atlassian

(https://www.atlassian.com/dms/wac/images/landing/git/atlassian_git_cheatsheet.pdf)

http://git-scm.com/book
http://git-scm.com/book
http://git-scm.com/book
http://rogerdudler.github.io/git-guide
http://rogerdudler.github.io/git-guide
http://rogerdudler.github.io/git-guide
http://rogerdudler.github.io/git-guide
http://rogerdudler.github.io/git-guide
http://rogerdudler.github.io/git-guide/files/git_cheat_sheet.pdf
http://rogerdudler.github.io/git-guide/files/git_cheat_sheet.pdf
http://rogerdudler.github.io/git-guide/files/git_cheat_sheet.pdf
http://rogerdudler.github.io/git-guide/files/git_cheat_sheet.pdf
https://www.atlassian.com/dms/wac/images/landing/git/atlassian_git_cheatsheet.pdf
https://www.atlassian.com/dms/wac/images/landing/git/atlassian_git_cheatsheet.pdf
https://www.atlassian.com/dms/wac/images/landing/git/atlassian_git_cheatsheet.pdf

What is “Git”?
• Distributed Version Control System

• Allows “offline” work

• Duplicates entire repository

• Born from Linux kernel development

• Unique requirements of large distributed team

• Frequent branching

• Need for speed

• Initially designed / developed by Linus Torvalds

• Need I say more?

The absolute basics…
• Create repository <git init>

• Checkout

• <git clone drive:/repo/path>

• <git clone /repo/path>

• <git clone username@host.domain:/repo/path>

• Add files to the “index”

• <git add filename>

• <git add *>

• Update source files

• Commit changes locally <git commit –m “Commit message”>

• Push updates to remote repository <git push origin master>

• Get changes from remote repository <git pull>

Branching, Git’s “killer feature”
• Inexpensive operation! Branch early, branch often

• Create a local branch when starting to make changes, merge those

changes when satisfied

• Can’t finish work on a branch before having to switch tasks? Make

another branch!

• Use descriptive branch names:

• initials_purpose-issuenumber

• release-1.2.0

• hotfix-1.2.1

• More info: http://nvie.com/posts/a-successful-git-branching-model

http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model

Git Software
• Command-line (Windows, OS X, Linux)

• http://git-scm.com/downloads

• GUI (Windows, OS X)

• http://www.sourcetreeapp.com

• Many others available!

http://git-scm.com/downloads
http://git-scm.com/downloads
http://git-scm.com/downloads
http://git-scm.com/downloads
http://www.sourcetreeapp.com/

Questions ???

Credits:

• Cherie Wasous: Slide Templates

• Jeff Meyer, Fluke Corporation: Git books and practical use

information

• Curt Mills, Fluke Corporation: Practical Git use

• Atlassian: SourceTree software, Git presentations, cheat sheet

• Roger Dudler: Simple Git examples, cheat sheet

• Scott Chacon, Apress: Pro Git book

