N

Software Revision Control for MASS

Git Basics, Best Practices

Matthew Sell, CSSE Student
MASS Research Participant, February 2014



N

What is revision control?

The obligatory Wikipedia definition:

“...revision control is any kind of practice that tracks and
provides control over changes to source code”



Why bother?

* Provides recovery of, or « Streamlines collaboration
reference to, previous between developers
modifications to source files - All the cool developers use it

* Allows for experimental - Maybe not, but if you work in a
diversions (branches) with professional software
possibility of merge back to development environment, you
mainline (“sandbox”) WILL use revision control.

Become proficient with a VCS and you’ll never look back...



Misperceptions...

= “| already have a backup tool” = “My project is too small / simple”
= Revision control is NOT a backup tool. = Small projects grow into bigger
Although it can provide backups of your ones frequently. Keep your project
code, don't treat it that way. under revision control from the
= “It's an added complexity that | don’t beginning.
need = “| don’'t make that many mistakes”
= The benefits outweigh the added effort; = Nobody is that good. Eventually

much like using an IDE improves
productivity over a text editor.

= “I'm the only one working on this project
— | remember my changes”

= Ever wonder why something doesn’t work
after making a series of changes?
Everything seemed to work a couple of
weeks ago? Stop wondering and look at
the revision history!

you will make a terrible mistake
and revision control will save the
day.



N

How it works, basics

1. Project starts life in a “repository” on a server
2. Existing code imported into the repository

Project “cloned” to a local “working directory” on a

development client

Files/directories updated in working copy

Changes “committed”, “pushed” to remote repository
Working copy “updated” to get peer commits

Repository “tagged” upon release or when reaching
major milestones

-

N o Ok



Best Practices

* Repository “mainline” code should ALWAYS compile

* NEVER commit code that won't compile

* Don’t commit “work in progress”; commit only “completed” tasks
* Work on a “private” branch first

« ALWAYS provide useful comments when committing updates

« ALWAYS run unit tests before committing to repository

* You DID create unit tests for your modifications, right?
« Don’t forget to commit your unit tests, too!

« ALWAYS tag revisions provided to “customers”



Using Git

« “Pro Git”, Scott Chacon, Apress

(http://qgit-scm.com/book)

« “Git — The Simple Guide”, Roger Dudler

(http://rogerdudler.github.io/git-quide)

(http://rogerdudler.qgithub.io/git-quide/files/qit cheat sheet.pdf)

o “Git Cheat Sheet”, Atlassian

(https://www.atlassian.com/dms/wac/images/landing/git/atlassian qit cheatsheet.pdf)



http://git-scm.com/book
http://git-scm.com/book
http://git-scm.com/book
http://rogerdudler.github.io/git-guide
http://rogerdudler.github.io/git-guide
http://rogerdudler.github.io/git-guide
http://rogerdudler.github.io/git-guide
http://rogerdudler.github.io/git-guide
http://rogerdudler.github.io/git-guide/files/git_cheat_sheet.pdf
http://rogerdudler.github.io/git-guide/files/git_cheat_sheet.pdf
http://rogerdudler.github.io/git-guide/files/git_cheat_sheet.pdf
http://rogerdudler.github.io/git-guide/files/git_cheat_sheet.pdf
https://www.atlassian.com/dms/wac/images/landing/git/atlassian_git_cheatsheet.pdf
https://www.atlassian.com/dms/wac/images/landing/git/atlassian_git_cheatsheet.pdf
https://www.atlassian.com/dms/wac/images/landing/git/atlassian_git_cheatsheet.pdf

N

What is “Git”?

* Distributed Version Control System
* Allows “offline” work
* Duplicates entire repository
* Born from Linux kernel development
* Unique requirements of large distributed team
* Frequent branching
* Need for speed
* Initially designed / developed by Linus Torvalds
* Need | say more?



The absolute basics...

 Create repository <git init>
» Checkout

* <git clone drive: /repo/path>

* <git clone /repos/path>

* <git clone username@host.domain: /repo/path>
 Add files to the “index”

* <git add filename>

* <glit add *>
« Update source files
« Commit changes locally <git commit -m “Commit message”>
* Push updates to remote repository <git push origin master>
- Get changes from remote repository <git pull>



Branching, Git’s “killer feature”

* Inexpensive operation! Branch early, branch often

» Create a local branch when starting to make changes, merge those
changes when satisfied

« Can't finish work on a branch before having to switch tasks? Make
another branch!

» Use descriptive branch names:
* initials_purpose-issuenumber
* release-1.2.0
* hotfix-1.2.1

* More Info:


http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model

Git Software

* Command-line (Windows, OS X, Linux)
 http://git-scm.com/downloads

* GUI (Windows, OS X)
* http://www.sourcetreeapp.com

* Many others available!


http://git-scm.com/downloads
http://git-scm.com/downloads
http://git-scm.com/downloads
http://git-scm.com/downloads
http://www.sourcetreeapp.com/

Questions ???

Credits:

* Cherie Wasous: Slide Templates

« Jeff Meyer, Fluke Corporation: Git books and practical use
information

* Curt Mills, Fluke Corporation: Practical Git use

« Atlassian: SourceTree software, Git presentations, cheat sheet

* Roger Dudler: Simple Git examples, cheat sheet

» Scott Chacon, Apress: Pro Git book



