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Agent-based data discovery and analysis views big-data computing as the results of agent 

interactions over the data. It performs better onto a structured dataset by keeping the structure in 

memory and moving agents over the space. The key is how to automate agent migration that should 

simplify scientists’ data analysis. We implemented this navigational feature in multi-agent spatial 

simulation (MASS) library. First, this paper presents eight automatic agent navigation functions, 

each we identified, designed, and implemented in MASS Java. Second, we present the 

performance improvements made to existing agent lifecycle management functions that migrate, 

spawn and terminate agents. Third, we measure the execution performance and programmability 

of the new navigational functions in comparison to the previous agent navigation. The performance 

evaluation shows that the overall latency of benchmark applications improved with the new 

functions. Programmability evaluation shows that new implementations reduced user line of codes 

(LOC), made the code more intuitive and semantically closer to the original algorithm. The project 

successfully carried out two goals: (1) design and implement automatic agent navigation functions 

and (2) make performance improvements to the current agent lifecycle management functions.  
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1 INTRODUCTION  

1.1 BACKGROUND 

Big Data computing came to prominence more than a decade ago. It utilized a cluster of 

computing nodes to analyze a large number of data and to draw meaningful conclusions from 

the data within a reasonable time. Popular tools such as Map Reduce [8] and SPARK [7] have 

emerged over time and provides customers a framework for analyzing big data. The 

programming frameworks provided by these tools attracts physical scientists analyzing 

structured data. For all these frameworks, data is flattened into a stream, broken to partitions 

and fed through multi-threaded analyzing units. To achieve parallelization, multiple analyzing 

units spin up and execute in parallel in multi-threaded fashion over a cluster of computing nodes.  

However, these tools cannot easily analyze structured in-memory datasets [1] such as graphs and 

requires the data to be flattened into data streams. The new tools such as SciHadoop and GraphX 

facilities have emerged that supports analysis of structured data but doesn’t allow incremental 

modification to data and support visualization [2]. Agent-based data discovery approach [1] that 

uses an analyzing unit to navigate over a distributed dataset, collects and modifies the 

information can be an easier alternative for analysis of structured data. 

 

Agent-based modelling and simulation (ABMS) is an approach to modelling complex systems, 

based on interaction among autonomous agents that are self-contained with a set of attributes 

and behaviors and its own decision-making capabilities. Advances in computational capabilities 

has resulted in development of agent-based models across a spectrum of domains from stock 

market, supply chains, consumer markets, and to predict the spread of pandemics [3]. While 

ABMs have been used primarily to model complex systems and observe collective behavior, they 

can also be used for data hunting and discovery.  

 
Multi-Agent Spatial Simulation (MASS) [18] is a parallel computing library for multi-agent and 

spatial simulation over a cluster of computing nodes.  MASS follows a data discovery 

methodology for analysis and discovery of big data. MASS applies agent-based modeling for 
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structured data analysis where agents navigate through the data-structure and find its 

attributes/shapes using emergent collective agent behavior. 

 

1.2  MOTIVATION 

Prior to my work, MASS users wrote application specific custom agent navigation functions to 

achieve their data analysis goals. Users write OnArrival and OnDeparture functions that 

determine the agent behavior and decision making based on the application and structured data 

being analyzed. These custom functions utilize basic functions - Migrate (), Spawn (), Kill () - built 

in MASS to manage the agent navigation and lifecycle. For example, to perform Breadth First 

Search (BFS) on a graph, a user will write custom agent navigation function to move the agent to 

the source vertex, to determine the neighboring vertices, to move the agent to one of the 

neighbors, to spawn children, and to migrate the child agents to the remaining neighbors. Writing 

code to manage this agent navigation is cumbersome for users who are primarily focused on data 

analysis. Physical scientists who perform big data analysis needs simple programming 

frameworks to support their analysis that that can be used out of the box.  

 

My research seeks for generalizing agent navigational patterns used to analyze structured data, 

proposes optimal design, and implements out the box functions to support the agent navigational 

patterns in MASS Java, while making improvements to the existing agent lifecycle management 

functions. As a part of my research I analyzed benchmark programs to identify common agent 

navigational patterns in MASS and proposed functions for supporting the navigational patterns. 
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1.3 PROJECT GOALS 

The goal of this project is to identify, design and implement automated agent navigation to 

perform analysis on structured data. The auto-agent navigation methods were then measured 

for overall performance and programmability. The strategy we adopted to perform was:  

1) Identify generalized agent navigational patterns to analyze structured data. 

Agent based data analysis over structured data is superior to data streaming based 

methods. We chose the following benchmark programs as they involve analysis of graphs 

or are computational geometry problems have been implemented in MASS: 

a. Breadth First Search 

b. Triangle Counting 

c. Range Search 

d. Closest pair or points in Space 

e. Voronoi Diagram in Space 

f. Convex Hull 

g. Closest pair of points using Quad tree 

h. Voronoi Diagram using Quad tree 

i. Ant colony optimization (ACO)  

 

2) Design and implement automated agent navigation. 

For each of the identified generalized agent navigational pattern, we designed and 

implemented eight new navigational functions in MASS java.  

 

3) Improve the existing agent lifecycle management functions to improve performance. 

MASS currently has basic built-in functions - Migrate (), Spawn (), Kill (), and manageall () 

– that support agent navigation and lifecycle management. Migrate (), Spawn (), and Kill 

() set attributes on agents to migrate to different location, spawn children and terminate 

agents, while manageAll() commits the life cycle management. These functions have 

inefficiencies that significantly impact the performance of applications when executed 
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over large datasets. We made improvements to these functions to improve the overall 

performance of the applications.  

 

As a part of our work, we measured the overall performance improvements by comparing the 

overall latency for analyzing large datasets and measured programmability of the new methods 

using both quantitative and qualitative measurements. We used overall reduction in user lines 

of code (LOC) for quantitative measurements while we used the semantic gap between original 

algorithms and their MASS implementation for qualitative measurements. 

 

2 RELATED WORK 

This section compares the MASS prior to my work, with two-related ABM systems: Netlogo and 

Repast Simphony from the view point of agent migration. At the end, we clarify their programing 

challenge which is our motivation for automating agent migration. 

 

Netlogo and Repast Simphony are two agent-based modelling tools that provides users the ability 

to model complex systems. Modelers give behavioral instructions and navigational inputs to 

agents which determines the agent behavior with the environment and with other agents [4]. 

This makes it possible to explore relationships between micro-level behavior of individual agents 

with macro-level patterns. 

 

Netlogo supports agent migration in a 2D continuous space and provides pre-defined behaviors 

to agents which can be utilized by the modelers [14]. It includes migration functions such as 

FORWARD, BACKWARD, RIGHT, LEFT, HATCH, DIE, JUMP and MOVE-TO [13]. 

FORWARD/BACKWARD enables agents to move forward and backward from its current position 

in the environment. RIGHT/LEFT enables agents to change the direction of movement. DIE 

terminates agents and removes it from the environment and HATCH spawn new agents that 

inherits properties from its parent agent. MOVE-TO moves agents to a specified x and y 

coordinate.   
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Repast Simphony also provides pre-defined functions that support agent migration and behavior. 

This includes agent migration functions [9][10][11][12] such as moveByDisplacement, 

moveByVector, moveTo, VNContains, and MooreContains. MoveByDisplacement moves agents 

from its current location by a specified amount. MoveByVector moves agents by a specified 

distance from its current position along a specified angle. MoveTo moves agents from its current 

location to a new location specified as input. VNContains determines whether or not a particular 

agent is in the Von Neumann1 neighborhood of a particular source. MooreContains determines 

whether or not a particular agent is in the Moore neighborhood of a particular source.  

 

Both Netlogo and Repast Simphony provides basic agent migration methods but doesn’t provide 

functions that support complex agent propagation and migration. To perform complex agent 

propagation, users have to write custom functions utilizing the basic predefined functions. 

Knowledge of these limitations motivated us to upgrade MASS, our own agent-based modelling 

library to support complex agent migration and propagation out of the box. 

 

MASS [17] has two main entities that are used for data analysis - Agents and Places. MASS users 

represent their dataset across the places which is then analyzed using agents. MASS currently 

supports basic agent-navigation and life-cycle management functions. Migrate () function moves 

agents to a specified place index. Spawn () creates new agents that inherit properties from its 

parent agent and are spawned at the same place as parents. Kill () function terminates agents 

and removes it from the environment. Users require significant programming capabilities to 

successfully perform data analysis. Users have to build custom agent migration functions that 

would use these basic functions. Inability to support complex agent navigational functions 

natively in MASS gives big burden to physical scientists who hopes to conduct big data computing 

using agent-based modelling.  

 
1 Appendix A provides details of the Van-Neumann and Moore’s Neighborhood 
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3 DESCRIPTIVE ENHANCEMENT OF AGENT MIGRATION 

3.1 MASS LIBRARY 

MASS contains two main classes - Places and Agents. Places is a multi-dimensional array of place 

objects allocated over a cluster of nodes, each having a globally unique array index. Each place 

can host agents and is capable of exchanging information with other places in the system. Agents 

are analyzing units that reside in a place and navigates across places distributed over a cluster of 

nodes. Parallelization is achieved by multi-threaded MASS processes that execute on agents and 

places, and run across on cluster of nodes, communicating using Java Secure Channel connected 

by Transmission Control Protocol (TCP) sockets. 

Figure 1 shows the architecture of MASS across multiple computing nodes with each node 

containing multiple threads to perform the data analysis. The number of threads in a computing 

node relies on the number of CPU cores.  

 

Figure 1: Mass Library Architecture 
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Listing 1 shows the control flow of a user program using MASS. The user program calls MASS.init() 

to start the MASS processes across a cluster of nodes. It then creates place objects across the 

computing nodes, where places are assigned a global index. It then creates agents with, each 

agent assigned to a place and a bag of agents. The user program can then implement algorithms 

using the built-in functions such as: Places.callAll(func) for concurrently invoking a function on all 

places; Place.exchangeAll(func) for each place to collect data from its neighbors; Agents.callAll 

(func) for concurrently invoking a function on all agents in the system; Agents.manageAll() to 

commit spawning child agents, terminate agents and migrate agents from one place to another. 

 

 

Listing 1: User Program 

Figure 2 shows the main Java classes that constitute MASS. Agents and AgentsBase classes 

represent a collection of agents. The Agents Class is the interface to a user program for creating 

and manipulating the Agents while the AgentsBase class contains the implementation details for 

creating agents, callAll (), and Manageall (). Places and PlacesBase classes represent a collection 

of place objects over computing nodes. The Places Class is the interface to a user program while 

the PlacesBase class contains the implementation details for creating places, callAll (), and 

Exchangeall (). The MASS class is responsible for construction and deconstruction of the 

computing cluster and has references to all places and agents within the cluster. The MProcess 

class is responsible for message passing between remote and master computing nodes.	
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Figure 2: Class Structure of MASS 

 
 

3.2 High Level Agent Migration Function 

Currently MASS users write custom agent navigation functions to implement algorithms required 

for analysis. Custom functions use basic built-in MASS functions - Migrate (), Spawn (), and Kill () 

– to manage agent navigation. A user program invokes the custom functions from the main 

program using callAll (function). This puts a big burden on the users requiring their significant 

programming capabilities to build custom agent navigational functions and successfully perform 

data analysis. In this paper we identify eight agent navigation patterns used in benchmark 

programs and develop built-in MASS functions to support these navigational patterns. 

3.2.1 MigratePropagate 

MigratePropagate (see figure 3) performs breadth first search of a graph. The function fetches 

all the neighboring vertices associated to a vertex where the agent is located, excludes the 
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previous vertex from where the agent migrated from, moves the agent to one of the neighbors, 

spawn child agents and moves them to the remaining neighbors. The function will manage the 

agent traversal through all the nodes in the graph with minimum latency. 

 

 

 
Figure 3: MigratePropagate 

 
 
 
 
 

3.2.2 MigratePropagateDownstream 

MigratePropagateDownstream (see figure 4) performs downstream propagation of an agent on 

a graph. The function fetches all the neighboring vertices which are downstream (lower index 

values), moves the agent to one of the neighbors, spawn child agents and dispatches child agents 

to the remaining neighbors. MigratePropagateDownstream will support user algorithms to 

perform triangle counting and connected component counting on a graph. 
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Figure 4: MigratePropagateDownstream 

 

3.2.3 MigrateOriginalSource 

MigrateOriginalSource migrates agent to the graph vertex where agent was first assigned to. The 

function fetches all the neighboring vertices associated to a vertex where the agent is located, 

and moves to the originating vertex if it is one of the neighbors. MigrateOriginalSource will 

support users executing algorithms to perform triangle counting and connected component 

counting on a graph. 

 

3.2.4 MigratePropagateTree 

MigratePropagateTree (see figure 5) propagates agents through a distributed binary tree. The 

function can be invoked with three parameters: BothBranches, LeftBranch, and RightBranch. 

BothBranches will propagate an agent on both branches of a tree node. LeftBranch and 

RightBranch will migrate the agent to the left and right branches of a tree node respectively. To 

implement tree propagation, we extended the VertexPlace class in MASS to store the left and 
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right branches associated to a tree node. For BothBranches the function will migrate the agent 

to the left neighbor, spawn a child agent and migrate the child agent to the right neighbor. For 

LeftBranch and RightBranch, the function will migrate the agent to the corresponding branches. 

MigratePropagateTree will be used in algorithms such as range search where agents propagate 

through the tree to determine if data present on a tree node is within a given range of values. 

 

 
Figure 5: MigratePropagateTree 

 

3.2.5 MigratePropagateRipple 

MigratePropagateRipple (see figure 6) propagates agents to the Von-Neumann and Moore’s 

neighborhood2 of the agent’s current location forming a ripple. The function fetches the 

neighboring places in Von-Neumann and Moore’s neighborhood, spawn child agents and moves 

them to the neighboring places. This function will support users in executing the Closest pair of 

Points in contiguous space, Closest pair of Points using Quad tree, Voronoi diagram in contiguous 

space, Voronoi diagram using Quad tree and K-Nearest neighbors. 

 

 
2 Appendix A provides details of the Van-Neumann and Moore’s Neighborhood  
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Figure 6: MigratePropagateRipple 

 
 

3.2.6 MigrateMin and MigrateMax 

MigrateMin and MigrateMax (see figure 7) will support algorithms that require agents to 

traverse through a graph based on the weight of the edges. MigrateMin will move an agent to 

the neighboring graph vertex with minimum edge weight. MigrateMax will move an agent to the 

neighboring graph vertex with maximum edge weight. 

 

 
Figure 7: MigrateMin and MigrateMax 
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3.2.7 Migrate Random 

MigrateRandom (see figure 8) will support algorithms that requires agents to traverse through a 

graph by randomly pick a neighboring vertex in a Graph for migration.  This function will support 

users in executing Random Walk and Ant Colony optimization (ACO).  

 

 
Figure 8: MigrateRandom 

 

3.3 SMART AGENT AND SMART PLACE IMPLEMENTATION 

We implemented two new classes SmartAgent and SmartPlace in MASS core library to support 

the high-level agent migration functions (which were listed above).  

 

3.3.1 SmartAgent 

The automated agent navigation methods will be part of the SmartAgent class. MASS applications 

have user-defined custom agent class to perform application specific actions. The user agents will 

extend SmartAgent to gain access to the automated migration methods. SmartAgent will in turn 

extend the Agent base class. In addition to the automated agent navigation methods, SmartAgent 

will contain properties: itinerary representing the list of places the agent navigated through, 
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nextNode representing the next destination for the SmartAgent and prevNode representing the 

previous place from where the agent migrated from.  

 

 
Figure 9: SmartAgent Class structure 

3.3.2 SmartPlace 

SmartPlace will have place properties that support automated agent navigation. For example, in 

case of migratePropagate, SmartAgent located at a place will need to know the neighboring 

places to spawn and migrate. SmartPlace will encapsulate the place properties such as neighbors 

and distances to the neighbors to support the automated agent navigation. The user-defined 

place class that is part of the MASS application will extend SmartPlace to gain access to the place 

properties used for automated migration methods. SmartPlace will extend the place base class. 
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Figure 10: SmartPlace Class structure 

 

Applying SmartAgent in a Mass Application: To demonstrate the use of SmartAgent in a MASS 

application, we describe how a MASS user building an application that requires agent 

propagation through a graph and changing an attribute on each of the graph vertex will utilize 

SmartAgent. The user-defined agent class will have a custom function annotated with @Onarrival 

that sets the desired attributes on the graph vertex when the agent arrives. The user agent class 

will extend the SmartAgent class to have access to the MigratePropagate function. The user 

program will then use the built-in callAll function that concurrently invokes the 

MigratePropagate function on all agents in the system. 

 

3.4 AGENT LIFE CYCLE MANAGEMENT 

MASS currently supports three basic agent-navigation and life-cycle management functions: 

Migrate () moves agents to a specified place index, Spawn () creates new agents that inherit 

properties from its parent agent and are spawned at the same place as the parent. Kill () function 

terminates agents and removes it from the environment. Migrate (), Spawn (), and Kill () set 
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attributes on agents, respectively. However, to migrate to different location, spawn children and 

terminate agents, the user’s main program has to call the ManageAll () function. 

 

ManageAll () function (see figure 11) in the AgentsBase class operates on a bag of agents 

/AgentsList present in a computing node. It performs three primary agent lifecycle management 

functions - spawning child agents, terminating agents, and moving agents. Multiple threads pick 

up agents from the bag of agents in a thread-safe manner and evaluate each agent to perform 

the three-step life-cycle management.  

 

Step1: Spawning child Agents: For each evaluated agent, check if a child agent should be 

spawned. If yes, new child agents are created, added to the bag of agents/AgentsList and at the 

same place as the parent agent. The agent is then registered with the messaging provider, and 

OnArrival and OnCreation events for agents, and OnArrival event for place are queued.   

 

Step2: Termination/Kill Agents: For each evaluated agent, check if the evaluated agent should 

be terminated. If yes, the agent is removed from the place and from the bag of agents/AgentsList. 

Any frozen agent is re-instantiated, added to the bag of agents/AgentsList and at the same place 

as the parent agent. The agent is then registered with the messaging provider, and OnArrival and 

OnCreation events for agents, and OnArrival event for place are queued. 

 

Step3: Migration of Agents: For each evaluated agent, this step checks if the agent should be 

moved. If yes, it checks for the destination place coordinate, removes from the agent from the 

current place and adds to the destination place. 

 

As can be seen from the figure 11, ManageAll function does not perform migration (Step 3) for 

child agents spawned during Step 1 as a part of the same ManageAll execution. Algorithms that 

require child agents to be spawned and dispatched to different destinations require ManageAll 

to be executed twice. First for spawning the child agents and a second time for moving the agent 

to the desired destination. ManageAll is performance intensive, and executing ManageAll twice 
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for spawning and dispatching child agents has severe performance implications while executing 

algorithms over large datasets.  

 

 
Figure 11: Current Spawn and Kill Functions in ManageAll() 

 

In order to mitigate the poor performance and make automatic agent migration smoother, we 

revised ManageAll to de-couple agent lifecycle management from agent migration. In this 

revision (see figure 12), we created a separate helper function for agent lifecycle management 

which will evaluate the agents in the bag of agents/AgentList; (1) perform agent population 

control to see if a new agent can be created, (2) create child agent and add child agent to the 

place of parent agent and bag of agents, (3) terminal agents and finally (4) reset the bag of agents 

after agent addition and removal. In the new agent lifecycle management, the spawned child 

agents will be placed in the same bag of agents and ManageAll will continue to perform the agent 

migration for all agents including the child agents spawned. This design will ensure that agent 

cloning and migration will be carried out with only one ManageAll execution.  

 
 



24 
 

 

 
Figure 12: ManageLifeCycleEvents Function in ManageAll() 

 

3.5 KD TREE CONSTRUCTION 

In addition to updating benchmark programs with new automated agent migration methods, and 

improving agent lifecycle management, we also extended MASS core classes to support 

algorithms requiring tree traversal: The VertexPlace class was extended to store left and right 

branch references; the GraphPlaces class was extended to update properties of graph vertices 

distributed across cluster of computing nodes. Currently MASS users create application specific 

class for graph vertex with tree-traversal properties, write custom code to instantiate an agent, 

and migrate the agent to all the vertices in the graph to update it with tree-branch references.  

This is high-inefficient since the agent has to be migrated to the vertex when a new vertex is 

added to the graph. With this extension, user do not require: (1) custom code to hold tree-branch 

properties required for tree traversal and (2) agent migration to update to vertices distributed 

across cluster of computing nodes. 
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4 EVALUATION 

This section measures the execution performance and programmability improvement brought 

by this automated agent migration, using four benchmark programs. 

4.1 BENCHMARK PROGRAMS 

To evaluate the automated agent migration, we updated four benchmark programs to utilize the 

new agent migration methods and measured it for accuracy, performance and programmability. 

Table 1 below shows the agent migration methods and the corresponding benchmark programs 

used for evaluation. MigrateMin, MigrateMax, MigrateRandom is not applicable to our existing 

benchmark set and will be used for future application development.  

 
Automated Agent Navigation Methods Benchmark programs 

MigratePropagate 
 

Breadth First Search 
 

MigratePropagateDownStream and  
MigrateOriginalSource 
 

Triangle Counting 

MigratePropagateTree (BothBranches)  
MigratePropagateTree (LeftBranch) 
MigratePropagateTree (RightBranch) 
 

Range Search 
 

MigratePropagateRipple 
 

Closest Pair of Points in Space 
 

Table 1: Agent Propagation and Benchmark program 

 
To measure accuracy of the automated agent migration, we tested benchmark programs against 

a range of inputs. We then compared the output against the output from legacy benchmark 

program implementation for the same set of inputs. All benchmark programs with automated 

agent migration provided accurate results with no deviation from the legacy benchmark 

implementation output. Table 2 below shows the automated agent migration method, 

corresponding benchmark program and the tests performed. 

 



26 
 

 

Method Application Tests Conducted 

MigratePropagate Breadth First Search 
Tested with graph containing 
100, 500 and 1000 and 2000 
vertices 

MigratePropagateDownStream  
MigrateOriginalSource  

Triangle Counting Tested with graph with 1000, 
3000 and 10000 vertices 

MigratePropagateTree (BothBranch) 
MigratePropagateTree (LeftBranch) 
MigratePropagateTree (RightBranch)  

Range Search 
Tested with trees containing 
100, 100000, and 200000 
datapoints 

MigratePropagateRipple Closest Pair of Points in 
space 

Tested with 2D continuous 
space containing 64, 100, 
100000, and 200000 
datapoints 

Table 2: Agent Propagation, Benchmark program and test performed 

 

4.2 PERFORMANCE EVALUATION 

4.2.1 MigratePropagate Performance 

We implemented BreadthFirstSearch (BFS) using MigratePropagate and evaluated it on graphs 

with 100, 500, 1000 and 2000 vertices, running across four computing nodes. As can be seen 

from figure 14, the execution time for MigratePropagate is lower than the time taken by the 

legacy migration methodology and the difference in performance increases with the number of 

vertices in the graph. The performance improvement for MigratePropagate is primarily due to 

usage of the new ManageAll function which will spawn and migrate child agents as a part of a 

single execution. With the increase in number of vertices more agents are required to be 

spawned and migrated and there is increased efficiency from improvements to ManageAll. Table 

3 shows the performance details including average, minimum and maximum execution times for 

triangle counting after five executions of each test case. Both legacy and new migrations were 

executed when the operational load on the computing nodes were comparable. Table 4 shows 

the BFS performance range at a 95% confidence interval. 
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Figure 13: Overall Latency - Breadth First Search 

 
 

 
Table 3: BreadthFirstSearch Performance Details 

 
 
 

 
Table 4: Breadth First Search Performance at 95% confidence 
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To perform triangle counting, agents are first allocated to all graph vertices,  

MigratePropagateDownStream is executed twice to propagate the agent from the source vertex 

to downstream vertices and then MigrateOriginalSource is executed to check if the source node 

is one of the neighbors and migrate to the source node. As can be seen from figure 15, the 

execution time for new agent migration methods is lower than the time taken by the legacy 

migration methodology and the difference in performance increases with the number of vertices 

in the graph. The performance improvement is due to the usage of new manageAll () that spawns 

of child agents and dispatches them to their destinations in a single execution. Table 5 shows the 

performance details including average, minimum and maximum execution times for triangle 

counting after five executions of each test case. Both legacy and new migrations were executed 

when the operational load on the computing nodes were comparable. Table 6 shows the triangle 

counting performance range at a 95% confidence interval. 

 

 

 
Figure 14: Overall Latency - Triangle Counting 
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Table 5: Triangle Counting Performance Details 

 
 

 
Table 6: Triangle Counting Performance at 95% confidence 

 

4.2.3 MigratePropagateTree performance  

We implemented range search using MigratePropagateTree and evaluated it by running across 

a distributed tree containing 100, 100K, and 200K datapoints over four computing nodes. Figure 

15 shows the overall execution performance for different input datasets. The overall execution 

time for range search is dependent on both the input range and the number of input data points. 

We were unable to compare the performance against a legacy implementation as there is no 

comparable agent migration-based implementation for range search. Additionally, KDTree 

construction for large datasets do not complete in a reasonable timeframe with the legacy 

implementation and hence we don’t have a comparable reference for performance. Table 7 

shows the performance details including average, minimum and maximum execution times for 

range search after five executions of each test case. Both legacy and new migrations were 

executed when the operational load on the computing nodes were comparable. Table 8 shows 

the range search performance range at a 95% confidence interval. 
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Figure 15: Overall Latency - Range Search 

 
 
 

 
Table 7: Range Search Performance Details 

 
 

 
Table 8: - Range Search Performance at 95% confidence 
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below) to update a graph vertex distributed across cluster of computing nodes. MASS users 

create application specific class for graph vertex with branch reference properties, write custom 

code to instantiate agent, migrate agent to the graph vertex and then update the graph vertex 

with the branch references.  This is highly inefficient since each update requires agent migration 

and execution of manageAll () which is performance intensive. We implemented improvements 

to the KD tree construction described earlier in the document and evaluated the performance by 

constructing distributed tree containing 100, 100K, and 200K datapoints. As can be seen from 

figure 16, we were able to construct trees with up to 200K datapoints within reasonable 

timeframe. Table 9 shows the performance details including average, minimum and maximum 

execution times for KDTree construction after five executions of each test case using both legacy 

and new methods. Both legacy and new methods were executed when the operational load on 

the computing nodes were comparable. Table 10 shows the KDTree construction performance 

range at a 95% confidence interval. 

 

 
Figure 16: Overall Latency - KDTree Construction 
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Table 9: KD Tree Construction Performance Details 

 
 

 
Table 10: KD Tree construction Performance at 95% confidence 

 

4.2.5 PropagateRipple performance 

We implemented closest pair of points using PropagateRipple and evaluated it by running in  2D 

continuous space with 64, 100, 100K, and 200K datapoints over four computing nodes. As can be 

seen from figure 18, the execution time for new agent migration methods is at par with the time 

taken by the legacy migration methodology. Table 11 shows the performance details including 

average, minimum and maximum execution times for closest pair of points in space after five 

executions of each test case. Both legacy and new migrations were executed when the 

operational load on the computing nodes were comparable. Table 12 shows the KDTree 

construction performance range at a 95% confidence interval 
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Figure 17: Overall Latency - Closest pair of points 

 
 

 
Table 11: Closest Pair of Points Performance Details 

 
 

 
Table 12: Closest Pair of points Performance at 95% confidence 
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4.3 PROGRAMMABILITY EVALUATION 

We examined programmability using quantitative and qualitative measurements. For 

quantitative measurements we examined the number of lines of custom code. For qualitative 

measurements we examine the ease of programming and the semantic meaning of the new 

agent migration methods.  

 
Quantitative Measures. We tallied the custom lines of code (see Table 13) removed as a 

percentage of the total lines of code in the user defined agent class for the benchmark 

application. Triangle counting and Breadth First Search has the highest percentage of lines 

removed while closest pair of points has the lowest.  

 

Method Application % LOC Removed 
MigratePropagate Breadth First Search 83% 
MigratePropagateDownStream and  

Triangle Counting 60% 
MigrateOriginalSource 
MigratePropagateTree (BothBranch) 

Range Search 44% MigratePropagateTree (LeftBranch) 
MigratePropagateTree (RightBranch) 

MigratePropagateRipple Closest Pair of Points 22% 

Table 13: Number of lines of custom code removed 

 
 
Triangle counting and Breadth first search currently utilize OnArrival and OnDeparture methods 

to simulate agent travel and propagation through the datasets. Users write all decision-making 

logic to move agent along the graph edges after examining the neighbors, spawning child agents 

and terminating agents. MigratePropagate, MigrateOriginalSource and MigratePropagate 

DownStream fully abstracts the agent navigation and propagation from the user and supports 

them as built-in MASS functions. This has helped reduce the user-maintained code by 83% and 

60% respectively. Closest Pair of Points utilizes the SpaceAgent class that supports propagation 

in the Von-Neumann and Moore’s neighborhood. However, it does not support agent life-cycle 



35 
 

 

management including agent termination and preventing duplicate agent propagation. 

MigratePropagateRipple handles propagation in Von-Neumann and Moore’s neighborhood 

along with agent life cycle management. 

 
Qualitative Measures. We believe that the new agent migration method is easy to program and 

is semantically closer to the original algorithms being performed. For example (see listing 2), to 

perform triangle counting, user will execute MigratePropagateDownStream twice to propagate 

the agent from the source vertex to downstream vertices and then execute 

MigrateOriginalSource to check if the source node is one of the neighbors and migrate to the 

source node. This is easier than writing OnArrival and OnDeparture methods to examine the 

graph edges, spawn agents to downstream vertices, and finally migrate back to the source vertex. 

 

 
Listing 2: User program for TC using automated agent migration methods 

 

Additionally, MigratePropagateDownStream and MigrateOriginalSource are more intuitive than 

the OnArrival and OnDeparture methods (see listing 3) which we believe do not convey the 

semantic meaning of the algorithm being performed. 
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Listing 3: User program for TC in current MASS 

 

We also compared the availability of automated agent migration methods with other competing 

products such as Netlogo and Repast Simphony. As can be seen from Table 14, with the 

introduction of the new automated agent navigation, MASS now has the greatest number of 

advanced agent migration methods. Repast Simphony supports certain agent navigational 

methods such as Shortestpath, MoveAgentByDisplacement and MoveAgentbyVector that is 

currently not supported in MASS. However, SmartAgent in MASS can be easily extended to 

incorporate these agent navigational patterns.  

 
 NetLogo Repast Simphony Mass Old Mass New 
MigratePropagate No Yes3 No Yes 
MigratePropagateDownStream No No No Yes 
MigrateOriginalSource No No No Yes 
MigratePropagateTree No Yes No Yes 
MigratePropagateRipple Yes4  Yes5 No Yes 
MigrateMin No No No Yes 
MigrateMax No No No Yes 
MigrateRandom No No No Yes 
ShortestPath No Yes No No 
MoveAgentByDisplacement No Yes No No 
MoveAgentByVector No Yes No No 

Table 14: Availability of automated agent migration across products 

 
Based on the discussion in this section we can conclude that the new automated agent migration 

along with the improvements to the agent lifecycle management has brought significant 

performance improvements to MASS while executing the benchmark programs. The new 

 
3 Repast simphony provides method to perform breadth first search 
4 Netlogo supports models such as Voronoi diagram, K-Nearest Neighbor. 
5 Repast simphony has methods to check if an agent is present in the Von Neumann or Moore’s neighborhoood 
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automated agent migration has also made MASS easier to use and has improved the 

programmability when compared to other competing products such as Repast simphony and 

Netlogo.  

 

5 CONCLUSION 

5.1 SUMMARY 

To pursue our research focused on automated agent navigation over structured data, we 

identified, designed, and implemented eight automated agent navigation functions in MASS java. 

We improved the execution performance of agent propagation through structured data with two 

major achievements: (1) improvements to existing agent lifecycle management functions that 

migrate, spawn, and terminate agents and (2) improvements to graph construction in MASS java 

by building the support for tree traversal and the ability to update properties of graph vertices 

distributed across a cluster of computing nodes. The performance improvements to the 

benchmark programs demonstrated the efficiency of the new agent navigation methods and the 

agent lifecycle improvement. The performance improvement to KD Tree construction 

demonstrated the efficiency of improvements made to graph construction in MASS java.  

Programmability evaluation shows that new implementations reduced user line of codes (LOC), 

made the code more intuitive and semantically closer to the original algorithms. We successfully 

achieved our project goal by identifying the generalized agent navigational patterns, designing 

and implementing automatic agent navigation functions, and making performance 

improvements to the current agent lifecycle management functions. 

 

5.2 FUTURE WORK 

To further extend the work we have completed, we see the following opportunities: 

1) Introduce additional agent navigation functions including:   
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• PropagateRippleWithBouncing: This method will support the calculation of Euclidean 

shortest path between two points in contiguous space. It will propagate a ripple from 

the source point in contiguous space and bounce off opaque obstacles until the ripple 

detects the destination point. 

• MigrateLowestCoordinatePoint and MigrateUnboundedRegion: These methods will 

be used for constructing a Convex Hull.  MigrateLowestCoordinatePoint will move an 

agent to the starting Coordinate point and MigrateUnboundedRegion will be used to 

move the agent to the Voronoi site present in the unbounded Voronoi region. 

• MoveAgentByDisplacement and MoveAgentByVector: MoveAgentByDisplacement 

will move an agent from its current location by the specified amount of displacement 

in a continuous space. MoveAgentByVector will move an agent from its current 

location by the specific amount of displacement along the specified angle. 

 

2) Implement benchmark programs to evaluate MigrateMin, MigrateMax and 

MigrateRandom.  We have re-implemented benchmark programs to evaluate Migrate 

Propagate, MigratePropagate DownStream, Migrate Original Source, Migrate Propagate 

Tree, MigratePropagateRipple. In future we will implement benchmark programs such as 

Dijkstra’s algorithm to verify MigrateMin, MigrateMax and MigrateRandom. 

 

3) Re-implement more benchmark programs in MASS using the automated agent navigation 

methods. We have re-implemented four benchmark applications including breadth first 

search, triangle counting, range search, and closest pair of points in continuous space using 

the new agent navigation functions. We will utilize MigratePropagateRipple to re-implement, 

Closest pair of Points using Quad tree, Voronoi diagram in contiguous space, Voronoi diagram 

using Quad tree and K-Nearest neighbors. We will utilize MigratePropagateDownStream to 

re-implement connected components in graph. 
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APPENDIX A 
 

Von-Neumann and Moore’s Neighborhood 

Von-Neumann and Moore’s neighborhood represent neighboring spaces in a 2D contagious 
space. Von -Neumann Neighborhood [15] is a diamond shaped neighborhood surrounding a 
give cell as shown in the figure 3. 
 

 
Figure 18: cells in the Von-Neumann Neighborhood 

  
 

 
Figure 19: von Neumann neighborhoods for ranges r 0, 1, 2, and 3 
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Moore’s Neighborhood [16] is a square shaped neighborhood surrounding a give cell as shown 

in the figure 5.	

 

Figure 20: cells in the Moore's Neighborhood 

     

 
Figure 21: Moore neighborhoods for ranges r 0, 1, 2, and 3 
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APPENDIX B1 

MigratePropagate 

 
 

 

 

public Object migratePropagate( Object arg ) 1 
{      SmartPlace smartPlace = (SmartPlace) getPlace( ); //Get the place where the agent is 2 
        if ( smartPlace.footprint == -1 ) { 3 
            int[] neighbors = smartPlace.neighbors; 4 
            int[] distances = smartPlace.distances; 5 
            if (neighbors.length == 0 || (neighbors.length == 1 && prevNode == neighbors[0])) 6 
            { 7 
                smartPlace.footprint = 1; //This place has been visited 8 
                kill( ); 9 
                return null; 10 
            } 11 
            nextNode = ( neighbors[0] != prevNode ) ? neighbors[0] : neighbors[1]; 12 
            migrate( nextNode ); //Migarte to the next Node 13 
 14 
            SmartArgs2Agents[] args 15 

 = new SmartArgs2Agents[( getAgentId( ) == 0 && getPlace( ).getIndex( )[0] == 0 && ( ( SmartPlace 16 
)getPlace( ) ).footprint == -1 ) ? neighbors.length - 1: neighbors.length - 2]; 17 

 18 
            if (args.length == 0) { 19 
                prevNode = getPlace( ).getIndex( )[0]; 20 
                smartPlace.footprint = 1; //This place has been visited 21 
                return null; //if there are no neighbours to spawn, just return 22 
            } 23 
 24 
            for ( int i = 0, j = 0; i < neighbors.length; i++ ) { 25 
                if ( neighbors[i] == nextNode || neighbors[i] == prevNode ) 26 
                    continue; 27 
                args[j++] = new SmartArgs2Agents( neighbors[i],getPlace( ).getIndex( )[0]); 28 
            } 29 
 30 
            spawn( args.length, args ); 31 
       32 
            prevNode = getPlace( ).getIndex( )[0]; 33 
            smartPlace.footprint = 1; //This place has been visited 34 
 35 
        }else { 36 
            kill( ); 37 
        } 38 
        return null; 39 
} 40 
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APPENDIX B2 

MigratePropagateDown 

 

 

public Object propagateDown( Object arg ) 
    { 
        int currStep = ((Integer) arg).intValue(); 
        if (getPlace() != null && !(getPlace() instanceof VertexPlace)) { 

           return null; 
        } 
 
        Object [] neighbors = ((VertexPlace) getPlace()).getNeighbors(); 
        int currNodeGlobalIndex = getPlace().getIndex()[0]; 
 
        int availableEdges = 0; 
        for (int i = 0; i < neighbors.length; i++) { 
            int neighborGlobalIndex = (Integer)neighbors[i]; 
            if (neighborGlobalIndex < currNodeGlobalIndex) 
                // Going to a neighbor with a lower id 
                availableEdges++; 
        } 
            
        if (availableEdges == 0) { 
            // No more edges to explore. I'm done 
            kill(); 
        } else { 
            // Prepare arguments to be passed to children 
            SmartArgs2Agents[] args = new SmartArgs2Agents[availableEdges -1]; 
            int argsCount = 0; // eventually reaches # children 
            for (int i = 0; i < neighbors.length; i++) { 
                int neighborGlobalIndex = (Integer)neighbors[i]; 
 
                if (neighborGlobalIndex < currNodeGlobalIndex) { 
                    if (--availableEdges == 0) { 
                        // Parent takes the last available edge and also immediately migrates 
                        itinerary[currStep + 1] = neighborGlobalIndex; 
                        migrate(itinerary[currStep + 1]); 
                    } else { 
                        int[] childItinerary = itinerary.clone(); 
                        childItinerary[currStep + 1] = neighborGlobalIndex; 
                        args[argsCount++] = new SmartArgs2Agents( childItinerary,neighborGlobalIndex); 
                    } 
                } 
            } 
 
            if (args != null) { 
                spawn(args.length, args); 
            } 
        } 
 
        return null; 
    } 
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APPENDIX B3 

MigrateOriginalSource 

 
 

 

 

 

 

 

public Object migrateSource( Object arg ) 
    { 
        int currStep = ((Integer) arg).intValue(); 
        if (getPlace() != null && !(getPlace() instanceof VertexPlace)) { 
            return null; 
        } 
 
        // Retrieve the current node's information 
        Object [] neighbors = ((VertexPlace) getPlace()).getNeighbors(); 
 
        // Check if the current node has my original node as a neighbor 
        for (int i = 0; i < neighbors.length; i++) { 
            int neighborGlobalIndex = (Integer)neighbors[i]; 
 
            if (neighborGlobalIndex == itinerary[0]) { // YES 
                itinerary[currStep + 1] = neighborGlobalIndex; 
                migrate(itinerary[currStep + 1]); //TO DO Check why this was missed 
                break; 
            } 
        } 
        if (itinerary[currStep + 1] == -1) { // NO 
            MASS.getLogger().debug("Step " + currStep + 
                    ": agent(" + getAgentId() + ") can't go home at " + 
                    itinerary[0] + " and thus gets terminated at " + 
                    getPlace().getIndex()[0])   ; 
            kill(); 
        } 
 
        return null; 
 
    } 
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APPENDIX B4 

MigratePropagateTree 

 

    public Object propagateTree( int path, Object arg ) 
    { 
        if (getPlace() != null && !(getPlace() instanceof VertexPlace)) { 
            return null; 
        } 
        int currNodeGlobalIndex = getPlace().getIndex()[0]; 
        int left = ((VertexPlace)getPlace()).left; 
        int right = ((VertexPlace)getPlace()).right; 
        if (left == -1 && right  == -1) { 
            kill(); 
        } else if(((VertexPlace)getPlace()).footprint == 1){ 
            kill(); 
        } 
        else { 
            switch (path){ 
                case BothBranch_: 
                    if (left != -1 && right  != -1){ 
                        migrateAndSpawn(arg, left, right); 
                    } 
                    else if (left != -1) 
                        migrate(left); 
                    else if (right != -1) 
                        migrate(right); 
                    break; 
                case LeftBranch_: 
                    if (left != -1) 
                        migrate(left);   //Migrate the Agent to Left Branch                         
                    break; 
                case RightBranch_: 
                    if (right != -1){ 
                        migrate(right);   //Migrate the Agent to Left Branch                                             
            } 
            ((VertexPlace)getPlace()).footprint = 1; //Setting the footprint since place is visited 
        } 
        return null; 
    } 
 
    private Object migrateAndSpawn( Object arg, int left, int right) 
    { 
        migrate(left); //Migrate Parent Agent to left 
        Object [] arguments = new Object[2]; 
        arguments[0] = arg; 
        arguments[1] = level; 
        SmartArgs2Agents[] args = new SmartArgs2Agents[1]; 
        args[0] = new SmartArgs2Agents(SmartArgs2Agents.rangeSearch_, arguments, right, -1); 
        spawn(args.length, args);         
        return null; 
    } 



47 
 

 

APPENDIX B5 

MigratePropagateRipple

 

    public Object propagateRipple(Object argument) { 
        if (getPlace() != null && !(getPlace() instanceof SpacePlace))  
            return null;       
        boolean hasThePlaceBeenAlreadyVisited = checkandUpdateFootPrint(); 
        if (hasThePlaceBeenAlreadyVisited) 
        {   kill(); 
            return null; 
        } 
 
        if (generation % 2 == 0) { 
            // if generation is even, spawn to N, W, E, S 
            spawnAgentinNeighborhood("vonNeumann", argument, currentCoordinates); 
 
        } else { 
            // if generation is odd, spawn to N, W, E, S, NW, SW, NE, SE 
            spawnAgentinNeighborhood("moore", argument, currentCoordinates); 
        } 
        kill(); //Kill Parent Agent; 
        return null; 
    } 
 
    //agent spawns in 'moore' manner or "vonNewmann" manner 
     private Object spawnAgentinNeighborhood(String neighborhoodPattern, Object args, double[]      
        currentCoordinates) { 
        int numOfAgents = 0; 
        switch(neighborhoodPattern){ 
            case "moore": 
                numOfAgents = 8; 
                break; 
            case "vonNeumann": 
                numOfAgents = 4; 
                break; 
        } 
 
        Object[] arguments = new Object[numOfAgents]; 
        int[] curIndex = getIndex(); 
 
        // new coordiantes where agent is migrating 
        double[] subInterval = ((SpacePlace) getPlace()).getSubInterval().clone(); 
        Vector<double[]> neighbors = SpaceUtilities.getNeighborPatterns(neighborhoodPattern, subInterval); 
        for (int i = 0; i < neighbors.size(); i++ ) { 
            for (int j = 0; j < subInterval.length; j++) { 
                neighbors.get(i)[j] += currentCoordinates[j]; 
            } 
        } 
        generation++; 
        for(int i = 0; i < numOfAgents; i++){ 
            SpacePlace sp = (SpacePlace)getPlace(); 
            Object[] finalArgs = new Object[2]; 
            SpaceAgentArgs spaceAgentArgs = new SpaceAgentArgs(currentCoordinates, neighbors.get(i),originalCoordinates, 
                    getIndex(), subIndex, generation, originalId); 
            finalArgs[0] = (Object) spaceAgentArgs;  //argument for SpaceAgent 
            finalArgs[1] = args;  //argument for customer agent class 
            arguments[i] = (Object) finalArgs; 
        } 
        spawn(numOfAgents, arguments); 
        return null; 
    } 
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APPENDIX B6 

MigrateMin  
 

 
 

 

    public Object migrateMin( Object arg ) 
    { 
        if (getPlace() != null && !(getPlace() instanceof VertexPlace) && !(getPlace() instanceof SmartPlace)) { 
            return null; 
 
        Integer [] neighbors; //Holds the indexes of neighbors 
        Integer [] weights; //Holds weights of the the neigbors 
 
        if (getPlace() instanceof VertexPlace) 
        { 
            neighbors = Arrays.asList(((VertexPlace) getPlace()).getNeighbors()) 
                        .toArray(new Integer[0]); 
 
            weights = Arrays.asList(((VertexPlace) getPlace()).getWeights()) 
                    .toArray(new Integer[0]); 
 
        }else { 
            return null; 
        } 
 
        //If neigbors or weights are null return null 
        if (neighbors == null || weights == null) 
            return null; 
 
        int minimumWeightIndex = getMinimumWeightIndex(weights); 
       migrate( neighbors[minimumWeightIndex] ); //Migrate to Node with minimum weight 
       return null; 
 
    } 
 
    private int getMinimumWeightIndex(Integer [] weights) 
    { 
        int min = Integer.MAX_VALUE; 
        int MinimumWeightIndex = 0; 
 
        for (int i = 0; i < weights.length; i++) 
        { 
            if (min > weights[i].intValue()) 
            { 
                min = weights[i].intValue(); 
                MinimumWeightIndex = i; 
            } 
        } 
 
        return MinimumWeightIndex; 
    } 
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APPENDIX B7 

MigrateMax 

 

public Object migrateMax( Object arg ) 
    { 
        if (getPlace() != null && !(getPlace() instanceof VertexPlace) && !(getPlace() instanceof SmartPlace)) 
 return null; 
        Integer [] neighbors; //Holds the indexes of neighbors 
        Integer [] weights; //Holds weights of the the neigbors 
 
        if (getPlace() instanceof VertexPlace) 
        { 
            neighbors = Arrays.asList(((VertexPlace) getPlace()).getNeighbors()) 
                    .toArray(new Integer[0]); 
 
            weights = Arrays.asList(((VertexPlace) getPlace()).getWeights()) 
                    .toArray(new Integer[0]); 
 
        }else { 
            return null; 
        } 
 
        //If neigbors or weights are null return null 
        if (neighbors == null || weights == null) 
            return null; 
 
        int maximumWeightIndex = getMaximumWeightIndex(weights); 
        migrate( neighbors[maximumWeightIndex] ); //Migrate to Node with maximum weight 
        return null; 
    } 
 
private int getMaximumWeightIndex(Integer [] weights) 
    { 
        int max = Integer.MIN_VALUE; 
        int MaximumWeightIndex = 0; 
 
        for (int i = 0; i < weights.length; i++) 
        { 
            if (max < weights[i].intValue()) 
            { 
                max = weights[i].intValue(); 
                MaximumWeightIndex = i; 
            } 
        } 
 
        return MaximumWeightIndex; 
    } 
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APPENDIX B8 

MigrateRandom 
 

 
 
 
 

public Object migrateRandom( Object arg ) 
    { 
        if (getPlace() != null && !(getPlace() instanceof VertexPlace) && !(getPlace() instanceof SmartPlace))  
            return null; 
         
        Integer [] neighbors; //Holds the indexes of neighbors 
        Integer [] weights; //Holds weights of the the neigbors 
 
        if (getPlace() instanceof VertexPlace) 
        { 
            neighbors = Arrays.asList(((VertexPlace) getPlace()).getNeighbors()) 
                    .toArray(new Integer[0]); 
 
            weights = Arrays.asList(((VertexPlace) getPlace()).getWeights()) 
                    .toArray(new Integer[0]); 
 
        }else { 
            return null; 
        } 
 
        //If neigbors or weights are null return null 
        if (neighbors == null || weights == null) 
            return null; 
 
        int randomIndex = getRandomIndex(weights); 
 
        migrate( neighbors[randomIndex] ); //Migrate to Node with maximum weight 
 
        return null; 
    } 


