
i

© Copyright 2022

Vishnu Mohan

ii

Automated Agent Migration Over Structured Data

Vishnu Mohan

A report

submitted in partial fulfillment of the

requirements for the degree of

Masters of Science in Computer Science and Software Engineering

University of Washington

2022

Reading Committee:

Professor Munehiro Fukuda, Chair

Professor Robert Dimpsey

Professor Michael Stiber

Program Authorized to Offer Degree:

Masters of Science

iii

University of Washington

Abstract

 Automated Agent Migration Over Structured Data

Vishnu Mohan

Chair of the Supervisory Committee:
Professor Munehiro Fukuda

Computer Science and Software Engineering

Agent-based data discovery and analysis views big-data computing as the results of agent

interactions over the data. It performs better onto a structured dataset by keeping the structure in

memory and moving agents over the space. The key is how to automate agent migration that should

simplify scientists’ data analysis. We implemented this navigational feature in multi-agent spatial

simulation (MASS) library. First, this paper presents eight automatic agent navigation functions,

each we identified, designed, and implemented in MASS Java. Second, we present the

performance improvements made to existing agent lifecycle management functions that migrate,

spawn and terminate agents. Third, we measure the execution performance and programmability

of the new navigational functions in comparison to the previous agent navigation. The performance

evaluation shows that the overall latency of benchmark applications improved with the new

functions. Programmability evaluation shows that new implementations reduced user line of codes

(LOC), made the code more intuitive and semantically closer to the original algorithm. The project

successfully carried out two goals: (1) design and implement automatic agent navigation functions

and (2) make performance improvements to the current agent lifecycle management functions.

i

 i

TABLE OF CONTENTS

List of Figures .. 4

List of Tables ... 5

List of LISTINGS .. 6

1 Introduction ... 7

1.1 Background .. 7

1.2 Motivation ... 8

1.3 Project Goals ... 9

2 Related work .. 10

3 Descriptive enhancement of Agent Migration ... 12

3.1 MASS Library ... 12

3.2 High Level Agent Migration Function .. 14

3.2.1 MigratePropagate .. 14

3.2.2 MigratePropagateDownstream .. 15

3.2.3 MigrateOriginalSource .. 16

3.2.4 MigratePropagateTree ... 16

3.2.5 MigratePropagateRipple .. 17

3.2.6 MigrateMin and MigrateMax .. 18

3.2.7 Migrate Random .. 19

3.3 Smart Agent and Smart Place Implementation ... 19

ii

 ii

3.3.1 SmartAgent .. 19

3.3.2 SmartPlace ... 20

3.4 Agent life cycle management .. 21

3.5 KD Tree Construction ... 24

4 Evaluation .. 25

4.1 Benchmark Programs .. 25

4.2 Performance evaluation ... 26

4.2.1 MigratePropagate Performance ... 26

4.2.2 MigratePropagateDownstream and MigrateOriginalSource Performance 27

4.2.3 MigratePropagateTree performance .. 29

4.2.4 KD Tree construction performance ... 30

4.2.5 PropagateRipple performance ... 32

4.3 Programmability Evaluation .. 34

5 Conclusion ... 37

5.1 Summary .. 37

5.2 Future work ... 37

Bibliography .. 39

Appendix A ... 41

Appendix B1 .. 43

Appendix B2 .. 44

Appendix B3 .. 45

iii

 iii

Appendix B4 .. 46

Appendix B5 .. 47

Appendix B6 .. 48

Appendix B7 .. 49

Appendix B8 .. 50

LIST OF FIGURES

Figure 1: Mass Library Architecture ... 12

Figure 2: Class Structure of MASS ... 14

Figure 3: MigratePropagate ... 15

Figure 4: MigratePropagateDownstream .. 16

Figure 5: MigratePropagateTree .. 17

Figure 6: MigratePropagateRipple .. 18

Figure 7: MigrateMin and MigrateMax .. 18

Figure 8: MigrateRandom ... 19

Figure 9: SmartAgent Class structure .. 20

Figure 10: SmartPlace Class structure ... 21

Figure 11: Current Spawn and Kill Functions in ManageAll() ... 23

Figure 12: ManageLifeCycleEvents Function in ManageAll() ... 24

Figure 13: Overall Latency - Breadth First Search ... 27

Figure 14: Overall Latency - Triangle Counting ... 28

Figure 15: Overall Latency - Range Search .. 30

Figure 16: Overall Latency - KDTree Construction .. 31

Figure 17: Overall Latency - Closest pair of points .. 33

Figure 19: cells in the Von-Neumann Neighborhood ... 41

Figure 20: von Neumann neighborhoods for ranges r 0, 1, 2, and 3 41

Figure 21: cells in the Moore's Neighborhood .. 42

Figure 22: Moore neighborhoods for ranges r 0, 1, 2, and 3 ... 42

5

LIST OF TABLES

Table 1: Agent Propagation and Benchmark program .. 25

Table 2: Agent Propagation, Benchmark program and test performed 26

Table 3: BreadthFirstSearch Performance Details .. 27

Table 4: Breadth First Search Performance at 95% confidence .. 27

Table 5: Triangle Counting Performance Details .. 29

Table 6: Triangle Counting Performance at 95% confidence ... 29

Table 7: Range Search Performance Details ... 30

Table 8: - Range Search Performance at 95% confidence .. 30

Table 9: KD Tree Construction Performance Details ... 32

Table 10: KD Tree construction Performance at 95% confidence 32

Table 11: Closest Pair of Points Performance Details ... 33

Table 12: Closest Pair of points Performance at 95% confidence 33

Table 13: Number of lines of custom code removed .. 34

Table 14: Availability of automated agent migration across products 36

6

LIST OF LISTINGS
Listing 1: User Program .. 13

Listing 2: User program for TC using automated agent migration methods 35

Listing 3: User program for TC in current MASS .. 36

7

1 INTRODUCTION

1.1 BACKGROUND

Big Data computing came to prominence more than a decade ago. It utilized a cluster of

computing nodes to analyze a large number of data and to draw meaningful conclusions from

the data within a reasonable time. Popular tools such as Map Reduce [8] and SPARK [7] have

emerged over time and provides customers a framework for analyzing big data. The

programming frameworks provided by these tools attracts physical scientists analyzing

structured data. For all these frameworks, data is flattened into a stream, broken to partitions

and fed through multi-threaded analyzing units. To achieve parallelization, multiple analyzing

units spin up and execute in parallel in multi-threaded fashion over a cluster of computing nodes.

However, these tools cannot easily analyze structured in-memory datasets [1] such as graphs and

requires the data to be flattened into data streams. The new tools such as SciHadoop and GraphX

facilities have emerged that supports analysis of structured data but doesn’t allow incremental

modification to data and support visualization [2]. Agent-based data discovery approach [1] that

uses an analyzing unit to navigate over a distributed dataset, collects and modifies the

information can be an easier alternative for analysis of structured data.

Agent-based modelling and simulation (ABMS) is an approach to modelling complex systems,

based on interaction among autonomous agents that are self-contained with a set of attributes

and behaviors and its own decision-making capabilities. Advances in computational capabilities

has resulted in development of agent-based models across a spectrum of domains from stock

market, supply chains, consumer markets, and to predict the spread of pandemics [3]. While

ABMs have been used primarily to model complex systems and observe collective behavior, they

can also be used for data hunting and discovery.

Multi-Agent Spatial Simulation (MASS) [18] is a parallel computing library for multi-agent and

spatial simulation over a cluster of computing nodes. MASS follows a data discovery

methodology for analysis and discovery of big data. MASS applies agent-based modeling for

8

structured data analysis where agents navigate through the data-structure and find its

attributes/shapes using emergent collective agent behavior.

1.2 MOTIVATION

Prior to my work, MASS users wrote application specific custom agent navigation functions to

achieve their data analysis goals. Users write OnArrival and OnDeparture functions that

determine the agent behavior and decision making based on the application and structured data

being analyzed. These custom functions utilize basic functions - Migrate (), Spawn (), Kill () - built

in MASS to manage the agent navigation and lifecycle. For example, to perform Breadth First

Search (BFS) on a graph, a user will write custom agent navigation function to move the agent to

the source vertex, to determine the neighboring vertices, to move the agent to one of the

neighbors, to spawn children, and to migrate the child agents to the remaining neighbors. Writing

code to manage this agent navigation is cumbersome for users who are primarily focused on data

analysis. Physical scientists who perform big data analysis needs simple programming

frameworks to support their analysis that that can be used out of the box.

My research seeks for generalizing agent navigational patterns used to analyze structured data,

proposes optimal design, and implements out the box functions to support the agent navigational

patterns in MASS Java, while making improvements to the existing agent lifecycle management

functions. As a part of my research I analyzed benchmark programs to identify common agent

navigational patterns in MASS and proposed functions for supporting the navigational patterns.

9

1.3 PROJECT GOALS

The goal of this project is to identify, design and implement automated agent navigation to

perform analysis on structured data. The auto-agent navigation methods were then measured

for overall performance and programmability. The strategy we adopted to perform was:

1) Identify generalized agent navigational patterns to analyze structured data.

Agent based data analysis over structured data is superior to data streaming based

methods. We chose the following benchmark programs as they involve analysis of graphs

or are computational geometry problems have been implemented in MASS:

a. Breadth First Search

b. Triangle Counting

c. Range Search

d. Closest pair or points in Space

e. Voronoi Diagram in Space

f. Convex Hull

g. Closest pair of points using Quad tree

h. Voronoi Diagram using Quad tree

i. Ant colony optimization (ACO)

2) Design and implement automated agent navigation.

For each of the identified generalized agent navigational pattern, we designed and

implemented eight new navigational functions in MASS java.

3) Improve the existing agent lifecycle management functions to improve performance.

MASS currently has basic built-in functions - Migrate (), Spawn (), Kill (), and manageall ()

– that support agent navigation and lifecycle management. Migrate (), Spawn (), and Kill

() set attributes on agents to migrate to different location, spawn children and terminate

agents, while manageAll() commits the life cycle management. These functions have

inefficiencies that significantly impact the performance of applications when executed

10

over large datasets. We made improvements to these functions to improve the overall

performance of the applications.

As a part of our work, we measured the overall performance improvements by comparing the

overall latency for analyzing large datasets and measured programmability of the new methods

using both quantitative and qualitative measurements. We used overall reduction in user lines

of code (LOC) for quantitative measurements while we used the semantic gap between original

algorithms and their MASS implementation for qualitative measurements.

2 RELATED WORK

This section compares the MASS prior to my work, with two-related ABM systems: Netlogo and

Repast Simphony from the view point of agent migration. At the end, we clarify their programing

challenge which is our motivation for automating agent migration.

Netlogo and Repast Simphony are two agent-based modelling tools that provides users the ability

to model complex systems. Modelers give behavioral instructions and navigational inputs to

agents which determines the agent behavior with the environment and with other agents [4].

This makes it possible to explore relationships between micro-level behavior of individual agents

with macro-level patterns.

Netlogo supports agent migration in a 2D continuous space and provides pre-defined behaviors

to agents which can be utilized by the modelers [14]. It includes migration functions such as

FORWARD, BACKWARD, RIGHT, LEFT, HATCH, DIE, JUMP and MOVE-TO [13].

FORWARD/BACKWARD enables agents to move forward and backward from its current position

in the environment. RIGHT/LEFT enables agents to change the direction of movement. DIE

terminates agents and removes it from the environment and HATCH spawn new agents that

inherits properties from its parent agent. MOVE-TO moves agents to a specified x and y

coordinate.

11

Repast Simphony also provides pre-defined functions that support agent migration and behavior.

This includes agent migration functions [9][10][11][12] such as moveByDisplacement,

moveByVector, moveTo, VNContains, and MooreContains. MoveByDisplacement moves agents

from its current location by a specified amount. MoveByVector moves agents by a specified

distance from its current position along a specified angle. MoveTo moves agents from its current

location to a new location specified as input. VNContains determines whether or not a particular

agent is in the Von Neumann1 neighborhood of a particular source. MooreContains determines

whether or not a particular agent is in the Moore neighborhood of a particular source.

Both Netlogo and Repast Simphony provides basic agent migration methods but doesn’t provide

functions that support complex agent propagation and migration. To perform complex agent

propagation, users have to write custom functions utilizing the basic predefined functions.

Knowledge of these limitations motivated us to upgrade MASS, our own agent-based modelling

library to support complex agent migration and propagation out of the box.

MASS [17] has two main entities that are used for data analysis - Agents and Places. MASS users

represent their dataset across the places which is then analyzed using agents. MASS currently

supports basic agent-navigation and life-cycle management functions. Migrate () function moves

agents to a specified place index. Spawn () creates new agents that inherit properties from its

parent agent and are spawned at the same place as parents. Kill () function terminates agents

and removes it from the environment. Users require significant programming capabilities to

successfully perform data analysis. Users have to build custom agent migration functions that

would use these basic functions. Inability to support complex agent navigational functions

natively in MASS gives big burden to physical scientists who hopes to conduct big data computing

using agent-based modelling.

1 Appendix A provides details of the Van-Neumann and Moore’s Neighborhood

12

3 DESCRIPTIVE ENHANCEMENT OF AGENT MIGRATION

3.1 MASS LIBRARY

MASS contains two main classes - Places and Agents. Places is a multi-dimensional array of place

objects allocated over a cluster of nodes, each having a globally unique array index. Each place

can host agents and is capable of exchanging information with other places in the system. Agents

are analyzing units that reside in a place and navigates across places distributed over a cluster of

nodes. Parallelization is achieved by multi-threaded MASS processes that execute on agents and

places, and run across on cluster of nodes, communicating using Java Secure Channel connected

by Transmission Control Protocol (TCP) sockets.

Figure 1 shows the architecture of MASS across multiple computing nodes with each node

containing multiple threads to perform the data analysis. The number of threads in a computing

node relies on the number of CPU cores.

Figure 1: Mass Library Architecture

13

Listing 1 shows the control flow of a user program using MASS. The user program calls MASS.init()

to start the MASS processes across a cluster of nodes. It then creates place objects across the

computing nodes, where places are assigned a global index. It then creates agents with, each

agent assigned to a place and a bag of agents. The user program can then implement algorithms

using the built-in functions such as: Places.callAll(func) for concurrently invoking a function on all

places; Place.exchangeAll(func) for each place to collect data from its neighbors; Agents.callAll

(func) for concurrently invoking a function on all agents in the system; Agents.manageAll() to

commit spawning child agents, terminate agents and migrate agents from one place to another.

Listing 1: User Program

Figure 2 shows the main Java classes that constitute MASS. Agents and AgentsBase classes

represent a collection of agents. The Agents Class is the interface to a user program for creating

and manipulating the Agents while the AgentsBase class contains the implementation details for

creating agents, callAll (), and Manageall (). Places and PlacesBase classes represent a collection

of place objects over computing nodes. The Places Class is the interface to a user program while

the PlacesBase class contains the implementation details for creating places, callAll (), and

Exchangeall (). The MASS class is responsible for construction and deconstruction of the

computing cluster and has references to all places and agents within the cluster. The MProcess

class is responsible for message passing between remote and master computing nodes.	

14

Figure 2: Class Structure of MASS

3.2 High Level Agent Migration Function

Currently MASS users write custom agent navigation functions to implement algorithms required

for analysis. Custom functions use basic built-in MASS functions - Migrate (), Spawn (), and Kill ()

– to manage agent navigation. A user program invokes the custom functions from the main

program using callAll (function). This puts a big burden on the users requiring their significant

programming capabilities to build custom agent navigational functions and successfully perform

data analysis. In this paper we identify eight agent navigation patterns used in benchmark

programs and develop built-in MASS functions to support these navigational patterns.

3.2.1 MigratePropagate

MigratePropagate (see figure 3) performs breadth first search of a graph. The function fetches

all the neighboring vertices associated to a vertex where the agent is located, excludes the

15

previous vertex from where the agent migrated from, moves the agent to one of the neighbors,

spawn child agents and moves them to the remaining neighbors. The function will manage the

agent traversal through all the nodes in the graph with minimum latency.

Figure 3: MigratePropagate

3.2.2 MigratePropagateDownstream

MigratePropagateDownstream (see figure 4) performs downstream propagation of an agent on

a graph. The function fetches all the neighboring vertices which are downstream (lower index

values), moves the agent to one of the neighbors, spawn child agents and dispatches child agents

to the remaining neighbors. MigratePropagateDownstream will support user algorithms to

perform triangle counting and connected component counting on a graph.

16

Figure 4: MigratePropagateDownstream

3.2.3 MigrateOriginalSource

MigrateOriginalSource migrates agent to the graph vertex where agent was first assigned to. The

function fetches all the neighboring vertices associated to a vertex where the agent is located,

and moves to the originating vertex if it is one of the neighbors. MigrateOriginalSource will

support users executing algorithms to perform triangle counting and connected component

counting on a graph.

3.2.4 MigratePropagateTree

MigratePropagateTree (see figure 5) propagates agents through a distributed binary tree. The

function can be invoked with three parameters: BothBranches, LeftBranch, and RightBranch.

BothBranches will propagate an agent on both branches of a tree node. LeftBranch and

RightBranch will migrate the agent to the left and right branches of a tree node respectively. To

implement tree propagation, we extended the VertexPlace class in MASS to store the left and

17

right branches associated to a tree node. For BothBranches the function will migrate the agent

to the left neighbor, spawn a child agent and migrate the child agent to the right neighbor. For

LeftBranch and RightBranch, the function will migrate the agent to the corresponding branches.

MigratePropagateTree will be used in algorithms such as range search where agents propagate

through the tree to determine if data present on a tree node is within a given range of values.

Figure 5: MigratePropagateTree

3.2.5 MigratePropagateRipple

MigratePropagateRipple (see figure 6) propagates agents to the Von-Neumann and Moore’s

neighborhood2 of the agent’s current location forming a ripple. The function fetches the

neighboring places in Von-Neumann and Moore’s neighborhood, spawn child agents and moves

them to the neighboring places. This function will support users in executing the Closest pair of

Points in contiguous space, Closest pair of Points using Quad tree, Voronoi diagram in contiguous

space, Voronoi diagram using Quad tree and K-Nearest neighbors.

2 Appendix A provides details of the Van-Neumann and Moore’s Neighborhood

18

Figure 6: MigratePropagateRipple

3.2.6 MigrateMin and MigrateMax

MigrateMin and MigrateMax (see figure 7) will support algorithms that require agents to

traverse through a graph based on the weight of the edges. MigrateMin will move an agent to

the neighboring graph vertex with minimum edge weight. MigrateMax will move an agent to the

neighboring graph vertex with maximum edge weight.

Figure 7: MigrateMin and MigrateMax

19

3.2.7 Migrate Random

MigrateRandom (see figure 8) will support algorithms that requires agents to traverse through a

graph by randomly pick a neighboring vertex in a Graph for migration. This function will support

users in executing Random Walk and Ant Colony optimization (ACO).

Figure 8: MigrateRandom

3.3 SMART AGENT AND SMART PLACE IMPLEMENTATION

We implemented two new classes SmartAgent and SmartPlace in MASS core library to support

the high-level agent migration functions (which were listed above).

3.3.1 SmartAgent

The automated agent navigation methods will be part of the SmartAgent class. MASS applications

have user-defined custom agent class to perform application specific actions. The user agents will

extend SmartAgent to gain access to the automated migration methods. SmartAgent will in turn

extend the Agent base class. In addition to the automated agent navigation methods, SmartAgent

will contain properties: itinerary representing the list of places the agent navigated through,

20

nextNode representing the next destination for the SmartAgent and prevNode representing the

previous place from where the agent migrated from.

Figure 9: SmartAgent Class structure

3.3.2 SmartPlace

SmartPlace will have place properties that support automated agent navigation. For example, in

case of migratePropagate, SmartAgent located at a place will need to know the neighboring

places to spawn and migrate. SmartPlace will encapsulate the place properties such as neighbors

and distances to the neighbors to support the automated agent navigation. The user-defined

place class that is part of the MASS application will extend SmartPlace to gain access to the place

properties used for automated migration methods. SmartPlace will extend the place base class.

21

Figure 10: SmartPlace Class structure

Applying SmartAgent in a Mass Application: To demonstrate the use of SmartAgent in a MASS

application, we describe how a MASS user building an application that requires agent

propagation through a graph and changing an attribute on each of the graph vertex will utilize

SmartAgent. The user-defined agent class will have a custom function annotated with @Onarrival

that sets the desired attributes on the graph vertex when the agent arrives. The user agent class

will extend the SmartAgent class to have access to the MigratePropagate function. The user

program will then use the built-in callAll function that concurrently invokes the

MigratePropagate function on all agents in the system.

3.4 AGENT LIFE CYCLE MANAGEMENT

MASS currently supports three basic agent-navigation and life-cycle management functions:

Migrate () moves agents to a specified place index, Spawn () creates new agents that inherit

properties from its parent agent and are spawned at the same place as the parent. Kill () function

terminates agents and removes it from the environment. Migrate (), Spawn (), and Kill () set

22

attributes on agents, respectively. However, to migrate to different location, spawn children and

terminate agents, the user’s main program has to call the ManageAll () function.

ManageAll () function (see figure 11) in the AgentsBase class operates on a bag of agents

/AgentsList present in a computing node. It performs three primary agent lifecycle management

functions - spawning child agents, terminating agents, and moving agents. Multiple threads pick

up agents from the bag of agents in a thread-safe manner and evaluate each agent to perform

the three-step life-cycle management.

Step1: Spawning child Agents: For each evaluated agent, check if a child agent should be

spawned. If yes, new child agents are created, added to the bag of agents/AgentsList and at the

same place as the parent agent. The agent is then registered with the messaging provider, and

OnArrival and OnCreation events for agents, and OnArrival event for place are queued.

Step2: Termination/Kill Agents: For each evaluated agent, check if the evaluated agent should

be terminated. If yes, the agent is removed from the place and from the bag of agents/AgentsList.

Any frozen agent is re-instantiated, added to the bag of agents/AgentsList and at the same place

as the parent agent. The agent is then registered with the messaging provider, and OnArrival and

OnCreation events for agents, and OnArrival event for place are queued.

Step3: Migration of Agents: For each evaluated agent, this step checks if the agent should be

moved. If yes, it checks for the destination place coordinate, removes from the agent from the

current place and adds to the destination place.

As can be seen from the figure 11, ManageAll function does not perform migration (Step 3) for

child agents spawned during Step 1 as a part of the same ManageAll execution. Algorithms that

require child agents to be spawned and dispatched to different destinations require ManageAll

to be executed twice. First for spawning the child agents and a second time for moving the agent

to the desired destination. ManageAll is performance intensive, and executing ManageAll twice

23

for spawning and dispatching child agents has severe performance implications while executing

algorithms over large datasets.

Figure 11: Current Spawn and Kill Functions in ManageAll()

In order to mitigate the poor performance and make automatic agent migration smoother, we

revised ManageAll to de-couple agent lifecycle management from agent migration. In this

revision (see figure 12), we created a separate helper function for agent lifecycle management

which will evaluate the agents in the bag of agents/AgentList; (1) perform agent population

control to see if a new agent can be created, (2) create child agent and add child agent to the

place of parent agent and bag of agents, (3) terminal agents and finally (4) reset the bag of agents

after agent addition and removal. In the new agent lifecycle management, the spawned child

agents will be placed in the same bag of agents and ManageAll will continue to perform the agent

migration for all agents including the child agents spawned. This design will ensure that agent

cloning and migration will be carried out with only one ManageAll execution.

24

Figure 12: ManageLifeCycleEvents Function in ManageAll()

3.5 KD TREE CONSTRUCTION

In addition to updating benchmark programs with new automated agent migration methods, and

improving agent lifecycle management, we also extended MASS core classes to support

algorithms requiring tree traversal: The VertexPlace class was extended to store left and right

branch references; the GraphPlaces class was extended to update properties of graph vertices

distributed across cluster of computing nodes. Currently MASS users create application specific

class for graph vertex with tree-traversal properties, write custom code to instantiate an agent,

and migrate the agent to all the vertices in the graph to update it with tree-branch references.

This is high-inefficient since the agent has to be migrated to the vertex when a new vertex is

added to the graph. With this extension, user do not require: (1) custom code to hold tree-branch

properties required for tree traversal and (2) agent migration to update to vertices distributed

across cluster of computing nodes.

25

4 EVALUATION

This section measures the execution performance and programmability improvement brought

by this automated agent migration, using four benchmark programs.

4.1 BENCHMARK PROGRAMS

To evaluate the automated agent migration, we updated four benchmark programs to utilize the

new agent migration methods and measured it for accuracy, performance and programmability.

Table 1 below shows the agent migration methods and the corresponding benchmark programs

used for evaluation. MigrateMin, MigrateMax, MigrateRandom is not applicable to our existing

benchmark set and will be used for future application development.

Automated Agent Navigation Methods Benchmark programs

MigratePropagate

Breadth First Search

MigratePropagateDownStream and
MigrateOriginalSource

Triangle Counting

MigratePropagateTree (BothBranches)
MigratePropagateTree (LeftBranch)
MigratePropagateTree (RightBranch)

Range Search

MigratePropagateRipple

Closest Pair of Points in Space

Table 1: Agent Propagation and Benchmark program

To measure accuracy of the automated agent migration, we tested benchmark programs against

a range of inputs. We then compared the output against the output from legacy benchmark

program implementation for the same set of inputs. All benchmark programs with automated

agent migration provided accurate results with no deviation from the legacy benchmark

implementation output. Table 2 below shows the automated agent migration method,

corresponding benchmark program and the tests performed.

26

Method Application Tests Conducted

MigratePropagate Breadth First Search
Tested with graph containing
100, 500 and 1000 and 2000
vertices

MigratePropagateDownStream
MigrateOriginalSource

Triangle Counting Tested with graph with 1000,
3000 and 10000 vertices

MigratePropagateTree (BothBranch)
MigratePropagateTree (LeftBranch)
MigratePropagateTree (RightBranch)

Range Search
Tested with trees containing
100, 100000, and 200000
datapoints

MigratePropagateRipple Closest Pair of Points in
space

Tested with 2D continuous
space containing 64, 100,
100000, and 200000
datapoints

Table 2: Agent Propagation, Benchmark program and test performed

4.2 PERFORMANCE EVALUATION

4.2.1 MigratePropagate Performance

We implemented BreadthFirstSearch (BFS) using MigratePropagate and evaluated it on graphs

with 100, 500, 1000 and 2000 vertices, running across four computing nodes. As can be seen

from figure 14, the execution time for MigratePropagate is lower than the time taken by the

legacy migration methodology and the difference in performance increases with the number of

vertices in the graph. The performance improvement for MigratePropagate is primarily due to

usage of the new ManageAll function which will spawn and migrate child agents as a part of a

single execution. With the increase in number of vertices more agents are required to be

spawned and migrated and there is increased efficiency from improvements to ManageAll. Table

3 shows the performance details including average, minimum and maximum execution times for

triangle counting after five executions of each test case. Both legacy and new migrations were

executed when the operational load on the computing nodes were comparable. Table 4 shows

the BFS performance range at a 95% confidence interval.

27

Figure 13: Overall Latency - Breadth First Search

Table 3: BreadthFirstSearch Performance Details

Table 4: Breadth First Search Performance at 95% confidence

4.2.2 MigratePropagateDownstream and MigrateOriginalSource Performance

We implemented triangle counting using PropagateDownStream and MigrateOriginalSource and

evaluated it on graphs with 1000, 3000 and 10000 vertices, running across four computing nodes.

0

5000

10000

15000

20000

25000

0 500 1000 1500 2000 2500

Ex
ec

ut
io

n
Ti

m
e

in
 m

s

Number of Vertices

BreadthFirstSearch- MigratePropagate

New Migration Legacy Migration

100 Vertices 500 Vertices 1000 Vertices 2000 Vertices 100 Vertices 500 Vertices 1000 Vertices 2000 Vertices

Average 596 1351 2668 7104 1054 2608 5514 19253
Min 537 1023 2451 6763 966 2531 5272 17972
Max 685 1962 2869 7430 1194 2758 5839 20532

New Migration (ms) Legacy Migration (ms)

100 Vertices 500 Vertices 1000 Vertices 2000 Vertices

Low 548 1024 2532 6869
High 644 1678 2804 7339

95% Confidence
Population Mean for New Migration (ms)

28

To perform triangle counting, agents are first allocated to all graph vertices,

MigratePropagateDownStream is executed twice to propagate the agent from the source vertex

to downstream vertices and then MigrateOriginalSource is executed to check if the source node

is one of the neighbors and migrate to the source node. As can be seen from figure 15, the

execution time for new agent migration methods is lower than the time taken by the legacy

migration methodology and the difference in performance increases with the number of vertices

in the graph. The performance improvement is due to the usage of new manageAll () that spawns

of child agents and dispatches them to their destinations in a single execution. Table 5 shows the

performance details including average, minimum and maximum execution times for triangle

counting after five executions of each test case. Both legacy and new migrations were executed

when the operational load on the computing nodes were comparable. Table 6 shows the triangle

counting performance range at a 95% confidence interval.

Figure 14: Overall Latency - Triangle Counting

0

50

100

150

200

250

300

350

400

450

0 2000 4000 6000 8000 10000 12000

Ex
ec

ut
io

n
TI

m
e

in
 se

co
nd

s

Number of vertices

Triangle Counting - MigratePropagateDown and Migrate Original
Source

New Migration Legacy Migration

29

Table 5: Triangle Counting Performance Details

Table 6: Triangle Counting Performance at 95% confidence

4.2.3 MigratePropagateTree performance

We implemented range search using MigratePropagateTree and evaluated it by running across

a distributed tree containing 100, 100K, and 200K datapoints over four computing nodes. Figure

15 shows the overall execution performance for different input datasets. The overall execution

time for range search is dependent on both the input range and the number of input data points.

We were unable to compare the performance against a legacy implementation as there is no

comparable agent migration-based implementation for range search. Additionally, KDTree

construction for large datasets do not complete in a reasonable timeframe with the legacy

implementation and hence we don’t have a comparable reference for performance. Table 7

shows the performance details including average, minimum and maximum execution times for

range search after five executions of each test case. Both legacy and new migrations were

executed when the operational load on the computing nodes were comparable. Table 8 shows

the range search performance range at a 95% confidence interval.

1000 Vertices 3000 Vertices 10000 Vertices 1000 Vertices 3000 Vertices 10000 Vertices

Average 24 99 380 26 106 416
Min 21 94 367 25 103 400
Max 27 102 404 28 112 440

New Migration (s) Legacy Migration (s)

1000 Vertices 3000 Vertices 10000 Vertices

Low 22 97 367
High 26 102 393

Population Mean for New Migration (s)
95% Confidence

30

Figure 15: Overall Latency - Range Search

Table 7: Range Search Performance Details

Table 8: - Range Search Performance at 95% confidence

4.2.4 KD Tree construction performance

Currently KDTree construction for large datasets (100K and 200K points) do not complete in a

reasonable timeframe. This is because: (1) graph vertex don’t have properties such as branch

references required for tree traversal, and (2) there is no efficient way (whose reason is described

0

500

1000

1500

2000

2500

0 50000 100000 150000 200000 250000

Ex
ec

ut
io

n
tim

e
in

 m
s

Number of points

Range Search - MigratePropagateTree

100 100K Points 200K Points

Average 633 2016 2331
Min 588 1539 2155
Max 679 2229 2508

MigratePropagateTree (ms)

100 100K Points 200K Points

Low 602 1777 2207
High 664 2255 2454

95% Confidence
Population Mean for New Migration (ms)

31

below) to update a graph vertex distributed across cluster of computing nodes. MASS users

create application specific class for graph vertex with branch reference properties, write custom

code to instantiate agent, migrate agent to the graph vertex and then update the graph vertex

with the branch references. This is highly inefficient since each update requires agent migration

and execution of manageAll () which is performance intensive. We implemented improvements

to the KD tree construction described earlier in the document and evaluated the performance by

constructing distributed tree containing 100, 100K, and 200K datapoints. As can be seen from

figure 16, we were able to construct trees with up to 200K datapoints within reasonable

timeframe. Table 9 shows the performance details including average, minimum and maximum

execution times for KDTree construction after five executions of each test case using both legacy

and new methods. Both legacy and new methods were executed when the operational load on

the computing nodes were comparable. Table 10 shows the KDTree construction performance

range at a 95% confidence interval.

Figure 16: Overall Latency - KDTree Construction

0

200

400

600

800

1000

1200

0 50000 100000 150000 200000 250000

Ex
ec

ut
io

n
TI

m
e

in
 se

co
nd

s

Number of points

KDTree Construction

32

Table 9: KD Tree Construction Performance Details

Table 10: KD Tree construction Performance at 95% confidence

4.2.5 PropagateRipple performance

We implemented closest pair of points using PropagateRipple and evaluated it by running in 2D

continuous space with 64, 100, 100K, and 200K datapoints over four computing nodes. As can be

seen from figure 18, the execution time for new agent migration methods is at par with the time

taken by the legacy migration methodology. Table 11 shows the performance details including

average, minimum and maximum execution times for closest pair of points in space after five

executions of each test case. Both legacy and new migrations were executed when the

operational load on the computing nodes were comparable. Table 12 shows the KDTree

construction performance range at a 95% confidence interval

100 Points 1000 Points 3000 Points 100K Points 200K Points 100 Points 1000 Points 3000 Points 100K Points 200K Points

Average 1 4 12 490 1013 22 270 992 - -
Min 1 4 12 442 955 19 263 968 - -
Max 1 4 13 505 1053 26 277 1023 - -

KDTree Construction (seconds) - New Method KDTree Construction (seconds) - Old Method

100 Points 1000 Points 3000 Points 100K Points 200K Points

Low 1 4 12 466 980
High 1 4 13 513 1046

Population Mean for New Method (s)
95% Confidence

33

Figure 17: Overall Latency - Closest pair of points

Table 11: Closest Pair of Points Performance Details

Table 12: Closest Pair of points Performance at 95% confidence

0

20

40

60

80

100

120

140

0 50000 100000 150000 200000 250000

Ex
ec

ut
io

n
TI

m
e

in
 se

co
nd

s

Number of points

Closest Pair of Points in Continuous Space - MigratePropagateRipple

New Migration Legacy Migration

64 Points 100 Points 100K Points 200K Points 64 Points 100 Points 100K Points 200K Points

Average 7 8 45 118 7 7 54 115
Min 6 7 44 116 7 7 52 113
Max 7 10 47 123 8 7 57 116

New Migration (s) Legacy Migration (s)

64 Points 100 Points 100K Points 200K Points

Low 7 6 44 116
High 7 9 47 121

95% Confidence
Population Mean for New Migration (s)

34

4.3 PROGRAMMABILITY EVALUATION

We examined programmability using quantitative and qualitative measurements. For

quantitative measurements we examined the number of lines of custom code. For qualitative

measurements we examine the ease of programming and the semantic meaning of the new

agent migration methods.

Quantitative Measures. We tallied the custom lines of code (see Table 13) removed as a

percentage of the total lines of code in the user defined agent class for the benchmark

application. Triangle counting and Breadth First Search has the highest percentage of lines

removed while closest pair of points has the lowest.

Method Application % LOC Removed
MigratePropagate Breadth First Search 83%
MigratePropagateDownStream and

Triangle Counting 60%
MigrateOriginalSource
MigratePropagateTree (BothBranch)

Range Search 44% MigratePropagateTree (LeftBranch)
MigratePropagateTree (RightBranch)

MigratePropagateRipple Closest Pair of Points 22%

Table 13: Number of lines of custom code removed

Triangle counting and Breadth first search currently utilize OnArrival and OnDeparture methods

to simulate agent travel and propagation through the datasets. Users write all decision-making

logic to move agent along the graph edges after examining the neighbors, spawning child agents

and terminating agents. MigratePropagate, MigrateOriginalSource and MigratePropagate

DownStream fully abstracts the agent navigation and propagation from the user and supports

them as built-in MASS functions. This has helped reduce the user-maintained code by 83% and

60% respectively. Closest Pair of Points utilizes the SpaceAgent class that supports propagation

in the Von-Neumann and Moore’s neighborhood. However, it does not support agent life-cycle

35

management including agent termination and preventing duplicate agent propagation.

MigratePropagateRipple handles propagation in Von-Neumann and Moore’s neighborhood

along with agent life cycle management.

Qualitative Measures. We believe that the new agent migration method is easy to program and

is semantically closer to the original algorithms being performed. For example (see listing 2), to

perform triangle counting, user will execute MigratePropagateDownStream twice to propagate

the agent from the source vertex to downstream vertices and then execute

MigrateOriginalSource to check if the source node is one of the neighbors and migrate to the

source node. This is easier than writing OnArrival and OnDeparture methods to examine the

graph edges, spawn agents to downstream vertices, and finally migrate back to the source vertex.

Listing 2: User program for TC using automated agent migration methods

Additionally, MigratePropagateDownStream and MigrateOriginalSource are more intuitive than

the OnArrival and OnDeparture methods (see listing 3) which we believe do not convey the

semantic meaning of the algorithm being performed.

36

Listing 3: User program for TC in current MASS

We also compared the availability of automated agent migration methods with other competing

products such as Netlogo and Repast Simphony. As can be seen from Table 14, with the

introduction of the new automated agent navigation, MASS now has the greatest number of

advanced agent migration methods. Repast Simphony supports certain agent navigational

methods such as Shortestpath, MoveAgentByDisplacement and MoveAgentbyVector that is

currently not supported in MASS. However, SmartAgent in MASS can be easily extended to

incorporate these agent navigational patterns.

 NetLogo Repast Simphony Mass Old Mass New
MigratePropagate No Yes3 No Yes
MigratePropagateDownStream No No No Yes
MigrateOriginalSource No No No Yes
MigratePropagateTree No Yes No Yes
MigratePropagateRipple Yes4 Yes5 No Yes
MigrateMin No No No Yes
MigrateMax No No No Yes
MigrateRandom No No No Yes
ShortestPath No Yes No No
MoveAgentByDisplacement No Yes No No
MoveAgentByVector No Yes No No

Table 14: Availability of automated agent migration across products

Based on the discussion in this section we can conclude that the new automated agent migration

along with the improvements to the agent lifecycle management has brought significant

performance improvements to MASS while executing the benchmark programs. The new

3 Repast simphony provides method to perform breadth first search
4 Netlogo supports models such as Voronoi diagram, K-Nearest Neighbor.
5 Repast simphony has methods to check if an agent is present in the Von Neumann or Moore’s neighborhoood

37

automated agent migration has also made MASS easier to use and has improved the

programmability when compared to other competing products such as Repast simphony and

Netlogo.

5 CONCLUSION

5.1 SUMMARY

To pursue our research focused on automated agent navigation over structured data, we

identified, designed, and implemented eight automated agent navigation functions in MASS java.

We improved the execution performance of agent propagation through structured data with two

major achievements: (1) improvements to existing agent lifecycle management functions that

migrate, spawn, and terminate agents and (2) improvements to graph construction in MASS java

by building the support for tree traversal and the ability to update properties of graph vertices

distributed across a cluster of computing nodes. The performance improvements to the

benchmark programs demonstrated the efficiency of the new agent navigation methods and the

agent lifecycle improvement. The performance improvement to KD Tree construction

demonstrated the efficiency of improvements made to graph construction in MASS java.

Programmability evaluation shows that new implementations reduced user line of codes (LOC),

made the code more intuitive and semantically closer to the original algorithms. We successfully

achieved our project goal by identifying the generalized agent navigational patterns, designing

and implementing automatic agent navigation functions, and making performance

improvements to the current agent lifecycle management functions.

5.2 FUTURE WORK

To further extend the work we have completed, we see the following opportunities:

1) Introduce additional agent navigation functions including:

38

• PropagateRippleWithBouncing: This method will support the calculation of Euclidean

shortest path between two points in contiguous space. It will propagate a ripple from

the source point in contiguous space and bounce off opaque obstacles until the ripple

detects the destination point.

• MigrateLowestCoordinatePoint and MigrateUnboundedRegion: These methods will

be used for constructing a Convex Hull. MigrateLowestCoordinatePoint will move an

agent to the starting Coordinate point and MigrateUnboundedRegion will be used to

move the agent to the Voronoi site present in the unbounded Voronoi region.

• MoveAgentByDisplacement and MoveAgentByVector: MoveAgentByDisplacement

will move an agent from its current location by the specified amount of displacement

in a continuous space. MoveAgentByVector will move an agent from its current

location by the specific amount of displacement along the specified angle.

2) Implement benchmark programs to evaluate MigrateMin, MigrateMax and

MigrateRandom. We have re-implemented benchmark programs to evaluate Migrate

Propagate, MigratePropagate DownStream, Migrate Original Source, Migrate Propagate

Tree, MigratePropagateRipple. In future we will implement benchmark programs such as

Dijkstra’s algorithm to verify MigrateMin, MigrateMax and MigrateRandom.

3) Re-implement more benchmark programs in MASS using the automated agent navigation

methods. We have re-implemented four benchmark applications including breadth first

search, triangle counting, range search, and closest pair of points in continuous space using

the new agent navigation functions. We will utilize MigratePropagateRipple to re-implement,

Closest pair of Points using Quad tree, Voronoi diagram in contiguous space, Voronoi diagram

using Quad tree and K-Nearest neighbors. We will utilize MigratePropagateDownStream to

re-implement connected components in graph.

39

BIBLIOGRAPHY
1. M. Fukuda, C. Gordon, U. Mert and M. Sell, "An Agent-Based Computational Framework for

Distributed Data Analysis," in Computer, vol. 53, no. 3, pp. 16-25, March 2020, doi:

10.1109/MC.2019.2932964.

2. J. Gilroy, S. Paronyan, J. Acoltzi and M. Fukuda, "Agent-Navigable Dynamic Graph Construction

and Visualization over Distributed Memory," 2020 IEEE International Conference on Big Data

(Big Data), 2020, pp. 2957-2966, doi: 10.1109/BigData50022.2020.9378298.

3. Charles M. Macal and Michael J. North. 2009. Agent-based modeling and simulation. In Winter

Simulation Conference (WSC '09). Winter Simulation Conference, 86–98.

4. Uri Wilensky; William Rand, "Analyzing Agent-Based Models," in An Introduction to Agent-Based

Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo, MIT Press,

2015, pp.283-310.

5. Uri Wilensky; William Rand, "The Components of Agent-Based Modeling," in An Introduction to

Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with

NetLogo, MIT Press, 2015, pp.203-282.

6. M. Kipps, W. Kim and M. Fukuda, "Agent and Spatial Based Parallelization of Biological Network

Motif Search," 2015 IEEE 17th International Conference on High Performance Computing and

Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and

2015 IEEE 12th International Conference on Embedded Software and Systems, 2015, pp. 786-

791, doi: 10.1109/HPCC-CSS-ICESS.2015.222.

7. Spark. Accessed on: Apr. 15, 2022. [Online]. Available: http://spark.apache.org/

8. Hadoop. Accessed on: Apr. 17, 2022. [Online]. Available: http://hadoop.apache.org/

9. Repast Simphony Shortest Path. Accessed on: Apr. 30,2022. [Online]. Available:

https://repast.github.io/docs/api/repast_simphony/repast/simphony/space/graph/ShortestPat

h.html/

10. Repast Simphony Continuous Space. Accessed on: Apr. 30,2022. [Online]. Available:

https://repast.github.io/docs/api/repast_simphony/repast/simphony/space/continuous/Contin

uousSpace.html/

11. Repast Simphony Graph Utilities. Accessed on: Apr. 30,2022. [Online]. Available:

https://repast.github.io/docs/api/repast_simphony/repast/simphony/engine/graph/EngineGrap

hUtilities.html/

40

12. Repast Simphony Nary Traverser. Accessed on: Apr. 30, 2022. [Online]. Available:

https://repast.github.io/docs/api/repast_simphony/repast/simphony/engine/graph/NaryTreeTr

averser.html

13. Netlogo Dictionary, Accessed on: May 4, 2022. [Online]. Available:

https://ccl.northwestern.edu/netlogo/docs/dictionary.html/

14. Netlogo Models, Accessed on: May 4,2022. [Online]. Available:

https://ccl.northwestern.edu/netlogo/models/

15. Von-Neumann Neighborhood, Accessed on: May 5,2022. [Online]. Available:

https://mathworld.wolfram.com/vonNeumannNeighborhood.html

16. Moore Neighborhood, Accessed on: May 5,2022. [Online]. Available:

https://mathworld.wolfram.com/MooreNeighborhood.html

17. University of Washington. MASS Java Manual, 2016.

https://depts.washington.edu/dslab/MASS/docs/MASS%20Java%20Technical%20Manual.pdf

18. MASS: A Parallelizing Library for Multi-Agent Spatial Simulation, Accessed on: April 2,2022.

[Online]. Available: http://depts.washington.edu/dslab/MASS/index.html

41

APPENDIX A

Von-Neumann and Moore’s Neighborhood

Von-Neumann and Moore’s neighborhood represent neighboring spaces in a 2D contagious
space. Von -Neumann Neighborhood [15] is a diamond shaped neighborhood surrounding a
give cell as shown in the figure 3.

Figure 18: cells in the Von-Neumann Neighborhood

Figure 19: von Neumann neighborhoods for ranges r 0, 1, 2, and 3

(x,y+1)

(x-1,y) P (x,y) (x+1,y)

(x,y-1)

42

Moore’s Neighborhood [16] is a square shaped neighborhood surrounding a give cell as shown

in the figure 5.	

Figure 20: cells in the Moore's Neighborhood

Figure 21: Moore neighborhoods for ranges r 0, 1, 2, and 3

(x-1,y+1) (x,y+1) (x+1,y+1)

(x-1,y) P (x,y) (x+1,y)

(x-1,y-1) (x,y-1) (x+1,y-1)

43

APPENDIX B1

MigratePropagate

public Object migratePropagate(Object arg) 1
{ SmartPlace smartPlace = (SmartPlace) getPlace(); //Get the place where the agent is 2
 if (smartPlace.footprint == -1) { 3
 int[] neighbors = smartPlace.neighbors; 4
 int[] distances = smartPlace.distances; 5
 if (neighbors.length == 0 || (neighbors.length == 1 && prevNode == neighbors[0])) 6
 { 7
 smartPlace.footprint = 1; //This place has been visited 8
 kill(); 9
 return null; 10
 } 11
 nextNode = (neighbors[0] != prevNode) ? neighbors[0] : neighbors[1]; 12
 migrate(nextNode); //Migarte to the next Node 13
 14
 SmartArgs2Agents[] args 15

 = new SmartArgs2Agents[(getAgentId() == 0 && getPlace().getIndex()[0] == 0 && ((SmartPlace 16
)getPlace()).footprint == -1) ? neighbors.length - 1: neighbors.length - 2]; 17

 18
 if (args.length == 0) { 19
 prevNode = getPlace().getIndex()[0]; 20
 smartPlace.footprint = 1; //This place has been visited 21
 return null; //if there are no neighbours to spawn, just return 22
 } 23
 24
 for (int i = 0, j = 0; i < neighbors.length; i++) { 25
 if (neighbors[i] == nextNode || neighbors[i] == prevNode) 26
 continue; 27
 args[j++] = new SmartArgs2Agents(neighbors[i],getPlace().getIndex()[0]); 28
 } 29
 30
 spawn(args.length, args); 31
 32
 prevNode = getPlace().getIndex()[0]; 33
 smartPlace.footprint = 1; //This place has been visited 34
 35
 }else { 36
 kill(); 37
 } 38
 return null; 39
} 40

44

APPENDIX B2

MigratePropagateDown

public Object propagateDown(Object arg)
 {
 int currStep = ((Integer) arg).intValue();
 if (getPlace() != null && !(getPlace() instanceof VertexPlace)) {

 return null;
 }

 Object [] neighbors = ((VertexPlace) getPlace()).getNeighbors();
 int currNodeGlobalIndex = getPlace().getIndex()[0];

 int availableEdges = 0;
 for (int i = 0; i < neighbors.length; i++) {
 int neighborGlobalIndex = (Integer)neighbors[i];
 if (neighborGlobalIndex < currNodeGlobalIndex)
 // Going to a neighbor with a lower id
 availableEdges++;
 }

 if (availableEdges == 0) {
 // No more edges to explore. I'm done
 kill();
 } else {
 // Prepare arguments to be passed to children
 SmartArgs2Agents[] args = new SmartArgs2Agents[availableEdges -1];
 int argsCount = 0; // eventually reaches # children
 for (int i = 0; i < neighbors.length; i++) {
 int neighborGlobalIndex = (Integer)neighbors[i];

 if (neighborGlobalIndex < currNodeGlobalIndex) {
 if (--availableEdges == 0) {
 // Parent takes the last available edge and also immediately migrates
 itinerary[currStep + 1] = neighborGlobalIndex;
 migrate(itinerary[currStep + 1]);
 } else {
 int[] childItinerary = itinerary.clone();
 childItinerary[currStep + 1] = neighborGlobalIndex;
 args[argsCount++] = new SmartArgs2Agents(childItinerary,neighborGlobalIndex);
 }
 }
 }

 if (args != null) {
 spawn(args.length, args);
 }
 }

 return null;
 }

45

APPENDIX B3

MigrateOriginalSource

public Object migrateSource(Object arg)
 {
 int currStep = ((Integer) arg).intValue();
 if (getPlace() != null && !(getPlace() instanceof VertexPlace)) {
 return null;
 }

 // Retrieve the current node's information
 Object [] neighbors = ((VertexPlace) getPlace()).getNeighbors();

 // Check if the current node has my original node as a neighbor
 for (int i = 0; i < neighbors.length; i++) {
 int neighborGlobalIndex = (Integer)neighbors[i];

 if (neighborGlobalIndex == itinerary[0]) { // YES
 itinerary[currStep + 1] = neighborGlobalIndex;
 migrate(itinerary[currStep + 1]); //TO DO Check why this was missed
 break;
 }
 }
 if (itinerary[currStep + 1] == -1) { // NO
 MASS.getLogger().debug("Step " + currStep +
 ": agent(" + getAgentId() + ") can't go home at " +
 itinerary[0] + " and thus gets terminated at " +
 getPlace().getIndex()[0]) ;
 kill();
 }

 return null;

 }

46

APPENDIX B4

MigratePropagateTree

 public Object propagateTree(int path, Object arg)
 {
 if (getPlace() != null && !(getPlace() instanceof VertexPlace)) {
 return null;
 }
 int currNodeGlobalIndex = getPlace().getIndex()[0];
 int left = ((VertexPlace)getPlace()).left;
 int right = ((VertexPlace)getPlace()).right;
 if (left == -1 && right == -1) {
 kill();
 } else if(((VertexPlace)getPlace()).footprint == 1){
 kill();
 }
 else {
 switch (path){
 case BothBranch_:
 if (left != -1 && right != -1){
 migrateAndSpawn(arg, left, right);
 }
 else if (left != -1)
 migrate(left);
 else if (right != -1)
 migrate(right);
 break;
 case LeftBranch_:
 if (left != -1)
 migrate(left); //Migrate the Agent to Left Branch
 break;
 case RightBranch_:
 if (right != -1){
 migrate(right); //Migrate the Agent to Left Branch
 }
 ((VertexPlace)getPlace()).footprint = 1; //Setting the footprint since place is visited
 }
 return null;
 }

 private Object migrateAndSpawn(Object arg, int left, int right)
 {
 migrate(left); //Migrate Parent Agent to left
 Object [] arguments = new Object[2];
 arguments[0] = arg;
 arguments[1] = level;
 SmartArgs2Agents[] args = new SmartArgs2Agents[1];
 args[0] = new SmartArgs2Agents(SmartArgs2Agents.rangeSearch_, arguments, right, -1);
 spawn(args.length, args);
 return null;
 }

47

APPENDIX B5

MigratePropagateRipple

 public Object propagateRipple(Object argument) {
 if (getPlace() != null && !(getPlace() instanceof SpacePlace))
 return null;
 boolean hasThePlaceBeenAlreadyVisited = checkandUpdateFootPrint();
 if (hasThePlaceBeenAlreadyVisited)
 { kill();
 return null;
 }

 if (generation % 2 == 0) {
 // if generation is even, spawn to N, W, E, S
 spawnAgentinNeighborhood("vonNeumann", argument, currentCoordinates);

 } else {
 // if generation is odd, spawn to N, W, E, S, NW, SW, NE, SE
 spawnAgentinNeighborhood("moore", argument, currentCoordinates);
 }
 kill(); //Kill Parent Agent;
 return null;
 }

 //agent spawns in 'moore' manner or "vonNewmann" manner
 private Object spawnAgentinNeighborhood(String neighborhoodPattern, Object args, double[]
 currentCoordinates) {
 int numOfAgents = 0;
 switch(neighborhoodPattern){
 case "moore":
 numOfAgents = 8;
 break;
 case "vonNeumann":
 numOfAgents = 4;
 break;
 }

 Object[] arguments = new Object[numOfAgents];
 int[] curIndex = getIndex();

 // new coordiantes where agent is migrating
 double[] subInterval = ((SpacePlace) getPlace()).getSubInterval().clone();
 Vector<double[]> neighbors = SpaceUtilities.getNeighborPatterns(neighborhoodPattern, subInterval);
 for (int i = 0; i < neighbors.size(); i++) {
 for (int j = 0; j < subInterval.length; j++) {
 neighbors.get(i)[j] += currentCoordinates[j];
 }
 }
 generation++;
 for(int i = 0; i < numOfAgents; i++){
 SpacePlace sp = (SpacePlace)getPlace();
 Object[] finalArgs = new Object[2];
 SpaceAgentArgs spaceAgentArgs = new SpaceAgentArgs(currentCoordinates, neighbors.get(i),originalCoordinates,
 getIndex(), subIndex, generation, originalId);
 finalArgs[0] = (Object) spaceAgentArgs; //argument for SpaceAgent
 finalArgs[1] = args; //argument for customer agent class
 arguments[i] = (Object) finalArgs;
 }
 spawn(numOfAgents, arguments);
 return null;
 }

48

APPENDIX B6

MigrateMin

 public Object migrateMin(Object arg)
 {
 if (getPlace() != null && !(getPlace() instanceof VertexPlace) && !(getPlace() instanceof SmartPlace)) {
 return null;

 Integer [] neighbors; //Holds the indexes of neighbors
 Integer [] weights; //Holds weights of the the neigbors

 if (getPlace() instanceof VertexPlace)
 {
 neighbors = Arrays.asList(((VertexPlace) getPlace()).getNeighbors())
 .toArray(new Integer[0]);

 weights = Arrays.asList(((VertexPlace) getPlace()).getWeights())
 .toArray(new Integer[0]);

 }else {
 return null;
 }

 //If neigbors or weights are null return null
 if (neighbors == null || weights == null)
 return null;

 int minimumWeightIndex = getMinimumWeightIndex(weights);
 migrate(neighbors[minimumWeightIndex]); //Migrate to Node with minimum weight
 return null;

 }

 private int getMinimumWeightIndex(Integer [] weights)
 {
 int min = Integer.MAX_VALUE;
 int MinimumWeightIndex = 0;

 for (int i = 0; i < weights.length; i++)
 {
 if (min > weights[i].intValue())
 {
 min = weights[i].intValue();
 MinimumWeightIndex = i;
 }
 }

 return MinimumWeightIndex;
 }

49

APPENDIX B7

MigrateMax

public Object migrateMax(Object arg)
 {
 if (getPlace() != null && !(getPlace() instanceof VertexPlace) && !(getPlace() instanceof SmartPlace))
 return null;
 Integer [] neighbors; //Holds the indexes of neighbors
 Integer [] weights; //Holds weights of the the neigbors

 if (getPlace() instanceof VertexPlace)
 {
 neighbors = Arrays.asList(((VertexPlace) getPlace()).getNeighbors())
 .toArray(new Integer[0]);

 weights = Arrays.asList(((VertexPlace) getPlace()).getWeights())
 .toArray(new Integer[0]);

 }else {
 return null;
 }

 //If neigbors or weights are null return null
 if (neighbors == null || weights == null)
 return null;

 int maximumWeightIndex = getMaximumWeightIndex(weights);
 migrate(neighbors[maximumWeightIndex]); //Migrate to Node with maximum weight
 return null;
 }

private int getMaximumWeightIndex(Integer [] weights)
 {
 int max = Integer.MIN_VALUE;
 int MaximumWeightIndex = 0;

 for (int i = 0; i < weights.length; i++)
 {
 if (max < weights[i].intValue())
 {
 max = weights[i].intValue();
 MaximumWeightIndex = i;
 }
 }

 return MaximumWeightIndex;
 }

50

APPENDIX B8

MigrateRandom

public Object migrateRandom(Object arg)
 {
 if (getPlace() != null && !(getPlace() instanceof VertexPlace) && !(getPlace() instanceof SmartPlace))
 return null;

 Integer [] neighbors; //Holds the indexes of neighbors
 Integer [] weights; //Holds weights of the the neigbors

 if (getPlace() instanceof VertexPlace)
 {
 neighbors = Arrays.asList(((VertexPlace) getPlace()).getNeighbors())
 .toArray(new Integer[0]);

 weights = Arrays.asList(((VertexPlace) getPlace()).getWeights())
 .toArray(new Integer[0]);

 }else {
 return null;
 }

 //If neigbors or weights are null return null
 if (neighbors == null || weights == null)
 return null;

 int randomIndex = getRandomIndex(weights);

 migrate(neighbors[randomIndex]); //Migrate to Node with maximum weight

 return null;
 }

