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1 Introduction 

This term report highlights the advancements in my capstone project throughout the Winter 

2024 quarter, entering the second phase of implementing the MASS CUDA library. Unlike 

the initial proposal aimed at enabling multi-GPU support, my focus shifted towards 

diagnosing performance bottlenecks and conducting a comprehensive overhaul of the 

library. This strategic redirection not only resulted in a substantial performance boost but 

also laid a solid foundation for future enhancements, including the integration of multi-

GPU functionality. 

2 Background 

In parallel and distributed computing, the strategy of utilizing multiple machines, or 

computing nodes, to tackle a problem is common. The essence of this approach is to divide 

a problem into smaller parts, each of which is handled by a different computing node 

simultaneously. Theoretically, if a problem is divided among four nodes, it should take 

roughly a quarter of the time to solve, assuming perfect efficiency. The expectation is that 

by increasing the number of computing nodes, the time to solve the problem decreases, 

improving performance. 

However, the improvement in performance isn't always proportional to the number of 

added computing nodes. One primary reason is the communication overhead among the 

nodes. As the number of nodes increases, so does the requirement for communication 

between them, leading to significant overhead. Two main issues contribute to this overhead:  

1. Data Distribution: Initially, data must be distributed to each computing node, a 

process that inherently lacks parallelism. With more nodes, the data distribution 

phase becomes more cumbersome and time-consuming.  

2. Inter-node Communication: Each node may require data or state information from 

its neighbors to proceed with its computation. This necessitates constant 

communication between nodes, increasing linearly with the number of nodes and 

adding to the overhead. 

Agent-based modeling (ABM) offers an innovative approach to addressing the scalability 

and communication challenges inherent in traditional parallel and distributed computing 

models. ABM focuses on defining autonomous agents with their own behaviors and rules, 

which interact within a defined environment. Here’s why and how ABM is effective: 

• Data Locality: In ABM, data is distributed to nodes but remains stationary. 

Computation, in the form of agents, moves to where the data resides. This 

significantly reduces the need for data transfer, as agents process data locally where 
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possible. 

• Reduced Communication Overhead: Since agents operate on local data and only 

interact with their immediate environment, the volume of data that needs to be 

transferred between nodes is minimized. Agents only communicate when necessary, 

based on their interactions within the simulation environment, which is often less 

data-intensive than constantly syncing state information across nodes. 

• Scalability: By minimizing communication overhead and keeping data localized, 

ABM can scale more effectively than traditional parallel computing approaches. 

The addition of more computing nodes does not exponentially increase the 

communication burden, allowing for more linear scalability under the right 

conditions. 

The Multi-Agent Spatial Simulation (MASS) library is a specialized framework designed 

for the development of agent-based models within the realms of parallel and distributed 

computing. It serves as a tool to efficiently create, manage, and simulate agents and their 

interactions within a defined environment. MASS is structured around two fundamental 

concepts: Agent and Place. 

• Place: This component acts as the spatial container or environment where agents 

operate. It holds data or attributes relevant to the simulation and defines the spatial 

relationships, including the identification of neighboring places. This structural 

design facilitates the exchange of information among places, making it convenient 

for an agent to access and retrieve data about its immediate surroundings or 

neighbors. 

• Agent: This is the dynamic, computational unit within MASS. Agents contain user-

defined logic or functions that dictate their behavior within the simulation. They 

are mobile and can move from one place to another, executing computations that 

can influence both their state and the state of the places they interact with. The 

mobility of agents allows for a dynamic simulation environment where interactions 

and behaviors evolve over time. 

To streamline the management of agents and places, MASS introduces two classes: Agents 

and Places. These serve as containers or managers for agent and place objects, respectively. 

They offer a high-level API through which users can interact with and manipulate the 

agent-based model. This design not only simplifies the development process but also 

enhances the scalability and flexibility of simulations, allowing researchers and developers 

to focus on the domain-specific aspects of their models without getting bogged down by 

the underlying computational complexities. 

The MASS library has been equipped with functions like Places.exchangeAll(), 
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Places.callAll(), and Agents.manageAll(), designed to operate across all Place or Agent 

objects concurrently. These functions are inherently parallel, making them ideal candidates 

for acceleration using General-Purpose Graphics Processing Unit (GPGPU) technology. 

This is the premise behind the development of MASS CUDA. 

MASS CUDA enhances the library by enabling it not just to run on distributed memory 

systems but also to exploit the computational prowess of GPUs, particularly Nvidia GPUs 

with CUDA technology. Unlike a conventional computing mode where a single CPU 

handles computations, a GPU boasts thousands of cores capable of executing many threads 

simultaneously. This architecture allows for the massively parallel processing of Place and 

Agent computations, significantly accelerating the execution of agent-based models. 

3 Goals 

In my last report, I reviewed our code extensively, slowed by limited documentation. 

Unlike C++ and Java, the GPU version needed a new approach due to unique algorithm 

challenges. I created a stable single-GPU version, benchmarked it, identified issues, and 

looked into performance improvements. 

This quarter's goal was to start on the multi-GPU version. However, benchmarks showed 

our library lagged behind FLAME GPU 2, which is our GPU-based ABM competitor, 

significantly. This led to prioritizing performance enhancements before adding multi-GPU 

support. My focus was on: 

1. Detailed benchmarking against MASS CUDA and FLAME GPU 2 to spot 

performance differences in initialization, simulation, and shutdown. 

2. Analyzing performance, identifying bottlenecks, and implementing solutions for 

better efficiency. 

3. Creating clearer documentation for easier use and understanding of the library. 

4 Achievements This Quarter 

Initiating with Nvidia's performance guidelines, I utilized Nvidia Nsight Compute for 

profiling, pinpointing the performance bottleneck. Through a comprehensive library 

overhaul, focusing on data structures and algorithms, I achieved a remarkable 258-fold 

increase in performance for initialization and 10-fold for execution phases. The following 

details the approaches and methodologies employed. 

4.1 Profiling with Nsight Compute 

To tackle the performance bottleneck, I commenced by delving into Nvidia's 

documentation and aligning it with our implementation, applying recommended 
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optimizations like employing faster memory (constant or shared), minimizing conditional 

statements in kernel functions, and employing loop unrolling. Despite these efforts, the 

improvements were marginal. Progressing to a more detailed analysis, I utilized Nsight 

Compute to profile each kernel function. One representative outcome, which was 

commonly observed, is presented below. 

 

Figure 1 Nsight Compute Profiling Result 

This profiling revealed a critical insight: the L1 cache hit rate was below 50%. This implies 

that for every data retrieval attempt by a register from the L1 cache, there's a 50% 

likelihood the data isn't there, necessitating a search in the slower L2 cache. Given the L1 

cache's proximity to each Streaming Multiprocessor (SM) in contrast to the L2 cache's 

external placement, access times to L2 are notably longer, thus hindering overall 

performance [1], as shown in Figure 2. Elevating the L1 cache hit rate could therefore 

markedly enhance performance. Achieving this requires a strategic accumulation of 

necessary data from L2 to L1 in one operation, underlining the importance of 

comprehending memory access patterns and the data transfer mechanisms between caches. 
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Figure 2 Baseline GPU architecture [2] 

4.2 Understand Spatial Locality and Prefetching 

Spatial locality and prefetching principles play critical roles in how data is accessed from 

memory. Rather than retrieving solely the needed data, CPU and GPU architectures 

preemptively fetch a contiguous block of data around the requested index. This approach, 

predicated on the principle of spatial locality, operates under the assumption that data near 

a recently accessed item will soon be needed. 

When a thread accesses data within an array, the memory system fetches and stores a larger 

data block encompassing the requested index into a nearer, quicker memory cache. This 

block, known as a cache line in CPUs or a memory transaction in GPUs, contains the sought 

data alongside neighboring elements. 

By anticipating future data requests, this strategy significantly reduces the need for costly 

global memory accesses. It is a cornerstone of memory system optimization across CPUs 

and GPUs, aimed at minimizing computational delays caused by data retrieval. 

 

Figure 3 Spatial Locality [3] 

4.3 GPU Coalesced Memory Access 

Building on the concept of prefetching to leverage spatial locality, we now explore a unique 
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optimization within GPUs: coalesced memory access. This technique specifically 

optimizes how threads within a warp access global memory. When threads in a warp 

simultaneously request data from sequential or suitably aligned memory addresses, as 

shown in Figure 4, the GPU is able to combine these requests into a single memory 

transaction. This consolidation significantly decreases the total number of memory 

transactions required, thereby accelerating the process of memory access. 

 

Figure 4 Coalesced Memory Access [1] 

4.4 Original Data Structure of MASS CUDA 

Central to the MASS CUDA library are the Place and Agent objects. The former 

encapsulates complex data alongside some straightforward functions, whereas the latter 

houses simpler data but is tasked with executing more complex computational functions. 

In the initial design, these elements were distinct, segregating functions from data within 

separate classes. For instance, the Agent and its corresponding AgentState class were 

designed such that an Agent object would house functional logic, linked to an AgentState 

object containing relevant data through pointers, same to Place and PlaceState. 

Within the AgentState or PlaceState objects, several predefined variables were established 

to facilitate the library's operations, such as  

1. unsigned int index, the index of the Place/Agent 

2. Place *neighbors[], the pointers to neighbor Place of current Place 

3. Agent *potentialAgents[], the pointers to the Agent that are going to migrate to current 

Place 

Upon initializing MASS, four arrays are allocated on the device, and each object is 

interconnected with its state counterpart via pointers, as shown in Figure 5. 
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Figure 5 Agent/Place Objects and State Objects 

4.5 Root Issue: Uncoalesced Memory Access 

In the MASS framework, kernel functions are executed across all Place or Agent objects 

concurrently to facilitate parallel computation. These functions often require reading data 

from the AgentState or PlaceState objects. Despite arranging these objects in arrays for 

what seems like an optimal setup for coalesced memory access, issues persist, as 

highlighted by Nsight Compute: the presence of uncoalesced global memory access across 

nearly all kernel functions. This inefficiency leads to unnecessary data being pulled into 

the L1 cache, a problem stemming from the spatial locality principles discussed earlier. 

The crux of the issue lies within the PlaceState and AgentState objects' structure and size. 

A closer examination reveals that each object is at least 280 bytes, rendering them overly 

complex for efficient memory access within kernel functions. For instance, accessing the 

“index” variable in a PlaceState object, given its 280-byte size, means a significant distance 

in memory between indices of consecutive objects. This arrangement disrupts the 

continuity in memory access, rendering spatial locality and prefetching techniques 

ineffective. Consequently, the excessive size of AgentState and PlaceState objects 

surpasses the hardware's capability for transferring data from global to local memory in a 

single operation. This inefficiency not only hampers the ability to achieve coalesced 

memory access but also necessitates individual data fetching by each thread, significantly 

slowing down computational performance. 

4.6 Solution: SOA Instead of AOS 

The initial setup of the MASS library utilized an Array of Structures (AOS), complicating 

the data architecture for CUDA processing and leading to uncoalesced memory access. To 

address this inefficiency, a transition to a Structure of Arrays (SOA) is proposed. This 

restructuring involves segregating the data contained within PlaceState objects, for 

instance, which house variables like int index and int numAgents. Instead of a collective 
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array of PlaceState objects, the revised approach mandates separate int arrays for indexes 

and numAgents, corresponding to each Place. 

This reorganization ensures that when threads access a specific variable, they uniformly 

target the same array, thereby simplifying the data type involved. Such a streamlined 

process ensures coalesced access to data, significantly enhancing the efficiency of memory 

transactions. 

 

Figure 6 AOS Data Structure 

4.7 Dynamic Attribute Setting Solution 

Transitioning from the Array of Structures (AOS) to the Structure of Arrays (SOA) in the 

MASS library eliminated the PlaceState and AgentState classes. This change posed a 

challenge for users customizing their own PlaceState or AgentState by inheriting base 

classes and adding variables as needed. To maintain this flexibility while adapting to the 

new data structure, a solution was devised to allow users to dynamically add and access 

attributes for Place/Agent objects within kernel functions. 

The solution involves the initialization of three pointer arrays in Agent/Place: 

1. int *attributeTags: Stores attribute names (tags). 

2. void *attributeDevPtrs: Holds pointers to attribute arrays on the device. 

3. size_t *attributePitches: Keeps track of the pitch size crucial for CUDA when allocating 

attribute arrays on the device. 

When creating an attribute, users invoke setAttribute(), specifying the attribute's tag, length, 

and an optional default value. MASS then allocates memory on the device for the attribute 

array and updates attributeDevPtrs, attributePitches, and attributeTags accordingly. Here's 

an illustrative pseudo-code: 
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 1. setAttribute(attributeTag, attributeLength, defaultValue): 

 2.  if (attributeTag exists in attributeTags):  

 3.   return false 

 4.  else: 

 5.   ptr, pitch = allocate memory on the device 

 6.   if (allocate success): 

 7.    attributeTags.push_back(attributeTag) 

 8.    attributeDevPtrs.push_back(ptr) 

 9.    attributePitches.push_back(pitch) 

10.     

11.    if (want to set default value): 

12.     set default value (defaultValue) 

13.    return true 

14.   return false 

Before utilizing an attribute, users must execute finalizeAttributes(), prompting MASS to 

distribute these array data across all Agent/Place objects on the device. Subsequently, 

within kernel functions, retrieving an attribute is simplified through getAttribute(), 

enabling threads to access relevant attributes efficiently. The adapted data structure ensures 

coalesced memory access, significantly enhancing performance: 

1. getAttribute(attributeTag, attributeLength): 

 2.  if (attributeTag not in attributeTags): 

 3.   return None 

 4.  else: 

 5.   index = get the index of attributeTag in attributeTags 

 6.   attributeDevicePointer = attributeDevPtrs[index] 

 8.   attributeValue = attributeDevicePointer[object index] 

 9.  return attributeValue 

This dynamic attribute setting mechanism not only restores the original implementation's 

flexibility but also aligns with the optimized SOA data structure, ensuring efficient memory 

access and computation. 

5 Results 

The optimization efforts significantly improved both the initialization and kernel execution 

times. A demo application, Game of Life, was developed using the revised MASS 

framework to benchmark these enhancements against both the original MASS 

implementation and our key competitor, FLAME GPU 2. The findings are presented as 
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follows. 

5.1 Initialization Time Comparison 

 

Figure 7 MASS Initialization Time Comparison 

The analysis revealed that the original implementation's initialization phase was 

significantly slower—ranging from 40X to 258X—than the revised MASS framework. 

Furthermore, while the original setup exhibited exponential slowdowns as the simulation 

size increased, the new implementation showed only linear growth in initialization time 

with increasing simulation size. This improvement is attributed to the new data structure's 

ability to parallelize array initialization on the device and synchronize operations with 

CPU code, minimizing the impact of additional attributes on initialization time. 
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5.2 Step Time Comparison 

  

Figure 8 MASS Step Time Comparison 

5.3 Total Simulation Time Comparison 

 

Figure 9 MASS Total Simulation Time Comparison 

The overall simulation time for running 250 generations of the Game of Life saw 

remarkable improvements, showcasing the efficacy of the data structure optimizations. 
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5.4 FLAME GPU 2 Comparison 

 

Figure 10 MASS vs. FLAME Initialization Time 

 

Figure 11 MASS vs. FLAME Simulation Step Time 

The introduction of the new data structure significantly enhanced initialization times, 

outperforming FLAME GPU 2. However, the simulation execution time remains roughly 

a quarter slower than that of FLAME GPU 2, highlighting an area for ongoing optimization 

efforts. 
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6 Next Quarter’s Plan 

In line with the outlined proposal and my personal timeline, I aim to conclude the 

development of the MASS CUDA library by Spring break. I will dedicate the break to 

refining the library with additional user-friendly helper functions and completing 

comprehensive documentation to aid both users and future developers in navigating the 

library effectively. 

For the upcoming quarter, my agenda includes dedicating approximately four weeks to the 

development of another application utilizing the MASS CUDA framework. This 

collaborative effort, involving other students, is expected to surface further refinements 

and necessitate minor adjustments to the library. While I intend to address these smaller 

issues and update the documentation accordingly, more substantial concerns will be 

earmarked for future development phases. 

Concurrently, early in the next quarter, I plan to draft the white paper and start the 

preparations for my final defense presentation. 

7 Summary 

The journey of developing the MASS CUDA library over two quarters has been immensely 

rewarding. Diving deep into CUDA, exploring both its software and hardware aspects to 

enhance performance, has been a distinct and enriching experience as a software engineer. 

Despite the challenges and moments of frustration encountered during the library's 

comprehensive refactoring and the development of dynamic attribute setting 

functionalities—where giving up seemed like a viable option—the perseverance to 

continue has been gratifying. Witnessing the library's performance nearly match that of our 

competitor, exceeding initial expectations, brings a sense of pride and accomplishment. 

Although numerous improvements and ideas have emerged through this process, time 

constraints mean leaving these for future developers to explore and implement. 
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Appendix 

Function Implementation 
Dispatcher::createAttribute() 

This is the fundamental function to be used by MASS to let users create attributes on 

Place/Agent objects. 

Linked Sections: Section 4.7 

Usage Example 

In the Game of Life, the only attribute we need is “health”. In the simulation main program, 

we add the attribute “health” to all Place objects. Later in the Places::callAll() function, 

we’ll use the customized call function to manipulate the “health”. See usage example of 

getAttribute(). 

 1. // Initialize MASS 

 2.  Mass::init(); 

 3.   

 4.  // Initialize places 

 5.  mass::Places *places = mass::Mass::createPlaces<Life>(0, nDims, placesSize, 

mass::Place_v2::MemoryOrder::ROW_MAJOR); 

 6.   

 7.  // Initialize neighbors 

 8.  vector<int *> neighbors; 

 9.  … 

10.   

11.  // Set the neighbors for each place 

12.  places->exchangeAll(&neighbors); 

13.   

14.  // Add the attribute health to the Place 

15.  places->setAttribute<int>(Life::HEALTH, 1, 0); 

16.  places->finalizeAttributes(); 

17.   

18.  // Initialize Life cells' health 

19.  places->callAll(Life::INIT_HEALTH); 

Implementation 

  1. template <typename T> 

  2. __host__ void Dispatcher::createAttribute(unsigned int length, unsigned int qty, void 

**attributeDevPtrs) 
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  3. { 

  4.  if (length <= 1) 

  5.  { 

  6.   T *d_attr = NULL; 

  7.   CATCH(cudaMalloc((void **)&d_attr, sizeof(T) * qty)); 

  8.   *attributeDevPtrs = (void *)d_attr; 

  9.  } 

 10. } 

 11.   

 12. template <typename T> 

 13. __host__ void Dispatcher::createAttribute( 

 14.  DeviceConfig::ObjectType objectType, int handle, unsigned int length, unsigned int 

qty, 

 15.  T defaultValue, void **attributeDevPtrs) 

 16. { 

 17.  if (length <= 1) 

 18.  { 

 19.   T *d_attr; 

 20.   

 21.   CATCH(cudaMalloc((void **)&d_attr, sizeof(T) * qty)); 

 22.   

 23.   // Original way to set the default value 

 24.   // This will not work because cudaMemset only works for simple types 

 25.   // Complex types like class or struct will not work 

 26.   // CATCH(cudaMemset(d_attr, defaultValue, sizeof(T) * qty)); 

 27.   

 28.   // Get the number of blocks and threads 

 29.   dim3 thread, block = 0; 

 30.   if (objectType == DeviceConfig::PLACE) 

 31.   { 

 32.    dim3 *dims = deviceInfo->getPlacesKernelDims(handle); 

 33.    thread = dims[0]; 

 34.    block = dims[1]; 

 35.   } 

 36.   else if (objectType == DeviceConfig::AGENT) 

 37.   { 

 38.    dim3 *dims = deviceInfo->getAgentsKernelDims(handle); 

 39.    thread = dims[0]; 

 40.    block = dims[1]; 



WL Agent-Based Models Library Over Multiple GPUs: Term Report 

17 

 

 41.   } 

 42.   else 

 43.   { 

 44.    throw MassException("Invalid object type"); 

 45.   } 

 46.   

 47.   // Set the default value 

 48.   setDefaultValueKernel<T><<<block, thread>>>(d_attr, defaultValue, qty); 

 49.   

 50.   *attributeDevPtrs = (void *)d_attr; 

 51.  } 

 52. } 

 53.   

 54. template <typename T> 

 55. __host__ void Dispatcher::createAttribute(unsigned int length, unsigned int qty, void 

**attributeDevPtrs, size_t *pitchIn) 

 56. { 

 57.  if (length > 1) 

 58.  { 

 59.   T *d_attr = NULL; 

 60.   CATCH(cudaMallocPitch(&d_attr, pitchIn, length * sizeof(T), qty)); 

 61.   *attributeDevPtrs = (void *)d_attr; 

 62.  } 

 63. } 

 64.   

 65. template <typename T> 

 66. __host__ void Dispatcher::createAttribute( 

 67.  DeviceConfig::ObjectType objectType, int handle, unsigned int length, unsigned int 

qty, 

 68.  T defaultValue, void **attributeDevPtrs, size_t *pitchIn) 

 69. { 

 70.  if (length > 1) 

 71.  { 

 72.   T *d_attr = NULL; 

 73.   CATCH(cudaMallocPitch(&d_attr, pitchIn, length * sizeof(T), qty)); 

 74.   

 75.   // Get the number of blocks and threads 

 76.   dim3 thread, block = 0; 

 77.   if (objectType == DeviceConfig::PLACE) 
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 78.   { 

 79.    dim3 *dims = deviceInfo->getPlacesKernelDims(handle); 

 80.    thread = dims[0]; 

 81.    block = dims[1]; 

 82.   } 

 83.   else if (objectType == DeviceConfig::AGENT) 

 84.   { 

 85.    dim3 *dims = deviceInfo->getAgentsKernelDims(handle); 

 86.    thread = dims[0]; 

 87.    block = dims[1]; 

 88.   } 

 89.   else 

 90.   { 

 91.    throw MassException("Invalid object type"); 

 92.   } 

 93.   

 94.   // Set the default value 

 95.   setDefaultValue2DKernel<T><<<block, thread>>>(d_attr, defaultValue, qty, 

*pitchIn, length); 

 96.   

 97.   *attributeDevPtrs = (void *)d_attr; 

 98.  } 

 99. } 

 

Agent::getAttribute() (same as Place::getAttribute()) 

This is the function to get the attribute of Agent/Place on device. 

Linked Sections: Section 4.7 

Usage Example 

In the Game of Life simulation, we use customized call function, which will be executed 

by Places::callAll(), which further will be executed by each Place object on the device, to 

calculate the new “health” attribute. 

 1. __device__ void Life::computeNextState() 

 2. { 

 3.  // Get current index 

 4.  int index = getIndex(); 

 5.  // Get attribute NEIGHBORS 
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 6.  int *neighbors = getAttribute<int>(index, PlacePreDefinedAttr::NEIGHBORS, 

MAX_NEIGHBORS); 

 7.  // Get the attribute of health 

 8.  int *health = getAttribute<int>(index, ATTRIBUTE::HEALTH, 1); 

 9.   

10.  unsigned int aliveNeighbors = 0; 

11.   

12.  // Count alive neighbors 

13.  for (int i = 0; i < MAX_NEIGHBORS; i++) 

14.  { 

15.   if (neighbors[i] != -1) 

16.   { 

17.    // Get the health of the neighbor 

18.    int *health = getAttribute<int>(neighbors[i], 

ATTRIBUTE::HEALTH, 1); 

19.    // If the neighbor is alive, increment the counter 

20.    if (*health == 1) 

21.    { 

22.     aliveNeighbors++; 

23.    } 

24.   } 

25.  } 

26.   

27.  // If current cell is alive 

28.  if (*health >= 1) 

29.  { 

30.   // If alive neighbors are less than 2 or more than 3, then die 

31.   if (aliveNeighbors < 2 || aliveNeighbors > 3) 

32.   { 

33.    *health = 0; 

34.   } 

35.  } 

36.  // If current cell is dead 

37.  else 

38.  { 

39.   // If alive neighbors are exactly 3, then live 

40.   if (aliveNeighbors == 3) 

41.   { 

42.    *health = 1; 
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43.   } 

44.  } 

45. } 

46.   

Implementation 

 1. template <typename T> 

 2. __device__ T *Agent::getAttribute(int tag, int length) const 

 3. { 

 4.     int i = find(attributeTags, nAttributes, tag); 

 5.     if (i == -1) 

 6.     { 

 7.         return NULL; 

 8.     } 

 9.   

10.     // If the length is greater than 0, then it is a 2D array 

11.     // Otherwise, it is a 1D array 

12.   

13.     // If it is a 2D array, we need to get the row first 

14.     if (attributePitch[i] > 0) 

15.     { 

16.         // Get the row 

17.         T *row = (T *)((char *)attributeDevPtrs[i] + index * attributePitch[i]); 

18.   

19.         return row; 

20.     } 

21.     // If it is a 1D array, we can just return array[index] 

22.     else 

23.     { 

24.         T *array = static_cast<T *>(attributeDevPtrs[i]); 

25.         return &array[index]; 

26.     } 

27. } 

How to Run 

The code for the MASS CUDA library is available at Bitbucket. Detailed instructions on 

how to set up and run the code can be found in the README file in the repository. This 

includes information on installation, dependencies, and execution of the library. A user 

manual that is currently being developed can be found in the project Wiki page. 

https://bitbucket.org/mass_library_developers/mass_cuda_core/src/main/
https://bitbucket.org/mass_library_developers/mass_cuda_core/wiki/Home
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