
Agent-Based Models Library Over Multiple GPUs: Term Report

Warren Liu

School of STEM, Computer Science & Software Engineering

University of Washington

CSS 595: Master’s Project, Winter 2024

3/12/2024

Project Committee:

Professor Munehiro Fukuda, Committee Chair

Professor Kelvin Sung, Committee Member

Professor Clark Olson, Committee Member

WL Agent-Based Models Library Over Multiple GPUs: Term Report

1

Table of Contents

1 Introduction .. 2

2 Background .. 2

3 Goals .. 4

4 Achievements This Quarter ... 4

4.1 Profiling with Nsight Compute ... 4

4.2 Understand Spatial Locality and Prefetching ... 6

4.3 GPU Coalesced Memory Access .. 6

4.4 Original Data Structure of MASS CUDA .. 7

4.5 Root Issue: Uncoalesced Memory Access .. 8

4.6 Solution: SOA Instead of AOS ... 8

4.7 Dynamic Attribute Setting Solution.. 9

5 Results .. 10

5.1 Initialization Time Comparison .. 11

5.2 Step Time Comparison ... 12

5.3 Total Simulation Time Comparison.. 12

5.4 FLAME GPU 2 Comparison .. 13

6 Next Quarter’s Plan.. 14

7 Summary .. 14

Appendix ... 15

Function Implementation .. 15

Dispatcher::createAttribute() .. 15

Agent::getAttribute() (same as Place::getAttribute()) .. 18

How to Run ... 20

References ... 21

WL Agent-Based Models Library Over Multiple GPUs: Term Report

2

1 Introduction

This term report highlights the advancements in my capstone project throughout the Winter

2024 quarter, entering the second phase of implementing the MASS CUDA library. Unlike

the initial proposal aimed at enabling multi-GPU support, my focus shifted towards

diagnosing performance bottlenecks and conducting a comprehensive overhaul of the

library. This strategic redirection not only resulted in a substantial performance boost but

also laid a solid foundation for future enhancements, including the integration of multi-

GPU functionality.

2 Background

In parallel and distributed computing, the strategy of utilizing multiple machines, or

computing nodes, to tackle a problem is common. The essence of this approach is to divide

a problem into smaller parts, each of which is handled by a different computing node

simultaneously. Theoretically, if a problem is divided among four nodes, it should take

roughly a quarter of the time to solve, assuming perfect efficiency. The expectation is that

by increasing the number of computing nodes, the time to solve the problem decreases,

improving performance.

However, the improvement in performance isn't always proportional to the number of

added computing nodes. One primary reason is the communication overhead among the

nodes. As the number of nodes increases, so does the requirement for communication

between them, leading to significant overhead. Two main issues contribute to this overhead:

1. Data Distribution: Initially, data must be distributed to each computing node, a

process that inherently lacks parallelism. With more nodes, the data distribution

phase becomes more cumbersome and time-consuming.

2. Inter-node Communication: Each node may require data or state information from

its neighbors to proceed with its computation. This necessitates constant

communication between nodes, increasing linearly with the number of nodes and

adding to the overhead.

Agent-based modeling (ABM) offers an innovative approach to addressing the scalability

and communication challenges inherent in traditional parallel and distributed computing

models. ABM focuses on defining autonomous agents with their own behaviors and rules,

which interact within a defined environment. Here’s why and how ABM is effective:

• Data Locality: In ABM, data is distributed to nodes but remains stationary.

Computation, in the form of agents, moves to where the data resides. This

significantly reduces the need for data transfer, as agents process data locally where

WL Agent-Based Models Library Over Multiple GPUs: Term Report

3

possible.

• Reduced Communication Overhead: Since agents operate on local data and only

interact with their immediate environment, the volume of data that needs to be

transferred between nodes is minimized. Agents only communicate when necessary,

based on their interactions within the simulation environment, which is often less

data-intensive than constantly syncing state information across nodes.

• Scalability: By minimizing communication overhead and keeping data localized,

ABM can scale more effectively than traditional parallel computing approaches.

The addition of more computing nodes does not exponentially increase the

communication burden, allowing for more linear scalability under the right

conditions.

The Multi-Agent Spatial Simulation (MASS) library is a specialized framework designed

for the development of agent-based models within the realms of parallel and distributed

computing. It serves as a tool to efficiently create, manage, and simulate agents and their

interactions within a defined environment. MASS is structured around two fundamental

concepts: Agent and Place.

• Place: This component acts as the spatial container or environment where agents

operate. It holds data or attributes relevant to the simulation and defines the spatial

relationships, including the identification of neighboring places. This structural

design facilitates the exchange of information among places, making it convenient

for an agent to access and retrieve data about its immediate surroundings or

neighbors.

• Agent: This is the dynamic, computational unit within MASS. Agents contain user-

defined logic or functions that dictate their behavior within the simulation. They

are mobile and can move from one place to another, executing computations that

can influence both their state and the state of the places they interact with. The

mobility of agents allows for a dynamic simulation environment where interactions

and behaviors evolve over time.

To streamline the management of agents and places, MASS introduces two classes: Agents

and Places. These serve as containers or managers for agent and place objects, respectively.

They offer a high-level API through which users can interact with and manipulate the

agent-based model. This design not only simplifies the development process but also

enhances the scalability and flexibility of simulations, allowing researchers and developers

to focus on the domain-specific aspects of their models without getting bogged down by

the underlying computational complexities.

The MASS library has been equipped with functions like Places.exchangeAll(),

WL Agent-Based Models Library Over Multiple GPUs: Term Report

4

Places.callAll(), and Agents.manageAll(), designed to operate across all Place or Agent

objects concurrently. These functions are inherently parallel, making them ideal candidates

for acceleration using General-Purpose Graphics Processing Unit (GPGPU) technology.

This is the premise behind the development of MASS CUDA.

MASS CUDA enhances the library by enabling it not just to run on distributed memory

systems but also to exploit the computational prowess of GPUs, particularly Nvidia GPUs

with CUDA technology. Unlike a conventional computing mode where a single CPU

handles computations, a GPU boasts thousands of cores capable of executing many threads

simultaneously. This architecture allows for the massively parallel processing of Place and

Agent computations, significantly accelerating the execution of agent-based models.

3 Goals

In my last report, I reviewed our code extensively, slowed by limited documentation.

Unlike C++ and Java, the GPU version needed a new approach due to unique algorithm

challenges. I created a stable single-GPU version, benchmarked it, identified issues, and

looked into performance improvements.

This quarter's goal was to start on the multi-GPU version. However, benchmarks showed

our library lagged behind FLAME GPU 2, which is our GPU-based ABM competitor,

significantly. This led to prioritizing performance enhancements before adding multi-GPU

support. My focus was on:

1. Detailed benchmarking against MASS CUDA and FLAME GPU 2 to spot

performance differences in initialization, simulation, and shutdown.

2. Analyzing performance, identifying bottlenecks, and implementing solutions for

better efficiency.

3. Creating clearer documentation for easier use and understanding of the library.

4 Achievements This Quarter

Initiating with Nvidia's performance guidelines, I utilized Nvidia Nsight Compute for

profiling, pinpointing the performance bottleneck. Through a comprehensive library

overhaul, focusing on data structures and algorithms, I achieved a remarkable 258-fold

increase in performance for initialization and 10-fold for execution phases. The following

details the approaches and methodologies employed.

4.1 Profiling with Nsight Compute

To tackle the performance bottleneck, I commenced by delving into Nvidia's

documentation and aligning it with our implementation, applying recommended

WL Agent-Based Models Library Over Multiple GPUs: Term Report

5

optimizations like employing faster memory (constant or shared), minimizing conditional

statements in kernel functions, and employing loop unrolling. Despite these efforts, the

improvements were marginal. Progressing to a more detailed analysis, I utilized Nsight

Compute to profile each kernel function. One representative outcome, which was

commonly observed, is presented below.

Figure 1 Nsight Compute Profiling Result

This profiling revealed a critical insight: the L1 cache hit rate was below 50%. This implies

that for every data retrieval attempt by a register from the L1 cache, there's a 50%

likelihood the data isn't there, necessitating a search in the slower L2 cache. Given the L1

cache's proximity to each Streaming Multiprocessor (SM) in contrast to the L2 cache's

external placement, access times to L2 are notably longer, thus hindering overall

performance [1], as shown in Figure 2. Elevating the L1 cache hit rate could therefore

markedly enhance performance. Achieving this requires a strategic accumulation of

necessary data from L2 to L1 in one operation, underlining the importance of

comprehending memory access patterns and the data transfer mechanisms between caches.

WL Agent-Based Models Library Over Multiple GPUs: Term Report

6

Figure 2 Baseline GPU architecture [2]

4.2 Understand Spatial Locality and Prefetching

Spatial locality and prefetching principles play critical roles in how data is accessed from

memory. Rather than retrieving solely the needed data, CPU and GPU architectures

preemptively fetch a contiguous block of data around the requested index. This approach,

predicated on the principle of spatial locality, operates under the assumption that data near

a recently accessed item will soon be needed.

When a thread accesses data within an array, the memory system fetches and stores a larger

data block encompassing the requested index into a nearer, quicker memory cache. This

block, known as a cache line in CPUs or a memory transaction in GPUs, contains the sought

data alongside neighboring elements.

By anticipating future data requests, this strategy significantly reduces the need for costly

global memory accesses. It is a cornerstone of memory system optimization across CPUs

and GPUs, aimed at minimizing computational delays caused by data retrieval.

Figure 3 Spatial Locality [3]

4.3 GPU Coalesced Memory Access

Building on the concept of prefetching to leverage spatial locality, we now explore a unique

WL Agent-Based Models Library Over Multiple GPUs: Term Report

7

optimization within GPUs: coalesced memory access. This technique specifically

optimizes how threads within a warp access global memory. When threads in a warp

simultaneously request data from sequential or suitably aligned memory addresses, as

shown in Figure 4, the GPU is able to combine these requests into a single memory

transaction. This consolidation significantly decreases the total number of memory

transactions required, thereby accelerating the process of memory access.

Figure 4 Coalesced Memory Access [1]

4.4 Original Data Structure of MASS CUDA

Central to the MASS CUDA library are the Place and Agent objects. The former

encapsulates complex data alongside some straightforward functions, whereas the latter

houses simpler data but is tasked with executing more complex computational functions.

In the initial design, these elements were distinct, segregating functions from data within

separate classes. For instance, the Agent and its corresponding AgentState class were

designed such that an Agent object would house functional logic, linked to an AgentState

object containing relevant data through pointers, same to Place and PlaceState.

Within the AgentState or PlaceState objects, several predefined variables were established

to facilitate the library's operations, such as

1. unsigned int index, the index of the Place/Agent

2. Place *neighbors[], the pointers to neighbor Place of current Place

3. Agent *potentialAgents[], the pointers to the Agent that are going to migrate to current

Place

Upon initializing MASS, four arrays are allocated on the device, and each object is

interconnected with its state counterpart via pointers, as shown in Figure 5.

WL Agent-Based Models Library Over Multiple GPUs: Term Report

8

Figure 5 Agent/Place Objects and State Objects

4.5 Root Issue: Uncoalesced Memory Access

In the MASS framework, kernel functions are executed across all Place or Agent objects

concurrently to facilitate parallel computation. These functions often require reading data

from the AgentState or PlaceState objects. Despite arranging these objects in arrays for

what seems like an optimal setup for coalesced memory access, issues persist, as

highlighted by Nsight Compute: the presence of uncoalesced global memory access across

nearly all kernel functions. This inefficiency leads to unnecessary data being pulled into

the L1 cache, a problem stemming from the spatial locality principles discussed earlier.

The crux of the issue lies within the PlaceState and AgentState objects' structure and size.

A closer examination reveals that each object is at least 280 bytes, rendering them overly

complex for efficient memory access within kernel functions. For instance, accessing the

“index” variable in a PlaceState object, given its 280-byte size, means a significant distance

in memory between indices of consecutive objects. This arrangement disrupts the

continuity in memory access, rendering spatial locality and prefetching techniques

ineffective. Consequently, the excessive size of AgentState and PlaceState objects

surpasses the hardware's capability for transferring data from global to local memory in a

single operation. This inefficiency not only hampers the ability to achieve coalesced

memory access but also necessitates individual data fetching by each thread, significantly

slowing down computational performance.

4.6 Solution: SOA Instead of AOS

The initial setup of the MASS library utilized an Array of Structures (AOS), complicating

the data architecture for CUDA processing and leading to uncoalesced memory access. To

address this inefficiency, a transition to a Structure of Arrays (SOA) is proposed. This

restructuring involves segregating the data contained within PlaceState objects, for

instance, which house variables like int index and int numAgents. Instead of a collective

WL Agent-Based Models Library Over Multiple GPUs: Term Report

9

array of PlaceState objects, the revised approach mandates separate int arrays for indexes

and numAgents, corresponding to each Place.

This reorganization ensures that when threads access a specific variable, they uniformly

target the same array, thereby simplifying the data type involved. Such a streamlined

process ensures coalesced access to data, significantly enhancing the efficiency of memory

transactions.

Figure 6 AOS Data Structure

4.7 Dynamic Attribute Setting Solution

Transitioning from the Array of Structures (AOS) to the Structure of Arrays (SOA) in the

MASS library eliminated the PlaceState and AgentState classes. This change posed a

challenge for users customizing their own PlaceState or AgentState by inheriting base

classes and adding variables as needed. To maintain this flexibility while adapting to the

new data structure, a solution was devised to allow users to dynamically add and access

attributes for Place/Agent objects within kernel functions.

The solution involves the initialization of three pointer arrays in Agent/Place:

1. int *attributeTags: Stores attribute names (tags).

2. void *attributeDevPtrs: Holds pointers to attribute arrays on the device.

3. size_t *attributePitches: Keeps track of the pitch size crucial for CUDA when allocating

attribute arrays on the device.

When creating an attribute, users invoke setAttribute(), specifying the attribute's tag, length,

and an optional default value. MASS then allocates memory on the device for the attribute

array and updates attributeDevPtrs, attributePitches, and attributeTags accordingly. Here's

an illustrative pseudo-code:

WL Agent-Based Models Library Over Multiple GPUs: Term Report

10

 1. setAttribute(attributeTag, attributeLength, defaultValue):

 2. if (attributeTag exists in attributeTags):

 3. return false

 4. else:

 5. ptr, pitch = allocate memory on the device

 6. if (allocate success):

 7. attributeTags.push_back(attributeTag)

 8. attributeDevPtrs.push_back(ptr)

 9. attributePitches.push_back(pitch)

10.

11. if (want to set default value):

12. set default value (defaultValue)

13. return true

14. return false

Before utilizing an attribute, users must execute finalizeAttributes(), prompting MASS to

distribute these array data across all Agent/Place objects on the device. Subsequently,

within kernel functions, retrieving an attribute is simplified through getAttribute(),

enabling threads to access relevant attributes efficiently. The adapted data structure ensures

coalesced memory access, significantly enhancing performance:

1. getAttribute(attributeTag, attributeLength):

 2. if (attributeTag not in attributeTags):

 3. return None

 4. else:

 5. index = get the index of attributeTag in attributeTags

 6. attributeDevicePointer = attributeDevPtrs[index]

 8. attributeValue = attributeDevicePointer[object index]

 9. return attributeValue

This dynamic attribute setting mechanism not only restores the original implementation's

flexibility but also aligns with the optimized SOA data structure, ensuring efficient memory

access and computation.

5 Results

The optimization efforts significantly improved both the initialization and kernel execution

times. A demo application, Game of Life, was developed using the revised MASS

framework to benchmark these enhancements against both the original MASS

implementation and our key competitor, FLAME GPU 2. The findings are presented as

WL Agent-Based Models Library Over Multiple GPUs: Term Report

11

follows.

5.1 Initialization Time Comparison

Figure 7 MASS Initialization Time Comparison

The analysis revealed that the original implementation's initialization phase was

significantly slower—ranging from 40X to 258X—than the revised MASS framework.

Furthermore, while the original setup exhibited exponential slowdowns as the simulation

size increased, the new implementation showed only linear growth in initialization time

with increasing simulation size. This improvement is attributed to the new data structure's

ability to parallelize array initialization on the device and synchronize operations with

CPU code, minimizing the impact of additional attributes on initialization time.

2305.51

35694

86828.1

55.3605 213.231 336.884
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1000 2000 2500

T
im

e
(m

s)

Simulation Size (sqrt)

MASS Initialization Time

Before After

WL Agent-Based Models Library Over Multiple GPUs: Term Report

12

5.2 Step Time Comparison

Figure 8 MASS Step Time Comparison

5.3 Total Simulation Time Comparison

Figure 9 MASS Total Simulation Time Comparison

The overall simulation time for running 250 generations of the Game of Life saw

remarkable improvements, showcasing the efficacy of the data structure optimizations.

3.0321

11.9

18.65

0.54052
1.92576

2.95744

0

2

4

6

8

10

12

14

16

18

20

1000 2000 2500

T
im

e
(m

s)

Simulation Size (sqrt)

MASS Simulation Per Step Time

Before After

3087.72

38730.2

94568

190 702 1080

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1000 2000 2500

T
im

e
(m

s)

Simulation Size (sqrt)

MASS Total Simulation Time

Before After

WL Agent-Based Models Library Over Multiple GPUs: Term Report

13

5.4 FLAME GPU 2 Comparison

Figure 10 MASS vs. FLAME Initialization Time

Figure 11 MASS vs. FLAME Simulation Step Time

The introduction of the new data structure significantly enhanced initialization times,

outperforming FLAME GPU 2. However, the simulation execution time remains roughly

a quarter slower than that of FLAME GPU 2, highlighting an area for ongoing optimization

efforts.

13.64 55.13 123.85 220.36 340.41 495.04 694.584 921.87 1126.88

3742.77 3865.01 4020.37
4287.8

4556.18
4876.377

5291.821
5746.431

6305.861

0

1000

2000

3000

4000

5000

6000

7000

500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
(m

s)

Simulation Size (sqrt)

MASS vs. FLAME Initialization Time

MASS FLAME

0.19 0.54
1.11

1.93

2.96

4.24

5.74

7.42

9.46

0.20 0.45
0.89

1.44
2.21

3.17

4.24

5.48

7.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
(m

s)

Simulation Size (sqrt)

MASS vs. FLAME Per Step Time

MASS FLAME

WL Agent-Based Models Library Over Multiple GPUs: Term Report

14

6 Next Quarter’s Plan

In line with the outlined proposal and my personal timeline, I aim to conclude the

development of the MASS CUDA library by Spring break. I will dedicate the break to

refining the library with additional user-friendly helper functions and completing

comprehensive documentation to aid both users and future developers in navigating the

library effectively.

For the upcoming quarter, my agenda includes dedicating approximately four weeks to the

development of another application utilizing the MASS CUDA framework. This

collaborative effort, involving other students, is expected to surface further refinements

and necessitate minor adjustments to the library. While I intend to address these smaller

issues and update the documentation accordingly, more substantial concerns will be

earmarked for future development phases.

Concurrently, early in the next quarter, I plan to draft the white paper and start the

preparations for my final defense presentation.

7 Summary

The journey of developing the MASS CUDA library over two quarters has been immensely

rewarding. Diving deep into CUDA, exploring both its software and hardware aspects to

enhance performance, has been a distinct and enriching experience as a software engineer.

Despite the challenges and moments of frustration encountered during the library's

comprehensive refactoring and the development of dynamic attribute setting

functionalities—where giving up seemed like a viable option—the perseverance to

continue has been gratifying. Witnessing the library's performance nearly match that of our

competitor, exceeding initial expectations, brings a sense of pride and accomplishment.

Although numerous improvements and ideas have emerged through this process, time

constraints mean leaving these for future developers to explore and implement.

WL Agent-Based Models Library Over Multiple GPUs: Term Report

15

Appendix

Function Implementation
Dispatcher::createAttribute()

This is the fundamental function to be used by MASS to let users create attributes on

Place/Agent objects.

Linked Sections: Section 4.7

Usage Example

In the Game of Life, the only attribute we need is “health”. In the simulation main program,

we add the attribute “health” to all Place objects. Later in the Places::callAll() function,

we’ll use the customized call function to manipulate the “health”. See usage example of

getAttribute().

 1. // Initialize MASS

 2. Mass::init();

 3.

 4. // Initialize places

 5. mass::Places *places = mass::Mass::createPlaces<Life>(0, nDims, placesSize,

mass::Place_v2::MemoryOrder::ROW_MAJOR);

 6.

 7. // Initialize neighbors

 8. vector<int *> neighbors;

 9. …

10.

11. // Set the neighbors for each place

12. places->exchangeAll(&neighbors);

13.

14. // Add the attribute health to the Place

15. places->setAttribute<int>(Life::HEALTH, 1, 0);

16. places->finalizeAttributes();

17.

18. // Initialize Life cells' health

19. places->callAll(Life::INIT_HEALTH);

Implementation

 1. template <typename T>

 2. __host__ void Dispatcher::createAttribute(unsigned int length, unsigned int qty, void

**attributeDevPtrs)

WL Agent-Based Models Library Over Multiple GPUs: Term Report

16

 3. {

 4. if (length <= 1)

 5. {

 6. T *d_attr = NULL;

 7. CATCH(cudaMalloc((void **)&d_attr, sizeof(T) * qty));

 8. *attributeDevPtrs = (void *)d_attr;

 9. }

 10. }

 11.

 12. template <typename T>

 13. __host__ void Dispatcher::createAttribute(

 14. DeviceConfig::ObjectType objectType, int handle, unsigned int length, unsigned int

qty,

 15. T defaultValue, void **attributeDevPtrs)

 16. {

 17. if (length <= 1)

 18. {

 19. T *d_attr;

 20.

 21. CATCH(cudaMalloc((void **)&d_attr, sizeof(T) * qty));

 22.

 23. // Original way to set the default value

 24. // This will not work because cudaMemset only works for simple types

 25. // Complex types like class or struct will not work

 26. // CATCH(cudaMemset(d_attr, defaultValue, sizeof(T) * qty));

 27.

 28. // Get the number of blocks and threads

 29. dim3 thread, block = 0;

 30. if (objectType == DeviceConfig::PLACE)

 31. {

 32. dim3 *dims = deviceInfo->getPlacesKernelDims(handle);

 33. thread = dims[0];

 34. block = dims[1];

 35. }

 36. else if (objectType == DeviceConfig::AGENT)

 37. {

 38. dim3 *dims = deviceInfo->getAgentsKernelDims(handle);

 39. thread = dims[0];

 40. block = dims[1];

WL Agent-Based Models Library Over Multiple GPUs: Term Report

17

 41. }

 42. else

 43. {

 44. throw MassException("Invalid object type");

 45. }

 46.

 47. // Set the default value

 48. setDefaultValueKernel<T><<<block, thread>>>(d_attr, defaultValue, qty);

 49.

 50. *attributeDevPtrs = (void *)d_attr;

 51. }

 52. }

 53.

 54. template <typename T>

 55. __host__ void Dispatcher::createAttribute(unsigned int length, unsigned int qty, void

**attributeDevPtrs, size_t *pitchIn)

 56. {

 57. if (length > 1)

 58. {

 59. T *d_attr = NULL;

 60. CATCH(cudaMallocPitch(&d_attr, pitchIn, length * sizeof(T), qty));

 61. *attributeDevPtrs = (void *)d_attr;

 62. }

 63. }

 64.

 65. template <typename T>

 66. __host__ void Dispatcher::createAttribute(

 67. DeviceConfig::ObjectType objectType, int handle, unsigned int length, unsigned int

qty,

 68. T defaultValue, void **attributeDevPtrs, size_t *pitchIn)

 69. {

 70. if (length > 1)

 71. {

 72. T *d_attr = NULL;

 73. CATCH(cudaMallocPitch(&d_attr, pitchIn, length * sizeof(T), qty));

 74.

 75. // Get the number of blocks and threads

 76. dim3 thread, block = 0;

 77. if (objectType == DeviceConfig::PLACE)

WL Agent-Based Models Library Over Multiple GPUs: Term Report

18

 78. {

 79. dim3 *dims = deviceInfo->getPlacesKernelDims(handle);

 80. thread = dims[0];

 81. block = dims[1];

 82. }

 83. else if (objectType == DeviceConfig::AGENT)

 84. {

 85. dim3 *dims = deviceInfo->getAgentsKernelDims(handle);

 86. thread = dims[0];

 87. block = dims[1];

 88. }

 89. else

 90. {

 91. throw MassException("Invalid object type");

 92. }

 93.

 94. // Set the default value

 95. setDefaultValue2DKernel<T><<<block, thread>>>(d_attr, defaultValue, qty,

*pitchIn, length);

 96.

 97. *attributeDevPtrs = (void *)d_attr;

 98. }

 99. }

Agent::getAttribute() (same as Place::getAttribute())

This is the function to get the attribute of Agent/Place on device.

Linked Sections: Section 4.7

Usage Example

In the Game of Life simulation, we use customized call function, which will be executed

by Places::callAll(), which further will be executed by each Place object on the device, to

calculate the new “health” attribute.

 1. __device__ void Life::computeNextState()

 2. {

 3. // Get current index

 4. int index = getIndex();

 5. // Get attribute NEIGHBORS

WL Agent-Based Models Library Over Multiple GPUs: Term Report

19

 6. int *neighbors = getAttribute<int>(index, PlacePreDefinedAttr::NEIGHBORS,

MAX_NEIGHBORS);

 7. // Get the attribute of health

 8. int *health = getAttribute<int>(index, ATTRIBUTE::HEALTH, 1);

 9.

10. unsigned int aliveNeighbors = 0;

11.

12. // Count alive neighbors

13. for (int i = 0; i < MAX_NEIGHBORS; i++)

14. {

15. if (neighbors[i] != -1)

16. {

17. // Get the health of the neighbor

18. int *health = getAttribute<int>(neighbors[i],

ATTRIBUTE::HEALTH, 1);

19. // If the neighbor is alive, increment the counter

20. if (*health == 1)

21. {

22. aliveNeighbors++;

23. }

24. }

25. }

26.

27. // If current cell is alive

28. if (*health >= 1)

29. {

30. // If alive neighbors are less than 2 or more than 3, then die

31. if (aliveNeighbors < 2 || aliveNeighbors > 3)

32. {

33. *health = 0;

34. }

35. }

36. // If current cell is dead

37. else

38. {

39. // If alive neighbors are exactly 3, then live

40. if (aliveNeighbors == 3)

41. {

42. *health = 1;

WL Agent-Based Models Library Over Multiple GPUs: Term Report

20

43. }

44. }

45. }

46.

Implementation

 1. template <typename T>

 2. __device__ T *Agent::getAttribute(int tag, int length) const

 3. {

 4. int i = find(attributeTags, nAttributes, tag);

 5. if (i == -1)

 6. {

 7. return NULL;

 8. }

 9.

10. // If the length is greater than 0, then it is a 2D array

11. // Otherwise, it is a 1D array

12.

13. // If it is a 2D array, we need to get the row first

14. if (attributePitch[i] > 0)

15. {

16. // Get the row

17. T *row = (T *)((char *)attributeDevPtrs[i] + index * attributePitch[i]);

18.

19. return row;

20. }

21. // If it is a 1D array, we can just return array[index]

22. else

23. {

24. T *array = static_cast<T *>(attributeDevPtrs[i]);

25. return &array[index];

26. }

27. }

How to Run

The code for the MASS CUDA library is available at Bitbucket. Detailed instructions on

how to set up and run the code can be found in the README file in the repository. This

includes information on installation, dependencies, and execution of the library. A user

manual that is currently being developed can be found in the project Wiki page.

https://bitbucket.org/mass_library_developers/mass_cuda_core/src/main/
https://bitbucket.org/mass_library_developers/mass_cuda_core/wiki/Home

WL Agent-Based Models Library Over Multiple GPUs: Term Report

21

References

[1] FANG, "The CUDA Parallel Programming Model - 5. Memory Coalescing," 4

December 2019. [Online]. Available: https://nichijou.co/cuda5-coalesce/. [Accessed

2024].

[2] K. Y. S. L. S. X. F. Jingweijia Tan, "Energy-Efficient GPU L2 Cache Design Using

Instruction-Level Data Locality Similarity," ACM Transactions on Design Automation

of Electronic Systems, vol. 25, no. 6, pp. 1-18, 2020.

[3] "Locality of Reference and Cache Operation in Cache Memory," 24 Feb 2023.

[Online]. Available: https://www.geeksforgeeks.org/locality-of-reference-and-cache-

operation-in-cache-memory/. [Accessed 2024].

