
© Copyright 2023

Yifei Yang

Agents Visualization and Web GUI Development in MASS Java

Yifei Yang

A white paper

submitted in partial fulfillment of the

requirements of the degree of

Master of Science in Computer Science & Software Engineering

University of Washington Bothell

2023

Project Committee:

Prof. Munehiro Fukuda, Chair

Prof. Bill Erdly, Member

Prof. Hazeline Asuncion, Member

University of Washington Bothell

 Abstract

Agents Visualization and Web GUI Development in MASS Java

Yifei Yang

Chair of Supervisory Committee:

Prof. Munehiro Fukuda

Computing & Software Systems

Multi-Agent Spatial Simulation (MASS) is an agent-based modeling (ABM) library that supports

parallelized simulation over a distributed computing cluster. Places is the collection of elements

(a single element is called Place) that are dynamically allocated within the cluster. Agents is a set

of execution instances that can reside on a place and migrate to any other Place with global

indices. MASS UI consists of two parts: InMASS and MASS-Cytoscape. InMASS allows users to

execute command line by line in an interactive way and provides users with additional features.

MASS-Cytoscape enables users to visualize places and agents in Cytoscape. However, the

current implementation of InMASS hacked MASS too much and became incompatible with the

latest versions of MASS. The current visualization is limited to a single computing node and can

present limited agents’ information. Moreover, the recent MASS does not have a web interface to

simplify operations. To address these problems, the goals of this project are: (1) Re-engineering

the current implementation of InMASS. (2) Developing Places visualization of 2D continuous

space, Binary Tree, and Quad Tree. Improve current Agents visualization. (3) Designing an all-

in-one WEB GUI for InMASS design. We adopted original ideas to accomplish the first goal, re-

implemented InMASS features, including dynamical loading, checkpointing/rollback, and agent

history tracking, and optimized the current codebase. These modifications open up the possibility

of the future expansion of InMASS and allow InMASS to serve all MASS users. The project

extended current places and agents’ visualization to display places in a distributed setting and

the agent's number within each place; optimized the operation logic MASS control panel. These

additions and optimizations made it easy to use and analyze simulations. The implementation of

the web interface enables users to monitor their clusters. And it provided a basic frame for future

developers to add on more practical functions.

TABLE OF CONTENTS

Chapter 1 Introduction .. 1

1.1 Overview ... 1

1.2 Motivation ... 3

1.3 Project Goals .. 4

1.4 Success Metrics and Stakeholders ... 5

1.5 Paper Structure ... 6

Chapter 2 Related Work ... 7

2.1 Repast Simphony .. 7

2.2 NetLogo .. 9

2.3 MASON ..11

2.4 FLAME ...14

2.5 Summary ...15

Chapter 3 InMASS and Previous GUI Work ..17

3.1 InMASS ..17

3.1.1 Checkpoint/Rollback ..18

3.1.2. Agent History Tracking ..18

3.2 Cytoscape ..19

3.3 Graph Visualization ..20

3.4 Tree Visualization ..20

3.5 Agent Visualization...21

3.6 MASS Control Panel ..21

3.7 Summary ...22

Chapter 4 MASS UI Enhancement ..23

4.1 Enhanced InMASS ...23

4.1.1 Dynamic Loading ...23

4.1.2 Checkpointing/Rollback ..26

4.1.3 Agent History Tracking ...26

4.2 Enhanced MASS-Cytoscape ..28

4.2.1 Enhanced Place Visualization ..32

4.2.2 Enhanced Agent Visualization ..34

4.3 Web GUI ..38

Chapter 5 Evaluation...41

5.1 Re-engineering Work ...41

5.1.1 Verification of Dynamic loading ..41

5.1.2 Verification of Checkpoint and Rollback ...42

5.1.3 Verification of Agent History Tracking...43

5.2 Places and Agents Visualization ..45

5.2.1 Places Visualization ...45

5.2.2 Agents Visualization ...49

5.2.3 MASS Control Panel Optimization ..53

5.3 Web GUI ..54

Chapter 6 Conclusion..56

BIBLIOGRAPHY ..58

List of Figures
Figure 1.1 MASS library model .. 3

Figure 2.1: The visual editor interface of the zombie model in Repast Simphony 9

Figure 2.2: The visual editor interface of the wolf predation in NetLogo11

Figure 2.3: MASON’s 2D visualization ..13

Figure 2.4: FLAME Process ..15

Figure 4.1: The Sequential Diagram of the New Dynamic Loading Feature24

Figure 4.2: Class Diagram of the New Dynamic Loading Feature ...25

Figure 4.3: Iteration Synchronization Order of Agents ManageAll ...28

Figure 4.4: MASS-Cytoscape Integration System Architecture ..31

Figure 4.5: The General Process of getBinaryTree Function ...33

Figure 4.6: The Flowchart of Agent Number Tracking API ..36

Figure 4.7: Binary Tree Places Models...37

Figure 4.8: The Architecture Diagram of the WEB GUI ...39

Figure 5.1: The whole process of quickStart Application (Rollback version)43

Figure 5.2: Graph Nodes’ Visualization in Triangle Counting Benchmark Application................44

Figure 5.3: Printed traces of all created agents ...45

Figure 5.4: Binary Tree Places Visualization ...46

Figure 5.5: Quad Tree Places Visualization ..47

Figure 5.6: 2D Continuous Space Places Visualization ...48

Figure 5.7: Agents visualization at the beginning of the TriangleCounting application49

Figure 5.8: Agents visualization at the end of the TriangleCounting application50

Figure 5.9: Agents visualization at the beginning of the RangeSearch application51

Figure 5.10: Agents visualization at the end of the RangeSearch application52

Figure 5.11: Optimized MASS Control Panel ..54

Figure 5.12: All-in-one WEB GUI ..55

Listing

Listing 4.1: Code snippet of the Style Mapping for Quad Tree visualization34

Listing 4.2: Code snippet of agentNumHistory type ...35

1

Chapter 1 Introduction

1.1 Overview

Agent-Based Modeling (ABM) is a computational model for simulating the actions and interactions

of autonomous agents (both individual or collective entities such as organizations or groups) in

order to understand the behavior of the system and what governs its outcome [1]. Agent-based

models are a type of microscale models [2] that simulate the simultaneous operations and

interactions of multiple agents in an attempt to re-create and predict the appearance of complex

phenomena. A multi-agent system (MAS or "self-organized system") is a computerized system

composed of multiple interacting intelligent agents [3]. Multi-agent systems can solve

mathematically complicated problems for an individual agent or monolithic system to solve [4].

The intelligence of agents may refer to methodic, functional, procedural approaches, algorithmic

search, or reinforcement learning [5][6]. Agent-based modeling is related to, but distinct from, the

concept of multi-agent systems or multi-agent simulation in that the goal of ABM is to search for

explanatory insight into the collective behavior of agents obeying simple rules, typically in natural

systems rather than in designing agents or solving specific practical or engineering problems. Our

recent literature review on agent-based models and multi-agent systems shows that ABMs are

used in many scientific domains, including biology, ecology, and social sciences [7].

The MASS library, a parallel-computing library for Multi-Agent Spatial Simulation, was first

developed by UW Distributed System Lab (DSLab). As envisioned from its name, the design is

based on multi-agents, each behaving as a simulation entity in a given virtual space [8]. Therefore,

Places and Agents are crucial elements of the MASS library. Places are virtual spaces of

dynamically allocated elements over a cluster of computing nodes. The representational formats

2

of Places are variable, including grid, graph, and tree. The primary component of Places is called

a Place. It is pointed to by a set of network-independent indices and is capable of exchanging

information with any other Place elements. Besides, MASS helps to partition input data into

multiple computing nodes to increase scalability.

Agents are a set of execution instances that can reside in a place, migrate to any other Place with

available indices (thus duplicating themselves), and interact with other Agents and multiple Places

[9]. Typically, there are three behaviors for agents: MIGRATE, SPAWN, and KILL. One of the

essential methods in agents is manageAll. It updates each agent’s status based on each of its

latest migrate(), spawn(), and kill() calls. These methods are defined in the Agent base class and

may be invoked from other functions through callAll. All operations are done in parallel among

multi-processes/threads.

Figure 1.1 shows the MASS library model. From the model, places are mapped to threads,

whereas Agents are mapped to processes. Agents are grouped into bags, and If agents are

associated with a particular Place, they are allocated to the same process whose thread takes

care of this Place [9].

3

Figure 1.1 MASS library model

1.2 Motivation

The MASS library supports multiple data structures, including multi-dimensional arrays, graphs,

2D continuous space, binary trees, and quad trees. Some of these data structures are designed

to speed up the calculation process of some practical problems. For example, graphs can be used

in counting triangles, binary trees in range search, and quad trees in finding the closest pair of

points (CPP). However, the limitation is that the simulation process is not transparent to MASS

4

users. Furthermore, some data structures, such as binary trees and quad trees, can sometimes

be very complicated to understand because there is no user manual to instruct users on how to

use these data structures to solve practical problems. Therefore, it might be challenging for users

to verify the results and monitor their simulations. To address the verification problem, the project

implemented the visualization of these complicated structures in Cytoscape by extending the

current design of MASS-Cytoscape plugins. Besides, the current agents visualization can’t display

the number of agents or agentIDs in each place, making it difficult for users to understand agents’

spawn and migration in each simulation step. Another limitation is that the MASS library doesn’t

have a web interface to monitor the MASS cluster and simulation. To address the monitoring

problem, the project referred to some famous distributed software websites, including Spark UI

[10] and HUE (Hadoop User Experience) [11]. As a result, it implemented an all-in-one Web GUI

for InMASS users.

1.3 Project Goals

The goals of this project are:

1. Re-engineering the current implementation of InMASS. Many existing features

associated with InMASS, including checkpointing, agent tracking, and lambda

expressions, are developed based on a different version of the InMASS branch. As the

development of the main branch has been left for a substantial amount of time, the original

features cannot be directly merged into the latest InMASS branch, so this goal aims to

facilitate InMASS’s better expansion in the future. It requires integrating InMASS’s old

features and implementing some features from scratch unless they can’t be merged into

the MASS develop branch.

5

2. Developing place visualization of 2D continuous space, Binary Tree, and Quad Tree.

Improve current Agent visualization design. Cytoscape [20] is one of the well-known

graph visualizers. And we used it to visualize MASS Java’s graphs, trees, and 2D space

data structures. Daniel Blashaw implemented graph visualization and visualized agents in

graph vertices using different colors. However, Tianhui Nie’s tree and 2D visualization

implementation are limited to a single-computing execution. Therefore, it’s essential to

visualize places in a distributed setting and visualize the actual number of agents in each

place besides displaying colors.

3. Designing an all-in-one WEB GUI for InMASS. Currently, a user is responsible for

configuring a cluster system, running a MASS application in parallel, launching/stopping

InMASS, and connecting Cytoscape to MASS. All these software tools must be operated

separately. As Spark, MapReduce, and Docker, we need an all-in-one Web GUI panel

that automates MASS invocation and shows the current status of MASS execution.

1.4 Success Metrics and Stakeholders

The Level of success of the project:

● Minimum - Finish the re-engineering work, visualization of Places over 2D space and trees.

Improve agent visualization in graphs. And implement the all-in-one web interface.

● Expected – (1) Finish Usability testing by our lab members and all functional components

testing to ensure everything works (2) Optimize the current MASS control panel in

Cytoscape.

● Aspirational - (1) Merge and refactor existing MASS UI codebase for future development

(2) Look for other visualization tools which may produce a better effect (3) Extend agent

6

visualization for trees and 2D continuous space (4) For the web UI, Improve the operation

and maintenance process to facilitate future students to maintain.

The stakeholders of this project are mainly all MASS users. Because several DSLab members

are working on benchmark applications such as Range Search and Voronoi diagram, the

visualization of agents in Cytoscape can help them better understand agents’ movement in their

simulations. Besides, the web interface provided a new way to understand the status of their

MASS clusters.

1.5 Paper Structure

The rest of this paper is organized with the following chapters. Chapter 2 discusses other ABM

simulators and their agent visualization, and compares InMASS with them. Chapter 3 includes a

summary of the work from previous students who have enabled this project’s extension to the

InMASS library. Chapter 4 discusses the implementation and architecture details of this project.

Chapter 5 includes the verification of the results of this project. Finally, Chapter 6 concludes the

project and lists recommendations for future work.

7

Chapter 2 Related Work

Agent-based modeling (ABM) is a powerful and helpful technique for resolving complicated

problems. Various agent-based applications have recently been developed to help analyze ABM

problems visually. As many similar ABM simulation systems have visualization features, this

section reviews other four free and open-source modeling libraries and compares them with

MASS UI. The review includes Repast Simphony, NetLogo, FLAME, and MASON.

2.1 Repast Simphony

Sallach, Collier, and others initially developed Repast Simphony (Recursive Porous Agent

Simulation Toolkit) at the University of Chicago in 2000 [13]. Later releases of Repast have

extended the system to handle large-scale agent simulation application development. It's worth

mentioning that Repast is initially written in C++.

Repast Simphony is written in Java instead and is a cross-platform, Java-based, open-source

framework for creating agent-based models. All its functions are integrated within the Eclipse IDE

(Integrated development environment). The “Context” is the core concept and object in Repast

Simphony. It can hold a collection of agents with the same properties and behaviors as a bucket

without specifying how they should interact. Agents can travel through Contexts anytime and

simultaneously exist in multiple Contexts. Projections mean the workplace among agents in each

context. Projections can include grids, continuous spaces, networks, and GIS spaces, which

allows different projections in the same context. Each projection has rules and algorithms defining

interactions between agents and environments. The next concept is scheduling. Unlike MASS,

where we explicitly call all the agents to move, Repast Simphony uses annotations on the

8

movement method, such as @Watch and @ScheduledMethod, which can trigger or schedule the

agents’ movement. In this way, we only need to create context and put all agents with projections’

spaces inside, and then press the start button in the popped-up menu. With this operation, agents

can move according to our pre-set annotations’ behaviors.

Specifically, Repast Simphony offers a range of features for agent movement visualization,

including 2D, 3D and GIS, which allows users to track agents in real time. In addition, Repast

Simphony also provides users with the ability to customize the appearance and behaviors of

agents, as well as the simulation environment in which they interact. Figure 2.1 shows a visual

editor interface for a zombie example. From the parameter panel, users can modify the default

human count and zombie count. While Repast Simphony provides a good level of visualization

for agent movement, it could be further improved by allowing users to interact with the simulation

environment in real time. For example, users could have an ability to pause the simulation, to

zoom in/out, or to select any individual agent to view its behavior and movement patterns.

9

Figure 2.1: The visual editor interface of the zombie model in Repast Simphony

The blue stars are human. The red dots are zombies.

2.2 NetLogo

NetLogo [14], developed by Uri Wilensky, is a free, open-source, agent-based simulation

environment that uses a modified version of the Logo programming language [15]. Wilensky

thought that agent-based simulation environments and languages should be simple enough to

allow beginners to start quickly, and that libraries should, in principle, place no limits on what

experience users can do. Besides, there are lots of example simulations in its module library.

10

NetLogo was designed to help teaching complex concepts, and now it can be used to develop

more sophisticated simulations like social and natural phenomena.

NetLogo contains four different types of agents: turtles, patches, links, and the observer. Turtles

are the most common type of agents. They can be created and manipulated using NetLogo

programming language, (i.e., enhanced logo). They have properties and behaviors, and can move

around during the simulation. The patches are stationary and arranged in a 2D grid within the

simulation. Links represent the connections between other agents in the simulation. For example,

links are available in a social network simulation to connect turtles to form the network. The last

type is the observer. It is responsible for defining rules, setting initial conditions, and running the

simulation. Also, it supports built-in commands for users to interact directly with the four turtles,

just like a simple query. Compared with MASS, turtles are like agents, and patches are like places.

Links assist agents in exchanging information. The observer serves as controlling the simulation’s

initialization and finish.

NetLogo also includes a range of built-in commands and functions for working with agents,

networks, and spatial data. Figure 2.2 shows a visual editor interface for the sheep-wolf predator

model. From the interface, users can change initial parameters by dragging the red button. The

graph in the right bottom corner shows the population trend of two agents groups: sheep and

wolves. However, it’s difficult to see which direction the sheep and wolf models are moving.

NetLogo could improve its ability to animate agent movement using other graphical elements like

arrows. In addition, NetLogo is written in logo and its visualization tools may not be as compatible

with other programming languages, (e.g., Java) or simulation platforms, which can limit its

usefulness in some contexts.

11

Figure 2.2: The visual editor interface of the wolf predation in NetLogo

2.3 MASON

MASON (Multi-Agent Simulator Of Neighborhoods) is an open-source, Java-based simulation

toolkit for building and running agent-based models [16]. It is designed to support a large number

of agents efficiently on a single machine. Fields in MASON are commonly used to model the

environment or spatial properties. Fields provide a convenient and efficient way to represent

12

spatial relationships and enable agents to interact with their environment. Agents can access the

field to read or modify the values at specific locations, allowing them to perceive and respond to

the spatial attributes in their environment. MASON supports the following features：

1. MASON models are separated from visualization, which means users can run simulations

in CLI (command line interface).

2. MASON models are serializable to disk so that users can checkpoint the state of the

simulation, mid-run, to a file on the disk. The simulation can restart from this checkpoint

even if it’s on a different machine, or under visualization versus running on the command

line, or even under a different visualization. This is because all models related to simulation

implement the serializable interface.

3. The MASON model is entirely encapsulated within a single class: a subclass of

sim.engine.SimState which the user designs. The purpose is to give users a place to store

any and all elements that is necessary for the simulation.

4. MASON replaces some of Oracle’s internal classes to improve performance.

The last thing about MASON is that it has another version called Distributed MASON. The idea is

like our current MASS implementation. This is because one single machine’s computing power is

limited in some cases. Hence, MASON considers cutting up fields into regions and hands each

region to a process. The region of the field that a given process is responsible for is known as its

partition. Each partition takes care of its simulation. Like MASS, agents can travel through

different machines and inevitably need to access data or agents in another process. But MASON

mentions that agents’ inter-process communication can be prolonged, especially when

exchanging serialized data with a remote agent. Given that considerations, MASON suggests

limiting the simulation to one machine.

13

Fields can also be visualized to provide a graphical representation of the spatial data during the

simulation. MASON provides a wide range of 2D and 3D visualization for user-provided models.

Figure 2.3 shows 2D visualization of MASON. And MASON provides some built-in shapes for the

underlying models including square, hexagon, compass, etc. However, MASON’s user manual is

over 450 pages, and it can be complex and require a steep learning curve to understand the extra

visualization.

Figure 2.3: MASON’s 2D visualization

14

2.4 FLAME

FLAME (Flexible Large-scale Agent Modeling Environment) [17], written in C, is a modeling and

simulation platform that can be run on high-performance computers (HPCs). In FLAME, Agents

are first-class citizens, and FLAME can automatically generate simulation programs after we

define agent-based models. The model has two parts: agents’ functions (written in C) and

configuration file (written in XML). The XML file specifies attributes, including agent names, local

variables, functions, and messages.

Figure 2.4 shows the life cycle of each agent. Agents will execute a series of transition functions

from the start to the end state. In these functions, agents can exchange messages by reading

incoming or writing outgoing messages. Because of agent models’ parallel execution,

communication must be synchronous when a particular message type is involved. Besides,

filtering messages is needed because of broadcast communication. Compared with MASS, the

agents of both sides have some similarities. Both agents have their memory, are independent,

and can send or broadcast messages. The difference is that agents in FLAME can’t travel through

processes. In addition, an XML file manages the essential part of the FLAME model, which may

increase complexity when different agents are involved. Sometimes it may not be intuitive enough

for users. The advantage of FLAME is that it mainly focuses on simulations with many agents.

They perform better in that aspect, primarily since it’s written in C. However, this might represent

a problem for the modelers, given that C requires a certain experience and expertise.

15

Figure 2.4: FLAME Process

As for the visualization, NetLogo and Repast can produce output in real time. FLAME on the other

hand, requires that a model is initially run for a specific number of iterations to produce a textual

output. This textual output can be later visualized by utilizing the FLAME visualizer. Therefore,the

models of NetLogo and Repast are directly executable in visual simulation, while Flame models

can be visualized with the use of an external tool.

2.5 Summary

All previous four simulators can’t interact with the simulation in real time. Interactive computation

has been implemented in MASS within the InMASS branch. As for parallelization, Repast

Simphony, NetLogo, and FLAME only support single execution. Although MASON’s distribution

feature can support multiple machines, it’s not recommended according to the official guidance.

16

Instead, MASS can fully run the simulation in parallel. As for the learning curve and flexibility,

MASS uses third-party software, (i.e., Cytoscape) to visualize both agents and places. Within the

Cytoscape, users can easily change the output layer format for better observation. Besides,

MASS supports tracking any agent’s movement and records agents’ migration histories. This path

can be displayed in the Cytoscape.

17

Chapter 3 InMASS and Previous GUI Work

This section offers a summary of previous work that includes five basic components. First, we talk

about the InMASS and two features associated with it. Second, we talk about the reason why we

choose Cytoscape as the visualization tool. Third, we talk about the previous graph visualization.

Fourth, we talk about the previous tree visualization. Figth, we talk about Agent Visualization. In

the last, we talk about the MASS control panel.

3.1 InMASS

Nasser Alghamdi [18] was the first developer of InMASS. InMASS provides an interactive

environment for users to communicate with their MASS clusters. Users can execute statements

line by line instead of hard coding them into a single jar package. That means users can determine

a specific implementation of Place and Agent during the simulation. The benefit is that users can

change and query the current state of the simulation at run time. Therefore, InMASS provides a

dynamic and flexible solution for each simulation. To achieve better performance and minimize

the impact on the codebase, Daniel Blashaw [20], the second developer of InMASS, enhanced

simulation controls of InMASS in the following two aspects:

1. Management of dynamically created classes.

2. Choice of Memory and disk space for maintaining agents’ history.

On top of that, InMASS uses JShell [19] to achieve interactive operations. JShell is a Java Shell

tool, an interactive tool for learning the Java programming language and prototyping Java code.

For example, Read Evaluate Print Loop (REPL), an interactive interpreter runs statements,

declarations, and expressions as they are typed in the console or a terminal and displays the

18

results immediately. Besides, the current InMASS supports the following features: checkpoint,

rollback, lambda expressions, and agent tracking. All these features are combined to make

InMASS an excellent choice for users with needs for dynamic operations at run time.

3.1.1 Checkpoint/Rollback

Checkpointing allows users to take an on-going execution snapshot of the current MASS cluster.

InMASS provides three strategies for checkpointing. They are InMemoryStoreStrategy,

InDiskStoreStrategy, and InTemporaryDiskStoreStrategy. As the names imply, users can

checkpoint the current state of the simulation in memory, or temporarily in the disk, or permanently

in the disk. All functional calls after this point will be recorded in InMASS. When users want to

rollback to a certain call x, the simulation will roll back to the checkpointing state first, and then

re-execute calls until the call x. The goal of this feature is to make the simulation controllable and

fault tolerant.

3.1.2. Agent History Tracking

Daniel Blashaw first developed the agent tracking API. The feature aims to make agent movement

traceable, as agents may spawn child agents to expand the search radius and the parent agent

may be killed after spawning child agents. Thus, it’s not possible for each agent to record places

it has traveled to. To resolve this, the tracking feature instead has each place record the IDs of

agents residing on it. So, the information of agent path will not be affected when an agent is killed.

To get all agents’ complete paths, the agent tracking API helps users collect path information from

each place and combine them together. In some benchmark applications such as Triangle

Counting (TC) [24], showing the full agents’ paths is useful to better understand their behaviors.

19

 3.2 Cytoscape

Cytoscape is an open-source software for visualizing and analyzing complex networks. It is widely

used by researchers, biologists, and data scientists to explore and understand the complex

relationships and interactions within biological systems, social networks, and other complex

systems [20]. There are three main reasons of choosing Cytoscape as this project’s visualization

tool:

First, the Cytoscape desktop application is written in Java, which means it can be used on various

operating systems, including Windows, Mac, and Linux. However, Cytoscape does not currently

support running on Macs with M1 (Silicon Valley) chips. If you are using an M1 Mac and want to

run Cytoscape, one possible way is to use the build script from their GitHub web page

(https://github.com/cytoscape/cytoscape) to build a new Cytoscape because all related codes are

open source.

Second, Cytoscape's key strengths are its flexibility and extensibility. It is designed to use various

data sources and file formats, including SIF (Simple Interaction Format), GML, XGMML, and

GraphML. To cooperate with these data formats, Cytoscape offers a user-friendly interface and a

range of powerful features for working with networks, including tools for importing and exporting

data and visualizing layout networks. On top of visualization, it allows users to customize the

appearance of their network and highlight specific features or patterns.

Third, Cytoscape offers a range of plugins that can enhance the current application by adding

new capabilities. These plugins are all managed by App Manager and can be developed by users

or third-party developers. One of the powerful plugins is called StringApp, which may be familiar

to researchers in the biological field. This supports importing needed data directly from the online

STRING database and visualizing it locally.

20

3.3 Graph Visualization

Justin Gilroy [21] implemented MASS's graph data structure and maintenance features. Besides,

he was the first developer to visualize graphs constructed over multiple computing nodes, using

Cytoscape. To conveniently import graphs into the simulation, Justin included several formats,

including HIPPIE and MATSim, in his implementation.

However, there are some limitations to his design. Cytoscape is written in Java, and the desktop

application runs on JVM. Memory usage would be an obvious problem when introducing a large

graph. To address this problem, Daniel Blashaw introduced the idea of the partial graph. When

users want to display a large graph in Cytoscape, they can choose to display n-neighbors of the

vertex they are most interested in, and the information around that vertex can be more specific. It

can save much more time than loading the whole graph.

3.4 Tree Visualization

Yuna Guo [22] was the first student who implemented tree structures for the MASS library. The

structures include binary tree, quad tree, and 2D continuous space. The binary tree structure

allows the user to construct a unique binary tree using a bunch of two-dimensional point

coordinates at each compute node. Although the graph structure can be used as a binary tree

sometimes, the binary tree structure is mainly designed to provide a more intuitive programming

model and facilitate simulations that are specific to binary trees, such as the RangeSearch

benchmark application [24]. The quad tree is used in the closest pair of points (CPP) benchmark

application [24].

Tianhui Nie [23] was the first student who visualized places of 2D continuous space, binary tree,

and quad tree. She implemented the BinaryTreeNodelModel and QuadTreeNodelModel to help

21

transfer binary-tree and quad-tree Places data to Cytoscape. As for 2D continuous space

visualization, she managed to map quad-tree Places data into 2D space using the tree index to

calculate the length and width of each grid in 2D space.

3.5 Agent Visualization

Daniel Blashaw first implemented agent visualization for the TriangleCounting application in

Cytoscape. To successfully transfer agents’ history path data to Cytoscape, Daniel enhanced the

MASS- Cytoscape plugin and added a new task called “Import Agents” to integrate all agents’

path data into a single table within Cytoscape. Besides, he implemented two modes of displaying

agents: the first mode is “Heat Map” where each vertex will change the shade of its color according

to the number of agents residing on it, and the second one is “Agent Path” where only the selected

agent’s path will be highlighted.

3.6 MASS Control Panel

The MASS Control Panel was first created by Daniel Blashaw where users can change certain

parameters to import graphs and agents. It is composed of the following four main plugins: import-

network, export-network, import-agent, and mass-agents. The import-network plugin is

responsible for importing graphs from InMASS to Cytoscape, while the export-network plugin is

responsible for exporting graph networks. The import-agent plugin is responsible for import agents’

path data from InMASS, and the mass-agent plugin is responsible for creating MASS-Control

Panel and integrating the functions of the previous three plugins. Overall, the MASS Control Panel

provides all InMASS users with a user-friendly GUI.

22

Tianhui Nie further enhanced the control panel by adding features that support importing other

structures, including binary tree, quad tree, and 2D continuous space.

3.7 Summary

All previous students have made significant contributions to the development of InMASS. Nasser

Alghamdi first implemented InMASS and its checkpoint/rollback features, while Daniel Blashaw

later enhanced InMASS with dynamic loading and choice of different storage strategies. However,

their work is based on the old version of MASS, and to work with the latest version of MASS,

InMASS and all related features need re-engineering. Additionally, Daniel Blashaw visualized

graph places and agents in Cytoscape. But agents within each vertex are only displayed using

the shade of colors instead of dots or agentIDs. Tianhui Nie was the first to implement the

visualization of binary tree, quad tree, and 2D continuous Space. However, her visualization can

only work with a single computing node, and the current MASS Control Panel is not user-friendly

for importing other structures. Users must manually input the import type, and the inner logic still

needs improvement.

23

Chapter 4 MASS UI Enhancement

This chapter shows the architecture and features of the new MASS UI: (1) Enhanced InMASS,

(2) Enhanced MASS-Cytoscape, and (3) Web GUI.

4.1 Enhanced InMASS

To provide the main functionality of InMASS, we have leveraged Nasser Alghamdi and Daniel

Blashaw’s work on InMASS. We re-implemented dynamic loading and extended existing features

including checkpoint/rollback and agent history tracking to adapt to MASS. In addition, we also

optimized the code structure to improve readability.

4.1.1 Dynamic Loading

The previous implementation relies on passive dynamic loading, where remote nodes only receive

specific class definitions from the master node when creating a Places or Agents object. In

contrast, our project uses active dynamic loading, where class definitions are passed to remote

nodes when a Places or Agents object is created on the master node. To facilitate this process,

we develop a new message type, "CLASS_INITIALIZATION", as shown in Figure 4.1. This

message includes a new value, "bc.getByteClass", where "bc" is an object of the ByteCode class

that is added to encapsulate the class defined on the master node. To transfer this definition

between computing nodes, we use a byte array to store the serialized classes.

Upon receiving the initialization message, remote nodes deserialize the ByteCode object and

store it into a local classLoader called InMASSClassLoader, which is added to enhance the

default classLoader for InMASS users. The InMASSClassLoader fetches the passed class

24

definitions and is used in the SimpleObjectFactory that manages all object creation. Within the

InMASSClassLoader class, there are two variables: byteClassStore and classStore. The

byteClassStore maps class names to the corresponding ByteCode objects, while classStore

stores all deciphered class objects. After remote nodes store the class definition in their local

InMASSClassLoader, they send ACK messages back to the master node, which confirms it with

the barrierAllSlave method.

In step 6, the host node begins sending the PLACE_INITIALIZATION message to all remote

nodes. Remote nodes load their local InMASSClassLoader and use the overridden method

findClass to fetch class definitions from the local classStore maps assigned values in step 3. As

a result, remote nodes create local Places and sent an ACK message back to the master node.

Figure 4.1: The Sequential Diagram of the New Dynamic Loading Feature

25

To address deserialization issues with agents that can migrate across different computing nodes,

we add a new class, InMASSObjectInputStream, that is only used in deserialization. This class

interact directly with InMASSClassLoader to retrieve the agent class definition, allowing remote

nodes to deserialize these agent objects successfully.

Figure 4.2: Class Diagram of the New Dynamic Loading Feature

Due to the complexity of the MASS library, this diagram only shows affected classes. Classes marked in green

means new classes. Classes marked in blue means modified classes. Classes marked in gray means removed

classes.

26

4.1.2 Checkpointing/Rollback

To minimize complexity and minimize disruption to the existing MASS implementation, our

approach aims to simplify the design. We remove the previous implementation of encapsulating

all internal fields within two new classes (AgentsInternal and PlacesInternal). Instead, we adopt

the original idea of using placesMap and agentsMap to store a snapshot of the simulation for

checkpointing. The placesMap stores a PlacesBase object for each created places object,

identified by a handle ID. Similarly, agentsMap stores an AgentsBase object for each created

agent object, also identified by a handle ID. During checkpointing and rollback operations, these

base classes are serialized or deserialized. To ensure proper serialization, we mark certain fields

(objectFactory, eventDispatcher, and clock) as transient since they either cannot or do not need

to be serialized. We use the MState object to maintain a snapshot of the checkpointed placesMap

and agentsMap. During deserialization, the MState object helps us recover the old maps. For

AgentsBase deserialization, we have to deserialize it twice since the Agents class, which extends

AgentsBase, adds a new field called "localAgents". The first deserialization is used to update the

inner values of the AgentsBase object, while the second one is required to replace the current

localAgents with the old version. This necessitates a forced conversion of the AgentsBase type

to the Agent type.

4.1.3 Agent History Tracking

In the previous tracking feature, agents record their location and iteration time when manageAll

is invoked. The agents have three behaviors: migration, spawning, and killing. During migration,

the destination place records the current time and the upcoming agent. During spawning, the

current place records the time and the spawned agents and further records the mapping between

child and parent agents. However, in most simulations, the agent's location changes during

27

migration, making it unnecessary to record the agent's location during spawning. To address this

issue, we add a new parameter, "shouldAddHistory," to the recording function. This Boolean value

is set to true when agents are migrating and false when they are spawning. In the latter case, the

current place only records the mapping between child and parent agents.

We also optimize the synchronization of the iteration among all computing nodes. For the agent

initialization, all computing nodes first set their local iteration to zero. The flag value,

shouldIncrement, is set to true when the initialization of agents is done. Figure 4.3 illustrates the

iteration synchronization order in agents manageAll among multiple nodes. In step 1, we add the

iteration variable to the AGENTS_MANAGE_ALL message, which is the first synchronization step

to ensure that every computing node has the same iteration value as the master node at the

beginning of manageAll. In step 2, both the master node and remote nodes execute manageAll

and update agent location and history. In step 3, the master node creates an array to retrieve the

updated iteration from remote nodes. In step 4, the master node updates the array with iteration

values sent from remote nodes through barrierAllSlaves. We extend the barrierAllSlaves function

to not only receive the number of agents used to update the localAgents array but also the iteration

values from remote nodes. Step 5 is the second synchronization step that updates the iteration

value with the maximum value calculated from the returned array on the master node and ensures

that the current iteration value is the latest value for the next manageAll.

28

Figure 4.3: Iteration Synchronization Order of Agents ManageAll

4.2 Enhanced MASS-Cytoscape

The implementations are to expand and optimize the three plugins: import-network, import-agent,

and mass-agents. Figure 4.4 shows an overview of MASS-Cytoscape architecture. On the left

side, we have a user space where users can interact with both InMASS and Cytoscape. On the

right side, we demonstrate import classes and components of Cytoscape as the client and

InMASS as the server.

29

The general execution flows are:

(1) A user starts InMASS and executes a simulation with creating both places and agents.

(2) A user creates a CytoscapeListener instance using places object.

a) The listener initiates a thread to create a socket server listening to default port 8165

b) The listener initiates a HashMap to register all processors. The key is a string describing

the function of the processor. The value is a processor that implements Supplier functional

interface. The processor invokes a certain function within created places and returns the

obtained result.

(3) A user executes multiple function calls (agents spawning, migration, and manageAll).

(4) A user opens the Cytoscape desktop application and accesses the MASS Control Panel.

(5) A user changes the default configuration including host name, port, data structure.

(6) A user imports a network of the created places.

a) Cytoscape reads hostname and port, establishes socket connection with InMASS.

b) Cytoscape sends a request string based on the selected data structure to InMASS.

c) InMASS receives the request string and parses it with registered processors. The

processor executes its registered function and sends returned data back to Cytoscape.

d) Cytoscape receives the data and updates its node and edge table.

(7) Cytoscape creates a new network view, and the user can see rendered places from node and

edge tables.

(8) A user imports agents history data.

30

a) Cytoscape reads hostname and port, establishes socket connection with InMASS.

b) Cytoscape sends two request strings based on the selected data structure to InMASS.

The first string is to request agents’ full path data. The second string is to request agents’

historical count.

c) InMASS receives the request strings separately and parses it with registered processors.

The processor executes the registered function, and then sends path and historical count

data back to Cytoscape.

d) Cytoscape receives agents’ path data and imports the data into a newly created table

called AgentHistory.

e) Cytoscape receives agents’ historical count data and imports the data into a newly created

table called AgentNumHistory.

(9) A user chooses either mode from two view modes:

a) Heat Map: A user changes time value from 0 to maximum iteration time that is calculated

from the AgentHistory table. Agents are displayed as dots within each visualized place.

b) Agent Path: A user selects any agent name from the scroll panel. The corresponding agent

path is highlighted. The colors of involved nodes and edges are distinct from others.

31

Figure 4.4: MASS-Cytoscape Integration System Architecture

The left side is the user space where users can run the simulation within InMASS and open

Cytoscape to visualize created places and agents. The right side is the application space where

we only demonstrate important components, classes, and methods. The three green cylinders

are MASS-Cytoscape plugins. Arrows marked in green indicate the flow when importing network

(visualize places). It is managed by the import-network plugin. Arrows marked in purple indicate

the flow when importing agents (visualize agents). It is managed by the import-agent plugin.

Within InMASS, methods marked in green are used to return data for Places visualization.

Methods marked in purple are used to return data for Agents visualization. After retrieving the

data, the plugins then create or update related table information.

32

4.2.1 Enhanced Place Visualization

a. Binary Tree Places

To enable the visualization of binary trees in a distributed setting, we introduce a new message

type, "BINARY_TREE_GET_PLACES," which facilitates the retrieval of binary tree information

from remote nodes. Given the recursive nature of binary trees, we only request the root node of

each remote binary tree.

As illustrated in Figure 4.5, upon receiving a request string from Cytoscape, the master node

invokes the transferBinaryTree function, which converts the class of the component node from

BinaryTreePlace to BinaryTreeModel. This step aims to simplify the binary tree data to include

only the necessary information for visualization. Next, the master node adds the converted tree

node rootA' to a list. In the getRemoteBinaryTrees function, the master node sends a

"BINARY_TREE_GET_PLACES" message to all remote nodes and appends the fetched tree

nodes rootB' and rootC' to the list. Finally, a list of binary tree nodes data is sent to Cytoscape for

visualization.

33

Figure 4.5: The General Process of getBinaryTree Function

b. Quad Tree Places

Similarly, for quad trees, we introduced a new message type, "QUAD_TREE_GET_PLACES," to

retrieve information from remote nodes. We also simplify the original QuadTreePlace class by

introducing the QuadTreeModel class.

To improve the visual representation of quad trees, we add two new fields to the QuadTreeModel

class: isLeaf and coordinates. The coordinates field is used as the default label for the visualized

places, while the isLeaf field distinguishes between leaf nodes (which correspond to actual values)

and non-leaf nodes (which correspond to value ranges used to split the quad tree).

34

To achieve this effect, we leverage one of Cytoscape's mapping functions, DiscreteMapping.

Specifically, we specify "NODE_SHAPE" as the selected style and "isLeaf" as the mapping

column. The function returns a key-value pair map, where the keys are the actual values in the

isLeaf column, and the values are pre-defined node shapes in Cytoscape. As shown in Listing

4.1, we set the shape of leaf nodes to circle and non-leaf nodes to rectangle.

Listing 4.1: Code snippet of the Style Mapping for Quad Tree visualization

4.2.2 Enhanced Agent Visualization

a. Graph Agents

To improve visualization clarity, it is more effective to represent agents as dots on each place

rather than visualizing their IDs. The number of dots on each place corresponds to the number of

agents present. To track the number of agents at each iteration time, the project leverages the

35

MASS agent tracking API to record each agent's travel history. This history consists of two parts:

the iteration time and the linear index of visited places. To store this information, a global

HashMap named "agentNumHistory" is created, as shown in Listing 4.2. The "Long" type in the

map represents the iteration time, which increments by one each time agents invoke the

"manageAll" function. The "String" type represents a place's linear index, and the "Integer" type

represents the number of agents.

Listing 4.2: Code snippet of agentNumHistory type

To transfer the "agentNumHistory" data to Cytoscape, a new function named

"getAgentNumHistory" is created, as shown in Figure 4.6. The function checks if the

"agentNumHistory" map already exists in the system and caches the previous query result to

improve performance. If it is the first query, the "callAll" method is invoked. To collect agents' path

history, the tracking API involves three general steps: merge, propagate parent history, and sort

the history by iteration time for each agent. To get agent number history, only the first step is

included in the implementation. After merging all agents' itineraries, an aggregation is performed

to assign values to the "agentNumHistory" map. This map is a shallow copy of the

"agentNumHistory" map in MASSBase, which is the final return value. To ensure that there is only

one "agentNumHistory" in a simulation, this step is crucial.

36

Figure 4.6: The Flowchart of Agent Number Tracking API

In Cytoscape, an additional function is created to receive the returned "agentNumHistory" map.

A new column called "Number_of_Agents" is added to the imported node table to store the

number of agents. The required type is "String," indicating that four agents will be displayed as

four dots (….) on that place. As shown in Figure 4.4, an extra table named "agentNumHistory" is

created when importing agents. When a user changes the iteration time, the plugin queries the

"agentNumHistory" table with the time, calculates the correct number of agents, transforms it into

dots, and updates the "Number_of_Agents" field. This way, the user can see agents as dots when

switching the default displaying label to "Number_of_Agents."

37

b. Binary Tree Agents

To facilitate the visualization of agents in binary tree places, our implementation extended the

agent history tracking API and agent number tracking API for all binary tree related classes.

Notably, the global identifier for each binary tree place is a two-dimensional array, which is

different from the graph agent visualization where each vertex has a unique global linear index.

As illustrated in Figure 4.7, the first coordinate of the array identifies the compute node where the

current binary tree place is located, while the second coordinate distinguishes different binary tree

places within the same computing node.

Figure 4.7: Binary Tree Places Models

However, the current agent tracking API only supports passing the linear index of a place, which

poses a challenge in calculating the global linear index for each binary tree place across multiple

computing nodes. To address this, we implement a new way of calculating the global linear index

by creating a new two-dimensional array to store the size of binary tree nodes. The first coordinate

represents the maximum number of computing nodes, and the second coordinate represents the

maximum number of binary tree nodes among all computing nodes. To fetch the size of binary

tree nodes from each remote node during initialization, we implemented a new message type

38

"BINARY_TREE_PLACES_NODES." We calculate the maximum size of all returned values,

assign the value of host size to the first coordinate, and use the MatrixUtilities class's

getLinearIndex function to calculate the global linear index. Finally, we send the constructed size

array to all remote nodes and replace the size array used in the MatrixUtilities class, automatically

calculating the linear index when an agent records its current location.

Moreover, we implement two callAll methods for binary tree places to retrieve agent history from

remote places. The first method enables agent history tracking for all nodes, while the second

method returns an object array to store the retrieved history data. The rest of the processing is

similar to that of graphs.

4.3 Web GUI

The system architecture consists of three distinct components: the front-end, back-end, and data.

React.js is used in the front-end to facilitate rendering and communication with the back-end

through Axios requests. Vert.x serves as the web framework in the back-end and runs a Verticle

that listens to port 8080. Upon starting InMASS and opening a JShell session, a Vert.x instance

initializes and deploys a MyVerticle in the container using Vert.x's deploy method. The Verticle

then creates an http server and multiple routers to process the requests and returns data to the

front-end. The data server leverages memory space, where all required data can be found in

memory variables. Once the simulation ends or the JShell session closes, all resources are

released.

Figure 4.8 depicts the system's architecture diagram, where React.js manages front-end page

rendering and user actions. Users interact with the front-end by sending Axios requests to the

Vert.x server. Upon receiving the HTTP request, MyVerticle identifies the corresponding router to

39

process it. The router queries the memory space to retrieve the data, converts it into a JSON

string, and returns the string data to the front-end.

Figure 4.8: The Architecture Diagram of the WEB GUI

The WEB GUI uses three primary APIs. The first API, "/sync," is used to query the status of the

entire cluster to determine if all nodes are in "running" status or if some nodes are in "terminate"

status. We develop a new method called "getClusterStatus" to obtain this data. In this method,

the master node initially sends ACK messages to remote nodes. If the remote node is still running,

it responds to the master node with an ACK message. The master node then receives the returned

information, encapsulates it into Status objects, and returns it as a list. The second API, "/calls,"

retrieves all functional calls made after a user checkpoints the simulation. The third API,

"/rollback/:step," provides a "rollback" button after each functional call in the WEB GUI, enabling

40

users to return to a specific step. The path's step variable is computed from the index of that

specific call in the entire call list.

41

Chapter 5 Evaluation

In this chapter, we (1) verified the following features of the re-engineered InMASS: Dynamic

loading, checkpoint/rollback, and agent history tracking; (2) demonstrated enhanced Places

visualization of binary tree, quad tree, and 2D continuous space in a distributed setting; enhanced

Agents visualization of graph and binary tree; optimized MASS control panel; and (3) evaluated

our Web GUI design.

5.1 Re-engineering Work

The project re-implements the following three features of the original InMASS such as dynamic

loading, checkpoint/rollback, and agent tracking API; optimizes the code structure to enhance

readability. The three features are tested on the Hermes computing cluster. In the cluster, this

project mainly uses three machines (hermes01.uwb.edu ~ hermes03.uwb.edu).

5.1.1 Verification of Dynamic loading

To verify the dynamic loading feature, the project utilizes the QuickStart application. The

QuickStart application creates 27 places in 3D dimensions, with each computing node managing

nine of them. Nine agents are initially located on hermes01.uwb.edu and move along the x-axis,

advancing one step per iteration. Only the Matrix and Nomad classes are initialized, each from

Places and Agents, on hermes01.uwb.edu. The simulation terminates when all agents migrate to

herme03.uwb.edu, demonstrating that the Agent and Place classes are available on the other two

remote nodes, and that the remote inMASSClassLoaders are able to successfully load the

classes.

42

5.1.2 Verification of Checkpoint and Rollback

To verify the checkpoint/rollback feature, the project still uses the QuickStart application

discussed in section 5.1.1, while also adding more code and functions to the sample program.

Figure 5.1 illustrates the entire simulation process, which includes the checkpointing of the system

immediately after creating agents and places. Subsequently, all agents execute two migrations

from hermes01.uwb.edu to hermes03.uwb.edu. After the migrations, the rollback function is

utilized to revert the system state to time 0, when the agents and places are initially created. The

MASS resets all agents back to herme01.uwb.edu before calling for another round of agent

migration, this time from herme01.uwb.edu to hermes02.wub.edu. The success of this migration

serves as a verification of the checkpoint/rollback feature.

43

Figure 5.1: The whole process of quickStart Application (Rollback version)

5.1.3 Verification of Agent History Tracking

To verify this feature, the project uses the triangle counting benchmark application, as shown in

Figure 5.2, where the visualization of imported nodes indicates only two triangles in the graph.

44

Figure 5.2: Graph Nodes’ Visualization in Triangle Counting Benchmark Application

In this application, agents are initialized on each vertex and move three steps. During the first two

steps, agents migrate only to neighboring nodes with lower indices. In the final step, agents try to

migrate back to their original vertex. The number of agents that complete all steps represents the

number of triangles. Figure 5.3 presents the printed result of all agents' history, where only two

agents (agent 1000001 and agent 2000000) travel back to the original vertex, with paths of [0,4]

[1,3] [2,2] [3,4] and [0,2] [1,1] [2,0] [3,2], respectively. These results confirm the existence of two

triangles in the graph and validate the functionality of the agent history tracking API.

45

Figure 5.3: Printed traces of all created agents

5.2 Places and Agents Visualization

In this section, we present the visualization of places and agents as well as the optimized MASS

control panel. The visualization is implemented under a distributed setting (using

hermes01.uwb.edu ~ hermes03.uwb.edu) and is verified using various benchmark applications.

The following subsections describe the visualization of different types of places and agents.

5.2.1 Places Visualization

a. Binary Tree Places

The visualization of binary tree places is implemented and verified using the RangeSearch

benchmark application. The implementation is tested on three computing nodes

(hermes01.uwb.edu ~ hermes03.uwb.edu). The partition algorithm of Binary Tree Places is used

to divide 16 points into 8 binary tree places on hermes01.uwb.edu, another 4 points on

hermes02.uwb.edu, and the remaining 4 points on hermes03.uwb.edu. Figure 5.4 shows the

visualization result, where each binary tree represents a computing node.

46

Figure 5.4: Binary Tree Places Visualization

b. Quad Tree Places

The visualization of quad tree places is implemented and verified using the CPP benchmark

application. The implementation is tested on two computing nodes (hermes01.uwb.edu ~

hermes02.uwb.edu). The partition algorithm divides all 16 points into two groups, where each

47

group constructs a single quad tree. Figure 5.5 shows the visualization result, where the quad

tree on the top stores 9 points, and the quad tree below stores the other 7 points.

Figure 5.5: Quad Tree Places Visualization

c. 2D Continuous Space

The visualization of 2D continuous space is implemented using the same data as quad tree. We

use two machines (hermes01.uwb.edu ~ hermes02.uwb.edu) and pre-calculate the position of

each 2D space to avoid overlapping. The width and length of the previously visualized 2D space

are used to calculate the position of the next visualized 2D space. Figure 5.6 shows the final

visualization result, where the visualized 2D spaces are arranged in anti-diagonal positions, and

each place is shown using the global tree index.

48

Figure 5.6: 2D Continuous Space Places Visualization

49

5.2.2 Agents Visualization

a. Graph Agents

 This project visualizes the agents in graphs using the TriangleCounting application. The initial

distribution of agents is shown in Figure 5.7, where each vertex has only one agent. The agents

then migrate to the neighboring vertices with a lower index. Figure 5.8 shows the agents'

visualization after the simulation is finished, where only two agents reside on vertex 2 and 4. The

visualization of agents in graphs is verified by the agents' trace shown in section 5.1.3.

Figure 5.7: Agents visualization at the beginning of the TriangleCounting application

50

Figure 5.8: Agents visualization at the end of the TriangleCounting application

b. Binary Tree Agents

Section 5.2.1 discussed the use of the RangeSearch application to visualize places in this project.

As for agents visualization, figure 5.9 presents the initial visualization result. It shows that two

agents have been initialized on the root node of each binary tree. The red coordinate denotes the

boundary of the current binary tree location. To construct the binary tree, the algorithm divides

the first level using the x coordinate, the second level using the y coordinate, and the third level

using the x coordinate again. The entire binary tree is divided alternatively in x and y coordinates.

51

Figure 5.9: Agents visualization at the beginning of the RangeSearch application

Figure 5.10 presents the visualization result after the search has stopped. The binary tree on the

right only contains one agent, indicating that the search stopped earlier in the left binary tree as

the remaining nodes were outside the search boundary, and all agents within that tree had

terminated themselves.

52

Figure 5.10: Agents visualization at the end of the RangeSearch application

c. Latency

In addition to the original dataset, this project uses 1000 and 10000 points to test the visualization

of binary tree agents. Because the number of agents at each moment is pre-calculated before

passing to Cytoscape, and because MASS has efficient messaging, the latency from agents on

different nodes to visualization is negligible. But the rendering time of places in Cytoscape

increases with the number of created places. On the contrary, the rendering of agents in each

place is very fast and the users can’t see significant delays. However, when the number of places

is large, the current screen cannot accommodate all the visualized places at a size that can be

seen clearly. This may affect the final effect of the agent visualization.

53

5.2.3 MASS Control Panel Optimization

Figure 5.11 compares the optimized panel, which includes three critical enhancements aimed at

enhancing the overall user experience. First, the data structure input box has been replaced with

a select box, offering users a choice of four supported data structures: Graph, Binary Tree, Quad

Tree, and 2D Continuous Space. This upgrade simplifies the selection process, allowing users to

choose their preferred data structure with ease.

Second, some parameters on the panel, such as N-Neighbors Graph, centroid, and Degree of

Separation, are only applicable to graph networks. To prevent confusion and streamline the user

experience, this project hides these options when users import a non-graph network.

Finally, this project optimizes the import agents operation logic. As discussed in section 4.2.2,

MASS-Cytoscape performs two functions when importing agents' history data: importing agents'

history path data and importing the number of agents' history data. However, this operation can

only function after importing network places. To optimize the button logic and streamline the user

experience, this project has ensured that the button is only activated after importing the network.

By implementing these enhancements, this optimized panel ensures that users can effortlessly

navigate and utilize the features offered by MASS-Cytoscape.

54

Figure 5.11: Optimized MASS Control Panel

5.3 Web GUI

Figure 5.12 displays the main page of the WEB GUI, which provides users with critical insights

into their cluster's performance. The top section of the interface contains the cluster monitoring

panel, where users can obtain real-time updates on the status of each machine in the cluster. The

machines' status is categorized into two groups: running and terminated. In the event of an

unexpected shutdown, the machine's status will transition from running to terminated.

55

The panel below displays the functional calls that users make to the cluster. This feature is an

extension of the checkpoint/rollback feature, which enables users to view all the calls with their

respective function IDs. This feature assists users in identifying the specific step they need to roll

back to with ease. Additionally, the rollback button is designed to streamline users' operations

within InMASS.

Figure 5.12: All-in-one WEB GUI

56

Chapter 6 Conclusion

In ABM simulations, the interaction between their underlying system and its users can significantly

increase usability and controllability. In this project, we enhanced the design of InMASS to make

it compatible with the latest MASS, which is critical for future InMASS developers to stay aligned

with MASS developers. The project also implemented visualization of Places in multiple

computing nodes, which underlines the distributed nature of our MASS system. The improvement

of Agent visualization makes it possible to see the actual number of agents residing on each place

and facilitates users in monitoring the distribution of agents at each iteration during the whole

simulation. The last implementation of this project is the Web GUI, which allows users to monitor

the state of the whole distributed cluster and simplify the rollback operation.

This project can be optimized and further expanded in the following three aspects:

1. Optimize the WEB GUI by designing a built-in terminal. Currently, InMASS users run the

simulation using the console. The WEB GUI only addresses the monitoring problem. In

that case, it would be better to combine them together. So, users can run the simulation

and monitor the cluster all in a single WEB interface.

2. Extend agents visualization for quad tree and 2D continuous space in Cytoscape. Current

visualization is extended for both graph and binary tree using triangle counting and range

search benmark application. The next step should be visualizing quad tree and 2D space

agents using finding the closest pair of points and voronoi diagram benchmark application.

3. Develop a MASS’s own visualization tool. If Cytoscape can’t visualize quad tree or 2D

space agents, or the visualization result is not ideal. It’s necessary to develop a

visualization tool for MASS only.

57

4. Perform usability tests. The current users of InMASS are only limited to DSLab members.

To get accurate feedback and remove bias, it’s better to collect feedback from more than

one hundred users outside of DSLab groups. The questions are:

a. What features do you think are necessary for visualization?

b. What do you think of the startup process for visualization in MASS compared with

other ABM simulators in terms of difficulty and latency?

c. Does MASS support all data structures that you are interested in?

d. As for places visualization, are these places correctly located in the corresponding

positions?

e. Compare the latency of visualizing both places and agents.

f. As for agents visualization, compare the appearance of agents.

g. Are agents’ movement static or dynamic?

h. Is it possible to observe or trace single agents' movement?

i. Can you know the agents' moving directions?

j. Compare the MASS control panel with other ABM simulators’ editor interface.

58

BIBLIOGRAPHY

[1] Grimm, Volker, and Steven F. Railsback. Individual-based modeling and ecology. Princeton

university press, 2005.

[2] Gustafsson, Leif; Sternad, Mikael (2010). "Consistent micro, macro, and state-based population

modelling". Mathematical Biosciences. 225 (2): 94–107. doi:10.1016/j.mbs.2010.02.003. PMID

20171974.

[3] Hu, J.; Bhowmick, P.; Jang, I.; Arvin, F.; Lanzon, A., "A Decentralized Cluster Formation

Containment Framework for Multirobot Systems" IEEE Transactions on Robotics, 2021.

[4] Hu, J.; Turgut, A.; Lennox, B.; Arvin, F., "Robust Formation Coordination of Robot Swarms with

Nonlinear Dynamics and Unknown Disturbances: Design and Experiments" IEEE Transactions on

Circuits and Systems II: Express Briefs, 2021.

[5] Hu, J.; Bhowmick, P.; Lanzon, A., "Group Coordinated Control of Networked Mobile Robots with

Applications to Object Transportation" IEEE Transactions on Vehicular Technology, 2021.

[6] Wiering, M. A. (2000). "Multi-agent reinforcement learning for traffic light control". Machine Learning:

Proceedings of the Seventeenth International Conference (Icml'2000): 1151–1158. hdl:1874/20827.

[7] Niazi, Muaz; Hussain, Amir (2011). "Agent-based Computing from Multi-agent Systems to Agent-

Based Models: A Visual Survey" (PDF). Scientometrics. 89 (2): 479–499. arXiv:1708.05872.

doi:10.1007/s11192-011-0468-9. hdl:1893/3378. S2CID 17934527. Archived from the original (PDF)

on October 12, 2013.

[8] M.Fukuda, Parallel-Computing Library for Multi-Agent Spatial Simulation in Java, 2010

[9] DSLab, "MASS Java Manual," 2016. [Online]. Available:

https://depts.washington.edu/dslab/MASS/docs/MASS%20Java%20Technical%20Manual.pdf

[10] Apache Spark, “Spark Web UI – Understanding Spark Execution,” 2023. [Online]. Available:

https://sparkbyexamples.com/spark/spark-web-ui-understanding/

[11] Cloudera, “Hue - The open-source SQL Assistant for Data Warehouses,” 2023. [Online]. Available:

https://gethue.com//posts/

[12] Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of

biomolecular interaction networks[J]. Genome research, 2003, 13(11): 2498-2504.

[13] North, Michael J, Nicholson T Collier, Jonathan Ozik, Eric R Tatara, Charles M Macal, Mark Bragen,

and Pam Sydelko. 2013. “Complex Adaptive Systems Modeling with Repast Simphony.” Complex

Adaptive Systems Modeling 1 (1): 3. https://doi.org/10.1186/2194-3206-1-3.

[14] Wilensky, U. & Stroup, W., 1999. HubNet. http://ccl.northwestern.edu/netlogo/hubnet.html. Center for

Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

[15] Abelson, Hal, Nat Goodman, and Lee Rudolph. "Logo manual." (1974).

[16] Luke, Sean, et al. "MASON: A Java multi-agent simulation library." Proceedings of Agent 2003

Conference on Challenges in Social Simulation. Vol. 9. No. 9. 2003.

http://ccl.northwestern.edu/netlogo/hubnet.html

59

[17] L. Chin, D. Worth, C. Greenough, S. Coakley, M. Holcombe and M. Kiran, "FLAME: an approach to

the parallelisation of agent-based applications", 2012.

[18] Nasser. Alghamdi, "Supporting Interactive Computing Features for MASS Library: Rollback and

Monitoring System” Depts.washington.edu, 2020. [Online]. Available:

http://depts.washington.edu/dslab/MASS/reports/NasserWhitePaper_sp20.pdf

[19] Cheng F, Cheng F. jshell[J]. Exploring Java 9: Build Modularized Applications in Java, 2018: 57-65.

[20] Daniel. Blashaw, "Interactive Environment to Support Agent-Based Graph Programming in MASS

Java,” Depts.washington.edu, 2021. [Online]. Available:

http://depts.washington.edu/dslab/MASS/reports/DanielBlashaw_whitepaper.pdf

[21] Gilroy J, Paronyan S, Acoltzi J, et al. Agent-navigable dynamic graph construction and visualization

over distributed memory[C]//2020 IEEE International Conference on Big Data (Big Data). IEEE,

2020: 2957-2966.

[22] Y. Guo, "Construction of Agent-navigable Data Structure from Input Files", Depts.washington.edu,

2021. [Online]. Available:

https://depts.washington.edu/dslab/MASS/reports/YunaGuo_whitepaper.pdf.

[23] Tianhui. Nie, "Visualization of 2D Continuous Spaces and Trees in MASS Java,"

Depts.washington.edu, 2022. [Online]. Available:

http://depts.washington.edu/dslab/MASS/reports/TianhuiNie_whitepaper.pdf

[24] Fukuda M, Gordon C, Mert U, et al. An agent-based computational framework for distributed data

analysis[J]. Computer, 2020, 53(3): 16-25.

http://depts.washington.edu/dslab/MASS/reports/NasserWhitePaper_sp20.pdf
http://depts.washington.edu/dslab/MASS/reports/NasserWhitePaper_sp20.pdf
http://depts.washington.edu/dslab/MASS/reports/DanielBlashaw_whitepaper.pdf
http://depts.washington.edu/dslab/MASS/reports/DanielBlashaw_whitepaper.pdf
http://depts.washington.edu/dslab/MASS/reports/TianhuiNie_whitepaper.pdf
http://depts.washington.edu/dslab/MASS/reports/TianhuiNie_whitepaper.pdf

60

Appendix A: Developer Guide

A1. Cytoscape Installation

The following installation steps are base on Windows 11, but it should be similar on other

platforms. If you want to check the instructions based on Mac OS platform. Please refer to the

developer guide of Tianhui Nie’s whitepaper.

1. Download JDK 11 and set JAVA_HOME environment.

2. Download and install Cytoscape. Download Cytoscape from its official website. In this

project, we use Cytoscape verison 3.9.1.

3. Download MASS-Cytoscape plugins from Bitbucket. Please download the

mass_java_utilities repo from Bitbucket. This project is based on yifei/dev branch

4. Compile and install MASS-Cytoscape plugins.

a. Use IDEA or terminal to compile the utilities package

b. Move compiled jar files to Cytoscape app folder

https://depts.washington.edu/dslab/MASS/reports/TianhuiNie_whitepaper.pdf
https://cytoscape.org/download.html
https://bitbucket.org/mass_utility_developers/mass_java_utilities/src/24bcf7d44fc988c0b1cb765e23ff5da8ca313218/?at=yifei%2Fdev

61

c. Reopen Cytoscape. The MASS plugins have been installed to the Cytoscape.

MASS control panel can be found.

62

A2. Compile and Run InMASS

1. Download the MASS library. Download the mass_java_core package from BitBucket.

In this project, we finished the work using InMASS branch.

2. Clone the repo on a UWB virtual machine. Or use the scp command to copy the code

from local to virtual machine.

3. Compile the mass_java_core package. Login to the virtual machine, find the

mass_jave_core package, and run the build script (build.sh) to compile the package.

https://bitbucket.org/mass_library_developers/mass_java_core/src/InMASS/

63

4. Run InMASS. Run this command to run InMASS platform.

64

A3. Run a visualization sample!

1. Go into the applicationInMASS folder and run the triangle sample.

2. Open Cytoscape and directly import graph network

65

3. Expand the graph. This step requires to install an external plugin (yFiles algorithm) in

the App Manager.

66

4. After successful installation, use the yFile Circular Layout to re-arrange the graph

visualization. (When importing binary/quad tree network, use yFile Tree Layout instead)

67

5. Import Agents (Refresh Agent History Data).

6. Display agents as dots on each place. Set default display label to the column

number_Of_Agent

68

7. Display original place ID label

a. Add a new column “Label 2” to the Node Table, type is String. Apply value “label:

attribute=name labelsize=10 outline=false background=false color=red” to

the entire column.

69

b. In the style panel, add a new property “Image/Chart 4” and select Label 2 as

Column name, and Passthrough Mapping as Mapping Type.

c. Add a new property “Image/Chart position 4” and use the left box to adjust

location to avoid overlap.

\

70

A4. Run the WEB GUI

1. Download the MASS library. Switch branch to yifeiyang/gui.

2. Compile the core package.

3. Run a non- terminating simulation.

4. Visit local 8080 port.

https://bitbucket.org/mass_library_developers/mass_java_core/src/290693a3778899f511eec060ec625a752bd974b4/?at=yifeiyang%2Fgui

