Overview

This quarter, my research focused on debugging and improving the correctness of benchmark
applications built on the MASS CUDA framework for large-scale agent-based modeling on
GPUs. The primary goal of my work was to identify sources of nondeterminism in existing
applications, understand how GPU execution order and memory access patterns contributed to
these issues, and refactor application-level code to enforce deterministic behavior without
sacrificing parallel performance.

Rather than emphasizing breadth across many benchmarks, my work this quarter concentrated
on deeply understanding the MASS CUDA execution model and developing a repeatable
methodology for detecting and resolving race conditions in GPU-based simulations.

Technical Focus and Methodology

My work centered on three core activities:

1. Understanding MASS CUDA Execution Semantics
| studied how callAll, exchangeAll, and kernel execution are scheduled in MASS
CUDA, with particular attention to how place-level and agent-level computations interact
with shared device memory. This included analyzing how interleaving computation and
update phases can lead to nondeterministic results even when no explicit data races are
reported by tools such as CUDA Racecheck.

2. Determinism Testing and Debugging Workflow
| established a determinism-testing workflow based on:

o Running simulations multiple times with identical inputs
o Writing deterministic binary output snapshots of simulation state
o Using byte-level comparison (cmp) to detect nondeterministic behavior

3. This approach proved essential in identifying subtle logical race conditions that are not
caught by traditional race detection tools but still produce divergent simulation results.

4. Application-Level Refactoring Strategy
I then focused on refactoring benchmark applications to enforce a clear separation
between:

o Read-only compute phases, where threads only read from shared state
o Write/commit phases, where updates are applied deterministically

5. This mirrors double-buffering techniques commonly used in parallel numerical solvers
and GPU simulation frameworks.

Key Findings

Through this process, | identified a recurring source of nondeterminism across multiple
applications:

State updates were being performed in the same kernel invocation that depended on neighbor
reads, causing execution-order—dependent behavior across GPU threads.

A concrete example of this occurred in the Heat2D benchmark, where temperature updates and
phase transitions were interleaved within a single computation step. Although the code was
logically correct in a serial context, parallel execution caused different threads to observe
partially updated state, resulting in nondeterministic outputs across runs.

To resolve this, | refactored the application to:

e Introduce explicit phase buffers
e Perform all reads from a stable “current” buffer
e Defer writes to a “next” buffer

e Commit phase transitions in a separate kernel invocation

After this change, repeated runs of the simulation with identical parameters produced identical
binary output, confirming deterministic behavior.

Progress Across Benchmarks

This quarter, | successfully:

e Identified and diagnosed sources of nondeterminism in GPU-based MASS CUDA
benchmark applications by analyzing kernel execution order and shared-memory access

patterns.

e Designed and implemented a deterministic refactoring strategy that separates
computation and state update phases using explicit buffering and multi-kernel execution.

e Fully refactored and validated deterministic behavior in benchmarks Game of Life,
Heat2D, SugarScape, and SocialNetwork

While not all benchmark refactors were completed within the quarter, this was a conscious
tradeoff in favor of building a robust debugging framework and gaining a deep understanding of
the execution model. | plan to complete the remaining benchmark refactors during the break
between Autumn and Winter quarters, using the methodology developed this quarter.

Challenges Encountered

Several challenges shaped the direction of my work:

e Tooling limitations: CUDA race detection tools correctly reported no data races in
several cases where nondeterminism still occurred, requiring deeper reasoning about
execution ordering rather than relying solely on tooling.

e Incomplete abstractions: Certain MASS CUDA APIs (e.g., exchangeAll) are not fully
implemented for true data exchange, which required application-level workarounds and
careful kernel sequencing.

e Build and environment complexity: Debugging large CUDA-based codebases on
shared HPC systems required significant effort in build system configuration and
dependency management.

These challenges reinforced the importance of systematic debugging practices and precise
mental models of GPU execution.

Skills and Learning Outcomes

Through this research, | gained substantial experience in:

e CUDA C++ programming and kernel-level debugging

e Diagnosing nondeterminism in parallel systems
e Designing deterministic update schemes for GPU simulations
e Reading and modifying large, research-oriented codebases

e Communicating technical findings clearly in a research setting

Most importantly, this work strengthened my ability to reason about correctness in parallel
computing environments — a skill directly applicable to future work in GPU engineering,
high-performance computing, and large-scale simulation.

Future Work

During the break between Autumn and Winter quarters, | plan to:

e Complete deterministic refactors of the remaining benchmark applications
e Consolidate findings into clear documentation for future MASS CUDA users

e Develop a small determinism testing guide or checklist for new researchers

These efforts will build directly on the foundation established this quarter and help ensure that
MASS CUDA benchmarks serve as reliable, reproducible research tools.

Conclusion

Although this quarter emphasized depth over breadth, the work completed represents
meaningful progress toward improving the correctness and reliability of MASS CUDA
applications. The debugging strategies, testing workflows, and refactoring techniques developed
during this period have already proven effective and will continue to guide my work moving
forward. This experience has prepared me well for future research and industry work in parallel
computing and GPU systems.

	Overview
	Technical Focus and Methodology
	Key Findings
	Progress Across Benchmarks
	Challenges Encountered
	Skills and Learning Outcomes
	Future Work
	Conclusion

