
Overview 
This quarter, my research focused on debugging and improving the correctness of benchmark 
applications built on the MASS CUDA framework for large-scale agent-based modeling on 
GPUs. The primary goal of my work was to identify sources of nondeterminism in existing 
applications, understand how GPU execution order and memory access patterns contributed to 
these issues, and refactor application-level code to enforce deterministic behavior without 
sacrificing parallel performance. 

Rather than emphasizing breadth across many benchmarks, my work this quarter concentrated 
on deeply understanding the MASS CUDA execution model and developing a repeatable 
methodology for detecting and resolving race conditions in GPU-based simulations. 

 

Technical Focus and Methodology 
My work centered on three core activities: 

1.​ Understanding MASS CUDA Execution Semantics​
 I studied how callAll, exchangeAll, and kernel execution are scheduled in MASS 
CUDA, with particular attention to how place-level and agent-level computations interact 
with shared device memory. This included analyzing how interleaving computation and 
update phases can lead to nondeterministic results even when no explicit data races are 
reported by tools such as CUDA Racecheck.​
 

2.​ Determinism Testing and Debugging Workflow​
 I established a determinism-testing workflow based on:​
 

○​ Running simulations multiple times with identical inputs​
 

○​ Writing deterministic binary output snapshots of simulation state​
 

○​ Using byte-level comparison (cmp) to detect nondeterministic behavior​
 

3.​ This approach proved essential in identifying subtle logical race conditions that are not 
caught by traditional race detection tools but still produce divergent simulation results.​
 

4.​ Application-Level Refactoring Strategy​
I then focused on refactoring benchmark applications to enforce a clear separation 
between:​
 



○​ Read-only compute phases, where threads only read from shared state​
 

○​ Write/commit phases, where updates are applied deterministically​
 

5.​ This mirrors double-buffering techniques commonly used in parallel numerical solvers 
and GPU simulation frameworks.​
 

 

Key Findings 
Through this process, I identified a recurring source of nondeterminism across multiple 
applications:​
State updates were being performed in the same kernel invocation that depended on neighbor 
reads, causing execution-order–dependent behavior across GPU threads. 

A concrete example of this occurred in the Heat2D benchmark, where temperature updates and 
phase transitions were interleaved within a single computation step. Although the code was 
logically correct in a serial context, parallel execution caused different threads to observe 
partially updated state, resulting in nondeterministic outputs across runs. 

To resolve this, I refactored the application to: 

●​ Introduce explicit phase buffers​
 

●​ Perform all reads from a stable “current” buffer​
 

●​ Defer writes to a “next” buffer​
 

●​ Commit phase transitions in a separate kernel invocation​
 

After this change, repeated runs of the simulation with identical parameters produced identical 
binary output, confirming deterministic behavior. 

 

Progress Across Benchmarks 
This quarter, I successfully: 

●​ Identified and diagnosed sources of nondeterminism in GPU-based MASS CUDA 
benchmark applications by analyzing kernel execution order and shared-memory access 



patterns.​
 

●​ Designed and implemented a deterministic refactoring strategy that separates 
computation and state update phases using explicit buffering and multi-kernel execution.​
 

●​ Fully refactored and validated deterministic behavior in benchmarks Game of Life, 
Heat2D, SugarScape, and SocialNetwork​
 

While not all benchmark refactors were completed within the quarter, this was a conscious 
tradeoff in favor of building a robust debugging framework and gaining a deep understanding of 
the execution model. I plan to complete the remaining benchmark refactors during the break 
between Autumn and Winter quarters, using the methodology developed this quarter. 

 

Challenges Encountered 
Several challenges shaped the direction of my work: 

●​ Tooling limitations: CUDA race detection tools correctly reported no data races in 
several cases where nondeterminism still occurred, requiring deeper reasoning about 
execution ordering rather than relying solely on tooling.​
 

●​ Incomplete abstractions: Certain MASS CUDA APIs (e.g., exchangeAll) are not fully 
implemented for true data exchange, which required application-level workarounds and 
careful kernel sequencing.​
 

●​ Build and environment complexity: Debugging large CUDA-based codebases on 
shared HPC systems required significant effort in build system configuration and 
dependency management.​
 

These challenges reinforced the importance of systematic debugging practices and precise 
mental models of GPU execution. 

 

Skills and Learning Outcomes 
Through this research, I gained substantial experience in: 

●​ CUDA C++ programming and kernel-level debugging​
 



●​ Diagnosing nondeterminism in parallel systems​
 

●​ Designing deterministic update schemes for GPU simulations​
 

●​ Reading and modifying large, research-oriented codebases​
 

●​ Communicating technical findings clearly in a research setting 

Most importantly, this work strengthened my ability to reason about correctness in parallel 
computing environments — a skill directly applicable to future work in GPU engineering, 
high-performance computing, and large-scale simulation. 

 

Future Work 
During the break between Autumn and Winter quarters, I plan to: 

●​ Complete deterministic refactors of the remaining benchmark applications​
 

●​ Consolidate findings into clear documentation for future MASS CUDA users​
 

●​ Develop a small determinism testing guide or checklist for new researchers​
 

These efforts will build directly on the foundation established this quarter and help ensure that 
MASS CUDA benchmarks serve as reliable, reproducible research tools. 

 

Conclusion 
Although this quarter emphasized depth over breadth, the work completed represents 
meaningful progress toward improving the correctness and reliability of MASS CUDA 
applications. The debugging strategies, testing workflows, and refactoring techniques developed 
during this period have already proven effective and will continue to guide my work moving 
forward. This experience has prepared me well for future research and industry work in parallel 
computing and GPU systems. 

 
 


	Overview 
	Technical Focus and Methodology 
	Key Findings 
	Progress Across Benchmarks 
	Challenges Encountered 
	Skills and Learning Outcomes 
	Future Work 
	Conclusion 

