2010 Summer Research Project

Elad Mazurek

Project Background

This summer | worked in conjunction with other students on a project whose ultimate goal was to
further contribute to the knowledge of how sensors can be networked together and used to gather
data. My portion of the work involved behavior prediction and learning how parallelization of execution
can lead to performance optimization.

My work

To familiarize myself with the different parallelization techniques | reviewed the Wave2D application
and learned how multithreading and MPI (Message Passing Interface) are used to distribute work load
across multiple threads or computers respectively. While learning to do so, | also created a new version
that included the ability to save and resume simulation progress.

For the next phase of the project | had to utilize the same methodology to a heat distribution prediction
application. After converting the existing application from a Java applet to a standalone application, |
parallelized the program using both multithreads and MPI. | also added the same save and resume
modifications to the MPI version, as well as a testing mode to both versions, to help analyze any
performance improvements that may have been made due to the addition of parallelism.

Results

Heat2D Multithreading
As the test results below show, compared to the sequential execution version of the same Heat2D

application, | found the multithreaded execution to run at least 27% faster. breaking up the simulation
space into “stripes” allowed all calculations to happen simultaneously, and resulted in faster run times.

Heat2D MPI

Unfortunately, | was unable to show performance improvement using MPI because of the
communication overhead that MPl incurs during execution. Though this was the case, | believe that for
larger test sets and problems that involve more processor intensive computations, using MPIl would be
beneficial. This is based on the observation | made while testing, that even though MPI was 30 times
slower to execute a method once, after 1000 intervals it almost completely caught up. Also, MPI test
results from the Wave2D application show significant improvements when using MPI.

Wave2D Multithreading
Results follow the Heat2D example. Significant run time improvements can be seen by increasing the

number of threads running the program



Wave2D MPI
Run time improvements were quite noticeable using MPI with this application. In the larger data set,

going from one rank to two decreased the run time by 34%. Dividing up the workload between 8

computers decreased the original run time by 76%.

Test result Graphs
Attached.




Heat2D 1000x1000 with no egranhics:

100000
91403

89079

90000

80000

70000

60000

50000

40000

30000

20000

10000

0

1 2 4 8
" MPI B MultiThreads

Heat2D 500x500 with no graphics:

30000
26180
25000
20000
15000

10000

5000

1 2 4 8
" MPI B MultiThreads




Wave2D size: 800, time: 2000, interval 1999

70000

61294

60000

50000

40000

30000

20000

10000

1 2 4 8
“ MPl M MultiThread

Wave2D size: 500, time: 2000, interval 1999

25000
21414
20000
15000

10000

5000

1 2 4 8

“ MPI M MultiThread




