University Of Washington Bothell
Computing Software & Systems

MASS Library

Multi-Process Version

John Emau

Autumn
2010

John Emau MASS Muti-Process Version

Table of Contents

OVEIVIEW ettt e e st e et e et a st e e s st et e e et aba b e e e saaba s e e e sssraeeessanraseeesannes 3
(D T=E ol T o} o] o KPP PPPRRPURRRRRRN 3
O E] =PRI 3
Performance and DeVEIOPMENTcoo e e e e e e e e e s s r e e e e e e e e s eannararaaeeeaeens 3
P TOIMANCE .. st naee s 3
[TaTe 1T o e Y o] (=Y 01T 0] =1 o L o I PUUPPRRRN 3
MuUlti-Threaded EXCRANGALL.......ccuiiiiii ittt et e e e e e e s st e e e e e e e s e s snasanbenaeeeaeaeeesannnsnssnnne 3
Y o] T TSP O PSP TOP PR PPTOPPUPIOPIN 3
Y = PRI 4
PlACES ettt et st b et e s b s bt e s b e s ra e s ra e e s raee s 4
(O T 2] Y To] DI F- T=4 1o HP PP UUPPRTR 5
IVLASS ettt ettt ettt h et h e bt h et bt e R et e bt e nh e et e eeh et SRt e b et e Rt e e b et ea bt e bt e ea Rt e ebe e e beenbeesareenbeesanean 5
1011 {0 USSR 5
L0111 TSROSO 5
MNINOGE ...ttt st s et e sb e st et e s bt e e s b et e s b e e e s b et e s b et e sna e e s bn e e srenesanes 6
PLACES ettt e st e b et e s h et e s ra e e s re e e s reresnees 6
PlaCES CONSTIUCTON...ciuiiiiiiiiiiitte ettt sttt ettt e s et e s b et e st e e s bae e sneeesnaeesnaeesneeess 6
AV Lo TTe I or=1 17N 1 TR USSP 6
(0] o =Totd etz 117\ [QO @ T oY =Tot d IV ={U L4 1= o €30 SRR 6
exchangeAll()-- Old implementation replaced in Multi-Threaded vVersion..............cccccccceveeeeecciiveeeencnnnn 6
VLT e e st b e st b et s b et s bt s ne e s na e e s baee s naee s 7
101 o PP 7
LAY o)PP PSP OPP PP PPPPPPPPNN 7
L0 =T 1) £ PO PP OPP PP OTPPOTI 7

John Emau MASS Muti-Process Version

Overview

Description

The MASS Multi-Process Library was designed to implement the MASS specification using multiple
spawned processes on remote computer nodes through Java’s JSCH. Each Node represents a unique
process located on a remote machine. An array of Place objects is divided amongst the nodes and thus
computational work done by all the Place objects is divided amongst the processes, improving
computational performance of any time and memory consuming computational task.

Use

To use the MASS Multi-Process Library import MASS in your program and follow the MASS specification
in your code. At compile time and runtime make sure the MASS class files are included in the classpath
as well as Jsch class files. Please see the descriptions below for more detailed design notes on each class.
Please see API Section for more.

Example code running applications from the command line:

java -Xmx1g -cp ../MASS-working:../jsch-0.1.42.jar <Application> < Application Parameters>

Performance and Development

Performance

Performance of the MASS Library has been tested periodically during development in an informal
method using the Wave2D application as a test base. The overall performance of MASS has been scaling
negatively with increased processor, this is the opposite of what the library is intended for. The cause is
was a combination of caching issues and ExchangeAll implementation.

Handler Implementation
To address the caching problem a new APl was created that used primitive data types to represent the
place objects. This allowed for better caching on smaller CPU cache machines (1-2MBs)

Multi-Threaded ExchangALL

To address the ExchangALL problem a new implementation was devised to use multi-threads and
sockets for inter-process communication. This will take the place of the relayed communication through
process 0 in the current implementation.

API

The full MASS API can be found at the following web link:
http://faculty.washington.edu/mfukuda/doc/MassSpec 050710.doc

John Emau

MASS Muti-Process Version

Please note this is a working version of MASS and the API changes along with development; do not
consider the provided API as complete or current unless otherwise specified. This report will focus only
on the API currently implemented in the Multi-Process Version, they are as follows:

Mass

public static void

init(String[] args)

Involves as many processes as requested in the same computation and has each
process spawn as many threads as the number of CPU cores.

public static void

finish()

Finishes computation.

Places

Public Places(int handle, String className, Object argument, int... size)
Instantiates a shared array with “size” from the “className” class as passing an Object
argument to the “className” constructor. This array is associated with a user-given
handle that must be unique over machines.

public void callAll(int functionld)
Calls the method specified with functionld of all array elements. Done in parallel among
multi-processes/threads.

public void callAll(int functionld, Object argument)

Calls the method specified with functionld of all array elements as passing an Object
argument to the method. Done in parallel among multi-processes/threads.

public Object|]

callAll(int functionld, Object[] arguments)

Calls the method specified with functionld of all array elements as passing arguments]i] to
element[i]’'s method, and receives a return value from it into Object[i]. Done in parallel

among multi-processes/threads. In case of a multi-dimensional array, “i” is considered as
the index when the array is flattened to a single dimension.

public void

exchangeAll(int handle, int functionld, Vector<int[]> destinations)

Calls from each of all cells to the method specified with functionld of all destination cells,
each indexed with a different Vector element. Each vector element, say destination[] is an
array of integers where destination[i] includes a relative index (or a distance) on the
coordinate i from the current caller to the callee cell. The caller cell’s outMessage, (i.e., an
Object) is a set of arguments passed to the callee’s method. The caller's inMessages|],
(i.e., an array of Objects) stores values returned from all callees. More specifically,
inMessages]i] maintains a set of return values from the ith callee.

John Emau MASS Muti-Process Version

Class Relations Diagram

Local machine

Remote host

— l—»{ Array |

[mNode > MASS 1] ‘

: Mail 'ﬂ—(Places Il’

MASS

init()

init is called early on in the program using the MASS library, and must be the first method called from
the MASS Library because it initialized all the nodes which will later be accessed. init takes in a string
array that is meant to have originated from the console, the first three elements must be Username,
Password, and Host File respectively. Init() will read the Host File and create a mNode object for each
host, if a host specified in the Host File cannot be connected to by JSCH the process will end and all
already established host will close their connection. Each node is stored is an array of mNodes, this array
is accessible to the public and used when other classes need to communicate with a particular or all the
nodes.

finish()

finish() contacts each node in mNode and sends a command for the node to suicide, this allows the
node to perform any closing operations before the connection is terminated (terminating the
connection will kill the remote process). After the node has competed its closing operations it will send
a one dimensional byte array to signal its completion and self-terminate. At this point the Nodes
underlying stream objects will be closed.

John Emau MASS Muti-Process Version

mNode

This sub-class is a wrapper for the JSCH connection established during MASS.init(). The mNode has
several useful data members- channel gives access to the underlying communication channel to the
process; in and out are Object streams created from the channel and used for convenient writing of
Objects to and reading from the node, we use Objects streams because of the large number of objects
we must send and receive between the nodes during communication; Lower and Upper represent the
lowest and highest element this node is responsible in the Place array, these values are used for sorting
the nodes by Place object. The mail vector is a collection of Mail objects that need to be sent to this
node, this is used only during the Places.exchange commands.

Places

Places Constructor

Instantiates a shared array with “size” from the “className” class as passing an Object argument to the
“className” constructor. This array is associated with a user-given handle that must be unique over the
machine. The array is first partitioned by two private functions, createBoundsArray() and
createRangesArray(), the Bounds represent the division of elements per-dimention and the ranges
represent the number of elements each node is responsible for. Then each node is called and issued a
command to start array creation and assigned a lower and upper bound.

Void callAll()

Calls the method specified with functionld of all array elements. Done in parallel among multi-processes.
This is achieved by in order accessing each node and issuing the callAll command, passing any arguments
to the node for the callMethod, then waiting to receive the completion confirmation in the same order.

Object[] callAll(..., Object[] Arguments)
Calls the method specified with functionld of all array elements as passing arguments[i] to element[i]’s
method, and receives a return value from it into Object[i]. Done in parallel among multi-

wsn
[

processes/threads. In case of a multi-dimensional array, “i” is considered as the index when the array is

flattened to a single dimension.

This is done in the same way as in the callAll method described above only now an additional smaller
array is created of the arguments assigned to the places in that specific node, this small array is sent
over and a small array of the same size is sent back with the respective return values.

exchangeAll()-- Old implementation replaced in Multi-Threaded version

Calls from each of all cells to the method specified with functionld of all destination cells, each indexed
with a different Vector element. Each vector element, say destination[] is an array of integers where
destination[i] includes a relative index (or a distance) on the coordinate i from the current caller to the
callee cell. The caller cell’s outMessage, (i.e., an Object) is a set of arguments passed to the callee’s
method. The caller’s inMessages[], (i.e., an array of Objects) stores values returned from all callees.
More specifically, inMessages[i] maintains a set of return values from the i" callee.

John Emau MASS Muti-Process Version

This is done in the following order:

Send ExchangeALL command to all nodes with functioned and Vector Destinations parameters.
Receive call request from all nodes. Each mail message represents a request to perform a
callMethod on a remote process to be performed by the remote process on behalf of the caller.
Sort call mail by reviver

Send call mail to all nodes

Receive responds mail from all nodes

Responds mail represents the return message from the previous Call mail

Clear out nodes mail box for reuse

Sort responds mail by receiver

W e N kAW

Send responds mail to all nodes
10. Loop through all nodes and get confirmation

Mail

This is a wrapper for a message to be sent between nodes during the ExchangeAll command. It
contatains the message as an Object and useful information about where the message is going and
where it is from.

mProc

This is the remote process that is launched during the JSCH connection creation. This process facilitates
all commands issued by the MASS library. After creation and establishing of the Object Input/Output
streams mProc sits in an infinite loop waiting to receive a command issued by the MASS library through
the standard input. The command must be a string written using the ObjectOutputStream. Once a
command is read a sequence of actions is performed. Error logging is written locally and if any exception
is thrown it is written to the error log and the process terminates closing the JSCH connection.

Array

This class contains a multi-dimensional array of objects. You can specific the lower and upper bound of
the array and it will only create elements within those bounds. The Array class has a Vector if indexes for
each element it is responsible for, it also has a second multidimensional array of Integers that represent
the element number of any given index in the array.

Credits
John Emau, John Spiger, and Munehiro Fukuda (CSS, UW Bothell)

