MASS Implementation and Performance John Emau
Winter 2011

Implementation

MASS & MProc Implementation

Running a MASS application involves three main steps (1) Dynamic initialization of the cluster, (2)
Sending some commands to the cluster, (3) and deconstructing the cluster. The two important classes
are MASS and MProc, they manage the inter-process communication and program flow. The MASS class
only exists on Node 0, or Process 0, or the Master Node. MProc then exists on all remote machines and
represents a single node in a MASS Cluster (it is possible to run multiple MProcs on a single machine).

Class Relations
The following describes the relationship between classes and machines in the MASS Cluster.

Local machine

—‘ Remote host \—

o o ,_> Aray
(‘mNod » ;—* MASS lhl‘ \
| mNode ’ (|/
' | mProc ‘i [Mail |
— L’: Place]
/ \ I/VI \ y
[mail | I‘. Places ‘)}’

Initialization

Init() is called early on in the program using the MASS library, and must be the first method called from
the MASS Library because it initialized all the nodes which will later be accessed. init takes in a string
array that is meant to have originated from the console, the first three elements must be Username,
Password, and Host File respectively. Init() will read the Host File and create a mNode object for each
host, if a host specified in the Host File cannot be connected to by JSCH the process will end and all
already established host will close their connection. Each node is stored is an array of mNodes, this array
is accessible to the public and used when other classes need to communicate with a particular or all the
nodes.

MASS Implementation and Performance John Emau
Winter 2011

Deconstruction

finish() contacts each node in mNode and sends a command for the node to suicide, this allows the
node to perform any closing operations before the connection is terminated (terminating the
connection will kill the remote process). After the node has competed its closing operations it will send
a one dimensional byte array to signal its completion and self-terminate. At this point the Nodes
underlying stream objects will be closed.

MNode

This sub-class is a wrapper for the JSCH connection established during MASS.init(). The mNode has
several useful data members- channel gives access to the underlying communication channel to the
process; in and out are Object streams created from the channel and used for convenient writing of
Objects to and reading from the node, we use Objects streams because of the large number of objects
we must send and receive between the nodes during communication; Lower and Upper represent the
lowest and highest element this node is responsible in the Place array, these values are used for sorting
the nodes by Place object. The mail vector is a collection of Mail objects that need to be sent to this
node, this is used only during the Places.exchange commands.

MProc

This is the remote process that is launched during the JSCH connection creation. This process facilitates
all commands issued by the MASS library. After creation and establishing of the Object Input/Output
streams mProc sits in an infinite loop waiting to receive a command issued by the MASS library through
the standard input. The command must be a string written using the ObjectOutputStream. Once a
command is read a sequence of actions is performed. Error logging is written locally and if any exception
is thrown it is written to the error log and the process terminates closing the JSCH connection.

Places Implementation

Instantiates a shared array with “size” from the “className” class as passing an Object argument to the
“className” constructor. This array is associated with a user-given handle that must be unique over the
machine. The array is first partitioned by two private functions, createBoundsArray() and
createRangesArray(), the Bounds represent the division of elements per-dimention and the ranges
represent the number of elements each node is responsible for. Then each node is called and issued a
command to start array creation and assigned a lower and upper bound.

Primitive vs. Object

Call Method

Calls the method specified with function Identifier of all array elements. This is done in parallel among
multi-processes. This is achieved by in order accessing each node and issuing the callAll command,
passing any arguments to the node for the callMethod. Then the MASS process waits to receive the
completion confirmation in the same order. Alternatively a node may send data as a return value as
confirmation. The following Figure provides a visual of the process.

MASS Implementation and Performance John Emau
Winter 2011

Figure 2. Call Method

Phase 2
Process Command

Exchange Data (Old Implementation)

Calls from each of all cells to the method specified with functionld of all destination cells, each indexed
with a different Vector element. Each vector element, say destination[] is an array of integers where
destination[i] includes a relative index (or a distance) on the coordinate i from the current caller to the
callee cell. The caller cell’s outMessage, (i.e., an Object) is a set of arguments passed to the callee’s
method. The caller’s inMessages[], (i.e., an array of Objects) stores values returned from all callees.
More specifically, inMessages[i] maintains a set of return values from the i callee.

This is done in the following order:

1. Send ExchangeALL command to all nodes with functioned and Vector Destinations parameters.
Receive call request from all nodes. Each mail message represents a request to perform a
callMethod on a remote process to be performed by the remote process on behalf of the caller.
Sort call mail by reviver

Send call mail to all nodes

Receive responds mail from all nodes

Responds mail represents the return message from the previous Call mail

Clear out nodes mail box for reuse

Sort responds mail by receiver

0 N U R W

Send responds mail to all nodes
10. Loop through all nodes and get confirmation

The following figure 3 is a visual representation of the new implementation of Exchange All.

MASS Implementation and Performance John Emau
Winter 2011

Figure. 3 Exchange Data

Exchange Data

,,,,,

This simplistic view of Exchange Data gives the idea what is achieved by the function. All
communications is done near-asynchronously using threads and a single socket per-connection pipe.
The reason it is only near-asynchronously is due to hardware limitations such as a single network
card/connection, possibility of a single core node and various algorithm limitation.

The algorithm limitations are interesting and can be examined with more detail by analyzing the
following table. The following stages are required for Exchange Data.

Sender Thread Receiver Thread
1. Send Request to Remote Process 1. Receiver Request from Remote Process
2. Wait for Responses 2. Process Request / Generate Responses
3. Receive Responses 3. Send responses to Remote Process

Although two threads are not required for this process it is clear that it is advantageous to support two
threads to reduce CPU idling and take use the full-duplex connection available in the Java Sockets (basis
for connection). However because we have multiple threads reading for a socket we must be careful
that the correct thread gets the correct message. For example if the Receiver Thread on the remote
process was faster than the send thread on the remote process we might receive the responses before

MASS Implementation and Performance

John Emau

Winter 2011

receiving the requests. To we will implement a semaphore to prevent this as you can see in Figure 4
below.

Figure 4. Exchange Data Closer Look

Communicati on Pipe
7 Request JAY
Response

b -

L S

Response
Request

This figure demonstrates the process in each communication pipe shown in Figure 3. There are three
phases in the communication. Phase 1 request are made by both processes asynchronously through the
full-duplex connection. At this point two Semaphores must be changed (Phase 2), this is because we
want to ensure that the request have been received before we begin listening on the socket for
responses — this will prevent a message from going to the wrong thread if one of the nodes on one end
of the connection is starved (possible case if Node A has a dual-core while Node B has a single core).

Phase 1

Phase 2

Phase 3

MASS Implementation and Performance John Emau
Winter 2011

Performance
Discussion TBA

CPU Cache Impact

Note: Test preformend on mnode31 with 1mb cache
Single vs Handler. CallMethod

240
220
200
180

[
e Single Handler . CallAl

Note: Test preformend on hercules with 8mb cache

Single vs Handler. CallAll (ms)
1,000

9S00
800
700
600

500

400
Single Handler.CallAll

Performance over Cache decrease

MASS Implementation and Performance

Array Size: 1000
200

150

100 o

50

8192 2048 1024 512 256

John Emau
Winter 2011

MASS Implementation and Performance John Emau
Winter 2011

Call Method
TBA

Exchange All
TBA

Mass Overall
Discussion TBA

Mass Library Wave2D Single
10,000 Elements (100 x 100) 10,000 Elements (100 x 100)
Trial Total Time Single Time Trial Total Time Single Time
1 467 1 79
2 505 2 102
3 452 3 97
4 457 4 71
5 454 5 97
Total: 467 0 Total: 89.2 0

10,000 Elements - Mass Library vs Wave2D

500

450 -

400 -

350 A

300 -

250 -

200 A

150 -

100 A
50 A

