Multi-threaded MASS

hn Spi 1 .
John Spiger Library Report
Multi-threaded MASS Library
Table of Contents
OVERVIEWuoiiisisisiissssssssssssssssssssssss s st st st s st s st s sh s s s s8 4 A A SRS SE AR RS R E AR RS E SRR R SRR AR SRR ERE AR RS 1
USING THE MULTI-THREADED MASS LIBRARYcoovnnmsmsmnmsisssssmssses 1
THE MASS CLASS ..outeurermeessesesseesssessssessssesssessssessssssssessssessssssssessssessssesssssssessssessssssssessssassssssssessasessasessasssssessssassssees 2
THE PLACES CLASS uututtteuitstsssesssesssessnsssssssssssnssnssssnsnsanes 2
THE PLACE CLASS .ttttitisresssesssesssse s ssssssssssssss st st ssss st ssss s s ssssssnssssnsssasssssnenssnssssnsnssnes 4
HOW THE MULTI-THREADED MASS LIBRARY WORKSccoonininmnmmsinmssssssssssssesssssesessssssssssss 4
THE MASS CLASS AND THE MTHREAD CLASS...uttitrmssrmssresssssssssssesssnes 4
CloSIiNG the MASS ENVIFONIMENTE c.ccvuvvrvsrirsressisssissssisssissesssssisssissssssssssssssssassesssssssssssssassssssssssssssssssssssesssssassses 6
EXCRANGEAIl ANA CAIIAIL oottt rssvissssssssssisssissesssssssssasssissssssssssssssssassssssssssssassssssssssssssssssssansssnes 6
Keeping the TRATEAAS TOGELREK ... rrrcosronsvssisssssisssisssissesssssssssssissasssassssses 6
Dividing Work Among MUltiple TRI@AUSccroumrcmroncssisisssnssissessssssssssssessssssesssssasssassssssesssssssssasssssses 6
THE PLACES CLASS, THE PLACES.ITERATOR CLASS, AND THE PLACES CLASS.....ccvuovnimerenesessessssessssesssesanes 7
CONVEIEING INACX VAIUCS.....vvovsrersrersiriersssisssississsssisssisssissesssssasssassssssssssssssssassesssssassses 7
Getting and Setting PlIACE ODJECLS.....cororoimmrimssinssinsessmsssssssssssesssssssssisssssssssssssmssasssssssssssssssssssssssssssssassees 7

Overview

The multi-threaded MASS library currently supports the Places class and
implements Places.exchangeAll and Places.callAll. Multiple threads, one for each
available processor core will be created automatically on computers running Linux
and Mac OS X. If there are problems determining how many threads to create, only
one thread will be created. The number of threads can be set explicitly by passing in
to the String “-c” or “-cores” immediately followed by a
String containing the number of desired cores as part of or all of the array

The library is also commented to conform with the requirements of the javadoc tool.

Using the Multi-threaded MASS Library

The multi-threaded MASS library currently has three classes that are used by an
application. These are MASS, Places, and Place.

John Spiger ? Multi-threaded MASS
pig Library Report

The MASS Class

The MASS class currently supports the following methods that are appropriate for

use in an application:

public static void init(String[] args)
public static void ()
public static Places (int handle)

Other methods, although they may be public, should not be used by an application.
They are used by other classes within the MASS package.

The method is used to initialize the MASS environment and should be called
before anything else is done involving the MASS environment. The array is
inspected for a string containing “-c” or a “-cores”. If one of these strings is found,
the next element in the array is converted to an integer and used as the number of
threads that will run in the MASS environment. If no “-¢” or “-cores” string is found,
if there is a problem converting the next element to an integer, or if is null, an
attempt will be made to figure out how many processor cores are available. The
number of processor cores can only be figured out if the computer is running Linux
or Mac OS X. If successful at figuring out how many cores are available, will
create an environment with one thread for each core. If not successful at figuring out
how many cores are available, will create an environment with just one thread.

The method is used to shut down the MASS environment and should be called
when there is no longer a need for the MASS environment. It is important to call
finish so that all of the threads (other than the main thread) in the MASS
environment will be properly terminated. In a MASS environment with more than
one thread, failure to call will leave threads running after the main application
has finished, causing the JVM to continue running as well.

The method may be used to get a Places object that has already been
created in the MASS environment. The is assigned when the Places object is
created. The Places class is discussed below.

The Places Class
The Places class supports the following methods that are appropriate for use in an
application:

public (int handle, String className, Object argument, int... size)
throws Exception

public int)

public int[] 0

public void (int functionld)

public void (int functionld, Object argument)

public Object[] (int functionld, Object[] arguments)

public void (int handle, int functionld, Vector<int[]> destinations)

John Spiger 3 Multi-threaded MASS

Library Report
The constructor has four parameters. The first, , is an integer that must
be distinct from other handles chosen for other Places objects. If is not

distinct, an exception will be thrown when the constructor is used. The parameter

is the name of the class that extends the Place class (discussed below),
which will be used to populate this Places object. The parameter is passed
in to the constructor for each object of type . The parameter isa
series of integers that will be used as the dimensions of the Places object. If any of
the elements of is less than 1, an exception will be thrown.

The method returns the associated with the Places object.
The method returns the array used as the dimensions for the Places object.

The method is used to perform a function call on each Place object in a Places
object. Each of the methods has a parameter , which is the number
corresponding to the method that will be called for each object in the
Places object. This method will be called through the method of the
object. (The set-up for the object is discussed below with the
Place class.) The version of the method that takes the parameter
will pass in on each call to the object’s method. The
version of the method that takes (Object array) will pass in, on the
call to each object’s method, the array element that
corresponds to each className object’s position in the Places object. This means
that the array must have as many elements as there are Place objects in
the Places object. The returned array is populated in a corresponding manner, with
the returned element from each call placed at the same index as the element from
that was passed in. Index positions in the parameter array and the
returned array correspond to positions in the Places object as follows. The position
at index 0 of the parameter and return arrays corresponds to the position in the
Places object with dimension coordinates of all 0’s. The last element in the return
and parameter arrays corresponds to the position in the Places object with
dimension coordinates of the highest index values for each dimension. The return
and parameter arrays are traversed in sequence, while the Places object is traversed
by incrementing the last element of each Place object’s index and carrying towards
element 0 of each Place object’s index (see the Place class below for an explanation
of the index for each Place object). For example, in a Places object with a size of { 3,
2,4 }, the parameter and return arrays’ element 0 corresponds to the Place object at
coordinates {0,0,0},1t0{0,0,1},2t0{0,0,2},3t0{0,0,3},4t0o{0,1,0} (carry
towards element 0; i.e., leftwards), 5to {0, 1, 1 }, and so on until element 23
corresponds to { 2, 1, 3 } (the highest index values).

The method is used to populate the array of each Place
object in a Places object with the results of method calls to other Place objects in the
same Places object. The value of each Place object’s instance variable is

passed in as the parameter to the function call to each of the other Place objects. The
other Place objects are determined by offsets, which are passed in as the

John Spiger 4 Multi-threaded MASS
Library Report
parameter . Each element of destinations is an offset, which
is an array with as many elements as there are dimensions in the Places object. As
traverses the Places object, it arrives at each Place object and, using
that Place as a base point, calculates the destination to which each offset array leads.
Then a call is made to the Place object at each destination. The call is made through

the destination Place object’s method, with the parameter
used as the parameter and the value of

from the Place at the base point as the parameter .
The return values from the call to each destination Place object’s method
are place in the array of the Place object at the base point. The return
values are placed into the array in the same order in which the
corresponding offsets are found in the exchangeAll parameter .Ifan
offset leads to a destination that is outside the bounds of the Places object, null is
placed in the corresponding position in the array.

The Place Class
The Place class is used only as a superclass. A subclass of Place is used when
creating a Places object. When a Places class is instantiated, it is populated with
objects of the subclass of Place, which is indicated by the Places constructor’s
parameter . As the objects of type are created, the Places
constructor’s parameter is passed in to the constructor for the objects of
type . In addition, the Place instance variable is filled with the size of
the Places object in which it is created, and the Place instance variable is filled
with the coordinates corresponding to that particular Place object’s unique location
within the Places object. Each Place object’s instance variables and

(use described above with exchangeAll for Places class) are set to null
when the Place is created.

The Place subclass that is created is expected to override the method of
Place. The signature for this method is as follows:

public Object callMethod(int functionld, Object argument)

The values that can be used for must somehow be made available to the
application writer.

How the Multi-threaded MASS Library Works

Internally, five classes are used in the MASS environment. These classes are MASS,
Mthread, Places, the nested class Places.Iterator, and Place.

The MASS Class and the Mthread Class

At the heart of the MASS environment is the MASS class. Through the method,
this class creates Mthreads, which extend the Thread class, and which are used to
make the MASS environment a multi-threaded environment when more than one
thread is called for. The Mthread contains very little code. It has one method, the

John Spiger 5 Multi-th_readed MASS
Library Report
method, which contains an endless while loop. The execution path through the loop
is stopped and started by and calls on the MASS instance variable
which has only one element. There are four values for . These
are as follows:

public static final int =0
public static final int =1
public static final int =2
public static final int =3
is the initial value for and is also the value to which

returns after performing an operation. is used to

close the MASS environment, which happens when a call is made to .
and are used when calls are made to
and , respectively.
Mthreads wait on whenever its value is . When
is called, each Mthread checks the value of and may make

a call to a method in the MASS class.
Other general variables used by the MASS class are the following:

private static int[] =new int[1]
private static Vector<Thread>

private static Hashtable<Integer, Places>

private volatile static boolean = false
private volatile static int =0

The variable is used to keep track of the number of threads
currently running. It is incremented in and decremented in the
method. It is also used in the method.

The Vector is used to keep references to all of the threads in use in the MASS
environment, including the main thread. It is populated in and used in the
, ,and methods.

The Hashtable holds the handles of all the Place objects that have been
created in the MASS environment. It is used in the , ,and
methods.

The variable is used to inidicate whether or not the MASS environment
has been initialized or not. It is used in several methods of the MASS class. It is
needed to prevent the MASS environment from being initialized more than one and
to prevent Places objects from being created before the MASS environment has been
initizlized. It is also used to prevent attempts by Places objects to perform
operations in the MASS environment after the MASS environment has been closed.

John Spiger 6 Multi-threaded MASS

pig Library Report
This is necessary because Places objects are not destroyed when the MASS
environment is closed.

The variable barrierCounter is used in the MASS.barrier method to keep track of
how many threads have entered it.

Closing the MASS Environment

The MASS environment closes when a call is made to MASS.finish. When this is done,
the main thread goes into MASS.finish and changes STATUS[0] to
STATUS_TERMINATE and waits on threadsRunning. Upon finding a value of
STATUS_TERMINATE in STATUS[0], each Mthread breaks out of its endless while
loop, makes a call to MASS.recordThreadExit, and exits. In MASS.recordThreadExit,
threadsRunning is decremented as each Mthread passes through. The last Mthread
makes a call to threadsRunning.notify on its way out, which causes the main thread
to wake up in MASS.finish. The main thread then sets INITIALIZED to false and exits.
Setting INITIALIZED to false allows for the MASS environment to be initialized
again, but it does not destroy any Places objects created in the MASS application.

ExchangeAll and CallAll

Calls to Places.exchangeAll and Places.callAll result in calls to MASS.ea_setup and
MASS.ca_setup, respectively. There is one method named ea_setup and two named
ca_setup. These methods are used to initialize variables in the MASS class that will
be accessed by all the threads that will be used in the operation. The variables (and
methods) used for exchangeAll and callAll are prefixed with “ea_” and “ca_”,
respectively. After the variables have been initialized, STATUS[0] is set to either
STATUS CALLALL or STATUS_EXCHANGE_ALL. This will cause the Mthreads to call
either MASS.ea_exchangeAll or MASS.ca_callALL. The main thread makes the same
call after returning from MASS.ea_setup or MASS.ca_setup.

Keeping the Threads Together

After each thread finishes its task in MASS.ea_exchangeAll or MASS.ca_callAll, it will
call MASS.barrier. MASS.barrier is used to make sure all the threads have finished
and do not move forward before STATUS[0] is reset to STATUS_READY. If an
Mthread were to return to its while loop before STATUS[0] is reset to
STATUS_READY, it would find STATUS|0] to still be set on STATUS_EXCHANGE_ALL
or STATUS CALLALL and then attempt to re-enter MASS.ea_exchangeAll or
MASS.ca_callAll. The MASS variable barrierCount is used to count the threads as
they enter MASS.barrier. If the main thread were to return to the main application
code before the other threads had finished, it might initiate another MASS operation,
opening the unwanted possibility of different threads performing different
operations on the same Places object at the same time.

Dividing Work Among Multiple Threads

When threads enter MASS.ea_exchangeAll or MASS.ca_callAll, a call is made to
MASS.getThreadPosition and then to MASS.getRange. MASS.getThreadPosition
determines which position the current thread holds among however many threads

Multi-threaded MASS

John Spiger 7 Library Report
are operating in the MASS environment. then uses this position to
determine the index numbers of the first and last elements of a Places object over
which the thread will operate. returns an array of two numbers,
corresponding to the first and last index numbers. These index numbers are then
passed in to , which returns a object that is used to

traverse a section of the Places object.

The Places Class, the Places.lterator Class, and the Places Class

The most important parts of the Places class are a one-dimensional Place array
named and the integer array . The variable contains all the Place
objects that make up the Places object. The variable contains the dimensions of
the Places object. From the perspective of a MASS application, the Places class
resembles a multidimensional array. Internally, however, it can be viewed as a one-
dimensional array with some information and methods for converting index values
back and forth between a linear format and a multi-dimensional format. To simplify
operations, the instance variable holds the number of elements in the Places
object.

To make access to sections of the Places class easy, the Places class has a nested
class called Iterator that implements the Iterator interface. This class is accessed
through the two methods. One version of this method takes no
parameters and produces an Iterator for traversing the entire Places object. The
other takes two parameters, one for a starting index and a second for a final index,
and produces an Iterator for traversing a portion of the Places object.

The Place class, always being introduced to the Places constructor by the name of a

subclass, is created through reflection. Instance variables named and hold
the Class and Constructor objects, respectively, for the Place subclass. The variables
and are are only used in the Places constructor.

Converting Index Values
The following two methods are used to convert index values between array (multi-
dimensional) format and linear format:

public static int (int[] index, int[] size)
throws ArraylndexOutOfBoundsException
public static int[] (int index, int[] size)

throws ArraylndexOutOfBoundsException

As static methods, these methods can be viewed as utility methods.

Getting and Setting Place Objects
For getting and setting Place objects in the Places object, the following two methods
are used:

public Place get(int index)
private void set (int index, Place place)

John Spiger 3 Multi-threaded MASS
v Library Report
throws ArraylndexOutOfBoundsException

The method is public and is used by the MASS class. The set method is private,
however, and is used only by the Places constructor.

