Connector Paper
Jose Melchor
Winter 2011

Below is the first draft for the ICSEng 2011 conference paper. Currently, only the implementation part is drafted.

Diagrams are included but they are only the first version as well. Diagrams need to be referenced by the text.

4. Implementation

Connector.jar package currently contains the following classes:

* FilelnputStream: Read remote files (FTP, SFTP, and HTTP).
* FileOutputStream: Write to remote files (FTP and SFTP).

* Connector: Redirects Output, Input, and Error to remote GUI.

* Frame and Graphics: Redirects graphics to remote GUI.

4.1. Daemon Thread

When a Connector object is instantiated, a
daemon process is automatically created. A
single daemon serves objects from the entire
Connector.jar package. For instance, a daemon
will serve FilelInputStream methods, as well as
Frame or Graphics methods. Connector
Daemons will connect to a GUI as part of the
instantiation process. The Daemon knows
where to connect thanks to the file map passed
through the connector’s constructor. Along with
the File-to-URL definitions, the file map
contains two lines that define the IP address
and port of the GUI listening for a daemon
connection.

This design assumes that a remote connector
GUI will be listening for incoming connections
from a daemon. If no GUI exists on the IP and
port defined, daemon functions that rely on a
GUI will simply be disabled. However,
functionality for reading and writing files will
work. Consequently in terms of file I/0
operations, connector daemons are not
dependent on the availability of a GUI.

A connector daemon object possesses
multithreaded capabilities. When a daemon
receives a request from a Connector.jar object,
a new thread is spawned to deal separately
with each request. (Refer to figure)

1/0 thread waits
for data

Create Connector
Object

)

Connector Object
creates Daemon

A

Daemon spawns
1/0 thread for GUI
Connection

1/0 thread

/0 reques
received

1/0 thread
communicates
with GUI

connects to GUI [¢Yes @

Discard I/0 thread

Let thread handle request
Keep Listening

S

Daemon listens for
objects to serve

Let thread handle request

Y

Keep Listening

Spawn
Frame/Graphics
Thread
(if connected to GUI)

Graphics
Request

Let thread handle request
Keep Listening

Read/Write
request

Close Connector

Terminate
Daemon/Close
All connections

Figure 1 Daemon Life Cycle

Spawn
FilelInputStream
or
FileOutputStream
thread

4.2. GUI
The GUI uses two channels of communication to deal with data coming from an application. One socket is used to deal
with 1/0 messages and another socket to deal with graphics.

~—Remote Application GUI connected to

Application

G

Figure 2 GUI

When a GUI is started, the user may choose a port to be used for incoming connections. Once a port is chosen, the user
must press the “connect” button so that the GUI enters a listening state. The GUI then waits for a remote application to
start. Interaction begins once a remote application successfully connects to the GUI. When an application finishes, the
GUI goes into a listening state once again.

Applications interacting with the GUI may able to migrate to different computing nodes. Therefore, GUI has the ability to
sense when an application has moved. The GUI senses when an application is not present, closes all connections, and
goes into a listening state. When an application settles on a new computing node and restarts communications with the
GUI, the GUI reconnects and continues performing tasks.

The GUI has two techniques to retrieve graphics from applications. Connector’s Frame class has constructors where
users may choose between redirecting graphics by sending Frame’s function names and parameters or by creating an
image local to the application and then sending the image as often as the user desires to the GUI. If function names and
parameters are sent to the GUI, then the GUI simply reads those messages and calls the methods locally on actual Java
Frame and Graphics objects. On the other hand if the GUI receives an image, the GUI repackages the image and displays
it locally on a Java Frame every time a new image is received.

4.3. Sensor Server

Sensor server allows users to interact with sensor networks. There are two ways users may interact with sensors. One
way is by retrieving sensor data using the Connector.jar package as if data were local files. The other way is managing
and configuring sensors through a GUI connection. A different thread handles each request made by users so that
multiple users are allowed to work concurrently.

The sensor server needs a map of the entire sensor network to initiate a session. The sensor file map is located remotely
and is accessed using a Connector’s FilelnputStream object (and by default a daemon). Therefore, when a sensor server
initiates, a Connector object must be instantiated as well. Once a Connector is up and running, sensor file maps are
retrieved from an FTP server.

When sensor interaction is performed through an application, the sensor server behaves as an FTP server to handle
requests. FilelnputStream objects from the Connector.jar package residing on a remote application may connect to the
sensor server and retrieve data from any of the existing sensors. The sensor server limits the FTP server functionality to
data retrievals only. Since sensors provide real time data, the use of FileOutputStream to overwrite data to the sensors
is disabled.

Managing and configuring sensors is done through a GUI. In such cases, a sensor server needs to be started with the “-g”
option. Sensor server starts a connection to a GUI when it senses this option. A new thread is spawn so that I/O can be

handled with GUI without any interruption from remote application requests to read data. Users administering the
sensor server may change sensors’ configuration. Once changes are made to the sensor configuration, sensor server

uses Connector’s FilelnputStream and FileOutputStream to update remotely stored sensor file maps.

(—Sensor Server

Create
daemon

Update file map_ @ FTP Server
—— g

Retrieve file map

Managing Sensor
Server through
GUI

Sensor

Server Daemon

Send/Receive
Input & Output

GUI connected to
Application

Daemon

Send/Receive
Input & Output

Figure 3 Visualization of Sensor Server

5. Performance Consideration
5.1. Graphics Forwarding
5.2. Sensor-Data Forwarding

6. Conclusions

7

