

University of Washington—Bothell

Jpeg Analyzer
Rajneet Dhanju

Inclusions: JpegAnalyzer source files

Spring 2012 Professor Munehiro Fukuda

CSS-499 Undergraduate Research Page 1 of 15

Table of Contents

Introduction ... 2

Algorithm Description .. 2

Initial Approach .. 2

Assumptions .. 3

Implemented Approach ... 3

Input .. 5

Output (execution) .. 8

Without MASS.. 8

Performance .. 11

Without MASS Library... 11

With MASS Library .. 11

Concluding Thoughts .. 12

Challenges and Difficulties ... 12

Results and Accomplishments .. 13

Problems with Jpeg Analyzer ... 13

Dictionary ... 14

How-to-Use Guide .. 14

Credits & References .. 15

Spring 2012 Professor Munehiro Fukuda

CSS-499 Undergraduate Research Page 2 of 15

Introduction
The overall goal of the research is to use a series of images that will be compared with

one another based on their RGB (red, green, blue) values for a factor we would like to call

‘closeness’. Then based on the closeness factor between two images we can make a suggestion

about the extent to which the two images are similar.

Algorithm Description

Initial Approach
The initial approach of comparing the images using their RGB values was to use the

munsell color system. After considerable research, we quickly realized that this would not be an

easy or reliable approach. There is no direct way to convert RGB to munsell color system—idea

was to convert and compare the RGB values for closeness. In order to utilize the munsell color

system 2 steps have to be taken: 1-convert RGB to XYZ representation, 2-then convert from

XYZ to munsell representation. However, according to my research of this conversion system I

realized that I would have to either a 3
rd

 party software to do this or implement the conversion

system myself—which seemed to take away from the core goals of the research. Doing so would

take up majority of my time to write the conversion system—which also seemed to be unreliable.

The munsell color system is considered to be the closest representation to real-world colors.

Taking RGB values and finding their respective munsell color representation might create one

munsell representation for multiple different RGB values.

There are some basic conversion tables available for RGB to munsell however they are

incomplete—meaning they don’t have a munsell representation for every possible RGB

combination.

Spring 2012 Professor Munehiro Fukuda

CSS-499 Undergraduate Research Page 3 of 15

Assumptions
 The following (next sub-heading) implementation approach makes these assumptions:

 images are not distorted in any manner (discoloration)

 two images that are the same (except one is in color and the other is black-white)

will be considered as two distinct images as we compare based on RGB values

**Note: Algorithm takes into account images that are not the same size (different image sizes

should not affect the outcome/results)

Implemented Approach
Figure 1: Algorithm Example

General Comparison Algorithm logic

1. Define a delta x and delta y for the purpose of referring to a subsection of the image

o this will be used to divide the image into subsections (called blocks)

o for example: in this algorithm I have use a delta x = 10 and delta y = 10

o therefore each image will be divided into 100 blocks (10x10)

o Note: the smaller the delta (x and y) the more precise the image comparison

algorithm will be

2. Get each block’s value for each image (ColorImageScale.java, setpallet(…))

o For each block

o Add up all the red, green, and blue pixel values

o Calculate the average (from summation above of the RGB values)

3. Argument 0 will define the target image to which we want to compare all of our images

with

Spring 2012 Professor Munehiro Fukuda

CSS-499 Undergraduate Research Page 4 of 15

Figure 2: Block Comparison

o For each image following image-0 (target image) compare each block-n with the

corresponding block in image-0 (see figure 2 above)

o Calculate the relative percentage for each color (for each block)

o Example

 (maxRed – minRed) / maxRed

 (maxBlue – minBlue) / maxBlue

 (maxGreen – minGreen) / maxGreen

o Step-3 implemented in BlockCollection.java calculateClosenessFactor()

4. For each image

o sum up the RGB

o take the average of each color

o sum up the averages

o implemented in BlockCollection.java summation()

5. Now we have a single value that represents the closeness factor for each image with the

target image (image-0)

6. Perform merge sort algorithm on each closeness factor to rate them and print them out in

order of most-close (lower closeness factor) to least-close (larger closeness factor)

Spring 2012 Professor Munehiro Fukuda

CSS-499 Undergraduate Research Page 5 of 15

Input
The majority of the implemented algorithm is tested on the following jpeg files (actual size).

NOTE: During the course of using the JpegAnalyzer (for the actual raw image analysis) I have

noticed that image larger than 600x600 pixels will cause the program to crass with an “Java out-

of-memory error”.

Picture 1

 Picture 2

File Size = 16 KB

Dimensions = 225 x 147

File Size = 19.6 KB

Dimensions = 225 x 146

Spring 2012 Professor Munehiro Fukuda

CSS-499 Undergraduate Research Page 6 of 15

Picture 3

Picture 4

File Size = 9.22 KB

Dimensions = 183 x 275

File Size = 4.39 KB

Dimensions = 265 x 190

Spring 2012 Professor Munehiro Fukuda

CSS-499 Undergraduate Research Page 7 of 15

Picture 5

Picture 6

File Size = 10.4 KB

Dimensions = 350 x 275

File Size = 4.71 KB

Dimensions = 213 x 237

Spring 2012 Professor Munehiro Fukuda

CSS-499 Undergraduate Research Page 8 of 15

Output (execution)

Without MASS
Figure 3: Same Images (2)

Figure 4: Different Images (2)

Spring 2012 Professor Munehiro Fukuda

CSS-499 Undergraduate Research Page 9 of 15

Figure 5: Same Images (4)

Figure 6: Different Images (4)

Spring 2012 Professor Munehiro Fukuda

CSS-499 Undergraduate Research Page 10 of 15

Figure 7: Same Images (6)

Figure 8: Different Images (6)

Spring 2012 Professor Munehiro Fukuda

CSS-499 Undergraduate Research Page 11 of 15

Performance

Without MASS Library
Table 1: Performance without MASS

Number of images Same images?

(Y/N)

Execution Time
JpegAnalyzer

(msec)

Execution Time
Comparison Algorithm

(msec)
2 Y 3653 78

2 N 3681 74

4 Y 7139 88

4 N 8471 89

6 Y 10631 97

6 N 15365 95

With MASS Library
Table 2: Performance with MASS

Number of images Same images?

(Y/N)

Execution Time
JpegAnalyzer

(msec)

Execution Time
Comparison Algorithm

(msec)
2 Y

2 N

4 Y

4 N

6 Y

6 N

Spring 2012 Professor Munehiro Fukuda

CSS-499 Undergraduate Research Page 12 of 15

Concluding Thoughts

Challenges and Difficulties
Some of the difficulties that I faced during the project include

 Understanding how the JpegAnalyzer works (inherited code) and how to withdraw the

information I need from it (raw pixel values of each image)

 Some test code existed within the JpegAnalyzer that took me a while to figure out that it

was not a main part of the program (system)

 Working with the MASS Library to parallelize the JpegAnalyzer part

I was not able to accomplish this part of the program successfully as I had

difficulties understanding how the library actually works. I had access to the

manual and sources code—however, the manual did not fully explain how to use

each of the function calls. There is one main sample code provided that uses the

library (Wave2DMass.java); however, it does not showcase each function use

with the various different overridden functions.

For example, my parallelization requires me to use each argument passed into the

command as arguments to each of the elements in ‘Places’. So I want to be able to

use the callAll function and pass in the arguments so that they can be used for the

parallelization process. I followed the example and the manual to the best of my

understanding and made the following changes in the JpegAnalyzer.java to

accommodate the MASS library:

 public JpegAnalyzer(Object fileName)

 public callMethod(int funcId, Object fileName)

 public init(Object fileName)

The callMethod must be overridden in order for the callAll(..) function to work

properly—which is what I implemented in my attempt to parallelize. The issues I

ran into this were that the callAll function seems to work for the 1
st
 image I pass

in but not for any subsequent images. For any image after the first one I get null

pointer errors.

I made multiple attempts to explain and resolve this problem by consulting with

Tim (the author of the library)—however I was unsuccessful. Tim was only

available to work with me remotely. I was having problems that I could not

explain clearly enough remotely and needed to show him in person—

unfortunately we were not able to make any accommodations to meet in person.

Therefore I was unable to answer my questions/problems and thus unable to

implement the parallel portion of the program.

I also tried to receive help from Tosa (graduate student working on the C++

version of the MASS library)—and he indicated to me that he faced similar

problems while working with this particular version of the MASS library. He too

was unable to write a simple application with MASS using certain function.

Spring 2012 Professor Munehiro Fukuda

CSS-499 Undergraduate Research Page 13 of 15

Overall, my experience with the MASS library has been really frustrating and at

times I felt that I was spending too much time on something that should not

require that much time. I think that the MASS library can be a great tool for

parallelization of applications—however it is not yet user friendly. The manual

provide a good overview (concepts) of how the MASS library works and

communicates between processes and threads (work-load) however it does not

fully explain to an outsider what steps have to be taken to actually use the library.

The documentation of each of the function need to have specific examples of their

use rather than a description of what they do—this was the most frustrating part as

I had to look at the Wave2DMass.java sources code repeatedly to have a sense of

how these functions were getting called and used (user defined override

functions—ex: callMethod(..) that communicates by callAll(..) function).

Results and Accomplishments
I have a working version of my comparison algorithm as explained above. It is able to calculate

the compare 2 images and show their relative closeness as seen in the execution output section

above.

However, there are some points to be noted about this algorithm as I have not been able to detect

if it is the comparison that is causing these issues or the JpegAnalyzer:

 when comparing alike images: example pic1.jpg and pic1.jpg pic1.jpg

o the closeness factor = 0 (correct)

 when comparing images in order of: pic1.jpg pic2.jpg pic1.jpg

o the results will be pic2.jpg closeness factor = xxx

o and pic1.jpg (3
rd

 argument) closeness factor = xxx as well when in this case it

should be 0 because it is referring to pic1.jpg which is the same image

o this reveals that order of image input matter when it shouldn’t

o I have not been able to resolve this issue even with countless step-through and

debugging

Problems with Jpeg Analyzer
Does not like images where x and y values (size) are the same (example 225 x 225) gives the

following error—off by one error mistake in JpegAnalyzer—was unable to detect the exact

location that was resulting in this outcome.

Spring 2012 Professor Munehiro Fukuda

CSS-499 Undergraduate Research Page 14 of 15

Dictionary
Term Definition

Block Refers to each subsection of an image each block size is

defined by delta x and delta y

(x time y = number of pixels included in that block)

Refer to Figure 1.

Delta x and/or y The value that refers to the number of pixels that will be

looked at—for any given calculation (see Figure 1 for

visual representation)

Relative value (percentage) Equation used to represent each block’s red, green, blue

pixel in one value:

i.e. (maxValue – minValue) / (maxValue)

 (% red_max - %red_min) / (red_max)

Refer to Figure 2

Target Image The image to which all the other images will be compared

with.

How-to-Use Guide
1. Save each image to perform comparison on in the same directory as the source files

2. Run program as follows

o java Main < target image name> <image 1> <image 2> … <image n>

o For example: java Main pic1.jpg pic2.jpg pic3.jpg

3. For execution of the program see Output section above

o Refer to ‘Concluding Thoughts’ section for known bugs with the program

Spring 2012 Professor Munehiro Fukuda

CSS-499 Undergraduate Research Page 15 of 15

Credits & References
Credits

 Professor Munehiro Fukuda (University of Washington—Bothell)

 Professor Clark Olson (University of Washington—Bothell)

 Tosa Ojiru (Master’s Student, University of Washington—Bothell)

 Tim Chuang (Master’s Student, University of Washington—Bothell)

References

MASS Library—found at dslab@hercules/SensorGrid/MASS/MASS-Merged/*

http://en.wikipedia.org/wiki/Merge_sort

http://www.brucelindbloom.com/index.html?ColorCalcHelp.html

http://www.brucelindbloom.com/index.html?Calc.html

http://munsell-to-rgb.blogspot.com/

http://casoilresource.lawr.ucdavis.edu/drupal/node/201

http://depts.washington.edu/dslab/SensorCloud/index.html

http://www.designersilverlight.com/wp-content/uploads/2009/09/ColorScaleImageRGB1.png

http://en.wikipedia.org/wiki/Merge_sort
http://www.brucelindbloom.com/index.html?ColorCalcHelp.html
http://www.brucelindbloom.com/index.html?Calc.html
http://munsell-to-rgb.blogspot.com/
http://casoilresource.lawr.ucdavis.edu/drupal/node/201
http://depts.washington.edu/dslab/SensorCloud/index.html
http://www.designersilverlight.com/wp-content/uploads/2009/09/ColorScaleImageRGB1.png

