
i

Field-Based Job Dispatch and Migration

Somu Jayabalan

A thesis

submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Computing and Software Systems

University of Washington

2012

Committee:

Munehiro Fukuda, Chair

Kelvin Sung

Charles Jackels

Hazeline Asuncion

Program Authorized to Offer Degree:

Computer and Software Systems - Bothell

ii

©Copyright 2012

Somu Jayabalan

iii

 University of Washington

Abstract

Field-Based Job Dispatch and Migration

 Somu Jayabalan

Chair of the Supervisory Committee:

Munehiro Fukuda, Ph.D.

Computing & Software Systems

AgentTeamwork-Lite is a mobile-agent-based job scheduling and monitoring framework that has been

developed in the concept of field-based job dispatch and migration where agents migrate over a

computing-resource field to highest available computing nodes for executing their user jobs as if they

were electrons sliding down on an electric field. The agents keep monitoring their computing-resource

field and move their user jobs to better computing nodes. This paper presents the system design,

execution model of the framework, and our performance evaluation using two applications: the Wave2D

MPI-parallelized wave-propagation simulator and the Mandelbrot Fractal generator benchmark programs.

iv

TABLE OF CONTENTS

Chapter 1: Introduction .. 1

1.1 Overview .. 1

1.2 Background ... 1

1.3 Research Objective ... 2

Chapter 2: Methods .. 4

2.1 Challenges and solution in job scheduling and coordination .. 4

2.2 System Design .. 5

2.3 Execution Model .. 7

2.4 Factors affecting job execution performance... 8

2.5 Migration algorithm .. 10

Chapter 3: Performance Evaluation .. 13

3.1 Default vs. Migration based scheduling ... 13

3.2 AgentTeamwork-Lite overhead ... 18

Chapter 4: Related work .. 20

4.1 GridLab Resource Management System (GRMS) ... 20

4.2 Condor .. 20

Chapter 5: Conclusion .. 22

References .. 23

Appendix A: Check-pointing Source Code .. 25

Appendix B: User manual.. 27

v

LIST OF FIGURES

Figure Number Page

Figure 1. Execution layers ... 7

Figure 2. AgentTeamWork Execution Model ... 8

Figure 3. Mandelbrot Execution performance CPU vs. Memory load factors 9

Figure 4. Wave2DMPI Execution performance CPU vs. Memory load factors 10

Figure 5. Wave2DMPI Default vs. Migration based scheduling Execution 13

Figure 6. Wave2DMPI Execution nodes’ rank (Default scheduling) .. 14

Figure 7. Wave2DMPI Migration based scheduling execution ... 15

Figure 8. Mandelbrot Fractal Default vs. Migration based scheduling Execution 16

Figure 9. Mandelbrot Fractal Execution node’s rank (Default scheduling) 17

Figure 10. Mandelbrot Fractal Migration based scheduling execution 18

Figure 11. Direct vs. AgentTeamwork-Lite execution ... 19

Figure 12. Job migration cost of Wave2DMPI ... 19

1

Chapter 1: Introduction

1.1 Overview

Field-Based job dispatch and migration is a distributed job scheduling and monitoring framework

developed on AgentTeamwork: a mobile-agent-based grid-computing middleware [1]. A field refers to a

computing potential resource field, computed from node’s CPU and memory capacity. In an electrical

potential field, electrons will slide from a low dense area to a high dense area. The same way,

AgentTeamwork spawns agents upon a job submission and has them migrate from a lower-ranked

computing node to a higher-ranked computing node. It consists of several mobile agents such as

PFAgent(Potential Field Agent), Commander Agents and Sentinel Agents to monitor system resources, to

execute user jobs and to move the jobs to best computing nodes.

My contribution to this research is to study the effect of CPU and memory factors in job execution

performance, to determine the best computing node itinerary for achieving the fastest execution time, and

to find out right time for moving the currently executing job from a poor performing node to a better

performing node.

1.2 Background

The recent emergence of cloud services [2] created a quantum leap in high performance computing (HPC).

HPC enables scientists and researchers to solve complex scientific data analysis problems, typically

applications developed on simulation based algorithms. For instance on-the-fly sensor data analysis [3]

uses temperature interpolation [4] algorithm to predict the temperature of sensor uncovered areas. In

biological field, motif discovery algorithms [5] are used to study various network patterns such as protein-

to-protein interactions and gene network of bacteria etc. Climate change analysis has two phases of big-

data processing: 1) simulation and 2) post simulation analysis and provenance [6] that requires huge

memory space and high-speed disk storage. BrianGrid is a neural network simulator that imitates the

growth of electrical activation and synapses among neurons to examine the neural spike and radius

history of many different layouts. FluTE is a publicaly available stochastic influenza epidemic simulation

model [7] to calculate daytime susceptibility, infection for each person, transmitting infection, and

responding to epidemic.

All these applications require many computing nodes, and their execution could last from couple of hours

to several hours. During the course of application execution, computing node performance could vary

from time to time. Hence, we need a set of job deployment, monitoring and migration tools to coordinate

2

job execution in a distributed computing space. OpenPBS, Condor [6], and Globus [7] are some of the

popular job deployment tools available to work with cloud services such as Amazon EC2. But these tools

have some limitations in working with parallel applications. For example, Condor uses a centralized

scheduling for parallel jobs. They are generally based on a centralized or a hierarchical job scheduling

strategy that statically allocates computing resources to parallel jobs upon their invocation. During

parallel job execution, even if the current executing nodes do not meet user-specified resource criteria, the

job will be still executed on the same set of nodes. This motivates us to develop a migration-based job-

scheduling tool to work with both parallel and sequential applications.

1.3 Research Objective

The UWB distributed systems laboratory (led by Professor Fukuda) has developed the AgentTeamwork

framework based on a mobile agent platform to target both serial as well as parallel job scheduling and

coordination. The current implementation of the framework supports job migration based on a static list

of computing nodes. Since it was mainly focusing on fault tolerance, my research has enhanced the

framework as AgentTeamwork-Lite to focus on job migration using dynamically evaluated criteria.

My research goal through the AgentTeamwork-Lite framework development focuses on

 Developing an algorithm to form the best computing node itinerary based on resource

information (CPU and Memory),

 Enhancing AgentTeamwork to schedule and to migrate a job based on dynamically evaluated

criteria,

 Finding out the job migration cost and appropriate time to migrate, and

 Demonstrating the performance gain of field-based job migration scheduling over default

scheduling.

This research contributes towards high performance computing where job migration is commonly used.

All complex scientific applications including the ones discussed above can be benefited from this research.

It also relieves users from handling job coordination which includes process communication,

synchronization and dynamic load balancing. Also as part of this research I have evaluated the

performance difference between the default-scheduling, (i.e., static) and migration-based scheduling for

serial and parallel program.

3

The rest of the document is structured as follows: Chapter 2 discusses the system design, factors affecting

job-execution performance followed by migration algorithm; Chapter 3 discusses the performance

evaluation; Chapter 4 discusses the related work in the same field, and Chapter 5 summarizes my research

and concludes with the future work to be done.

4

Chapter 2: Methods

This chapter describes challenges and solutions in dynamic job scheduling, the AgentFramework-Lite

design, and its migration algorithm.

2.1 Challenges and solution in job scheduling and coordination

In grid computing, job scheduling has the following challenges.

1) Master-slave node relationship – Grid computing uses a set of computing nodes. In general, a

node identified as a master node keeps track of slave nodes. This creates a high dependency

on the master node and if that node goes down, the entire grid is not available.

2) Resource criteria - The conventional job scheduling algorithms assign a computing-resource

rank to each node in the grid based on its resource availability. A job scheduler then uses the

rank together with user-specified resource criteria to choose specific nodes for job execution.

Since resource information including CPU and memory will keep varying from time to time,

node-ranking information needs to be constantly reevaluated.

3) Job migration – A computing-resource file needs to be created to run parallel applications.

For instance, MPI applications require the mpd.hosts file that contains a list of computing

nodes. Since job migration stops the execution at the current nodes and resumes it at another

set of new nodes, such a resource file needs to be recreated. However, job deployment in

most conventional tools does not support dynamic creation of a resource file, hence they do

not support job migration for parallel applications.

To address the above challenges, we have designed AgentTeamwork-Lite: a field-based job dispatch and

migration framework. It provides a common job-scheduling framework for both sequential and parallel

applications. It consists of mobile agents to broadcast resource information with UDP messages, to build

an itinerary of the best computing nodes, and to monitor and move job execution to light-loaded nodes.

The framework is designed with the following design principles.

1) Decentralized grid – Each participating node periodically advertises its resource information

with a UDP message. AgentTeamwork-Lite forms a virtual grid using these messages which

eliminates the need for a master node. A node can also be easily added or removed from the

grid by starting and stopping a daemon process.

5

2) Resource criteria – While a local node broadcasts its own resource information, it also

receives resource information from its neighboring nodes and forms the best computing node

itinerary periodically. A user does not need to specify the resource criteria. In other words,

AgentTeamwork-Lite will automatically select the right computing nodes to execute the

user’s jobs.

3) Job migration – The best node itinerary is locally available at each node. During job

migration, this itinerary is used to determine a destination node on which job execution will

be resumed. Just before resuming a job, an agent will automatically recreate a resource file

required for the parallel execution. Once the job is resumed, it will continue the parallel

execution as if it started normally.

2.2 System Design

AgentTeamwork-Lite is an enhancement to AgentTeamwork. It reuses the AgentTeamwork execution

platform and agent framework. The main focus of AgentTeamwork-Lite is self-organizing resource

management and performance-centric job migration. It consists of six execution layers as described in

Figure 1.

Layer 0: Hardware Layer: This layer represents a list of computer nodes connected to Local Area

Network. Each segment represents a subnet. They can be interconnected by WAN.

Layer 1: UDP-Broadcast Space: This is an AgentTeamwork-specific message broadcast layer that allows

each computing node to exchange resource information with UDP messages. In general, UDP messages

are limited with-in a single subnet. However, our broadcast layer facilitates UDP broadcast messages

across a subnet by establishing a TCP link between two representative nodes in the inter-connected

subnets.

Layer 2: UWAgents: UWAgents is a Java-based mobile-agent execution platform developed by

Distributed Systems Laboratory at UW Bothell as part of AgentTeamwork. It consists of UWPlace and

6

agents. UWPlace is a daemon process running on each node and the agents coordinate job execution.

Layer 3: Computing-Resource Potential Field: This layer consists of Potential-Field Agents (PFAgents)

launched with a UWPlace daemon at each nodes. A PFAgent periodically broadcasts its local computing

resource information including CPU power, available memory and disk space. All these pieces of

information are broadcast in a UDP packet through the same subnet, and relayed to remote subnets

through a UDP relay node. It also receives resource information from the neighboring nodes and

calculates the best resource itinerary.

Layer 4: Commander and Sentinel Agents: This fourth layer consists of commander and sentinel agents.

A commander agent is launched when a user submits a new job. It then launches a sentinel agent which is

responsible for executing the user job. It also constantly queries the local PFAgent to check whether the

current computing nodes are better performing nodes or not. When it finds better performing nodes than

the currently executing nodes, it halts the job execution at the currently executing nodes and resumes at a

set of destination nodes determined by PFAgent. Once it completes the execution, the sentinel will notify

the commander agent of its job termination.

Layer 5: Middleware Libraries: The fifth layer consists of middleware libraries such as MPI [8], OpenMP

[9], and MASS (which we developed for parallel simulation) libraries [12]. The sentinel agent should

support the resource file creation required by these middleware libraries.

Layer 6: Applications: This layer executes user applications. User applications are responsible for

periodically taking the latest data snapshot that will be used for job resumption.

7

Figure 1. Execution layers

2.3 Execution Model

This section describes the workflow of job execution in AgentTeamwork-Lite. As illustrated in Figure 2,

before a user job is scheduled, a daemon process (UWPlace) needs to be started at all participating

computing nodes followed by starting a PFAgent at each node.

In Figure 2’s scenario, a user submits a job to Node 0. UWPlace allocates a new commander agent to this

job and passes the user program’s name, arguments, and additional files to the commander agent. It then

launches a sentinel agent locally at Node 0. Before starting a job execution, the sentinel agent checks with

the local PFAgent for the best computing node. If the Node 0 is the better computing node, the sentinel

will start job execution at Node 0, otherwise it will migrate to a better computing node, whereas a

commander agent will still stay at Node 0. In Figure 2, the sentinel agent recognizes Node 1 as the best

node, migrates to it, creates a resource file, and starts job execution. During the job execution, the sentinel

agent periodically evaluates the better computing nodes with the local PFAgent. When it finds a better

computing node, the sentinel suspends the current job execution and migrates to the better node, (i.e.,

Node 2). Resource validation and job migration are a recurring task in AgentTeamwork-Lite which lasts

8

until the job completion. Once the job is completed, the sentinel agent will notify the commander agent

(at Node 0) of this completion event. Note that a user program is responsible for periodically taking an

execution snapshot in secondary storage that is accessible from all computing nodes.

Node 0

UWPlace

Cm
d

PF

Snt
Spawns

Best Node

Jo
b Su

bm
iss

io
n

Best Node1

UWPlace

PF

Snt

Best Node

Migrates

Job

Executes

Network File System

Data
Snapshot

Snapshot

Subnet

Resource Info

(UDP message)

Resource Info (UDP message)

Best Node2

UWPlace

PF

Snt

Job
Best Node

Snapshot

Resource Info

(UDP message)

Migrates

Stops

Resume

Completion

Notification
To Exit

1

2

3

4

5

6

7

8
2

9

User

Figure 2. AgentTeamWork Execution Model

2.4 Factors affecting job execution performance

We define the measure of job execution performance as time elapsed for a job to run till its completion.

Job execution performance depends on system capability and program behavior. System capability can be

pre-determined with a few system attributes including CPU and memory. However, program behavior is

hard to predict due to its dependency on an application and run-time environments. Although CPU and

memory factors have a direct impact on job execution performance, they do not have an equal impact. To

study their correlation, we want to measure job execution performance by running a real application in a

controlled environment. We have used a sequential and a parallel application to study the effect of CPU

and memory in terms of the application execution time. The application execution time is measured under

three conditions. The first condition measures execution time when there is no CPU and memory activity,

the second condition measures the time when CPU is being utilized (approximately 80%), and the final

condition is to measure the time when memory is being utilized (approximately 80%).

9

Figure 3 shows the job execution time of a sequential application run with a single node. The average job

execution time under no load is 13.99 minutes, whereas the same job on the same node took about 14.26

minutes and 14.06 minutes respectively with 80% CPU load and with 80% memory utilization. This

experiment indicates that CPU load affects job execution time approximately 3.9 times more than

memory load, (i.e., (14.26-13.99)/(14.06-13.99) = 3.85).

Figure 3. Mandelbrot Execution performance CPU vs. Memory load factors

Figure 4 shows the time elapsed to execute Wave2MPI (an MPI program) with 3 nodes. The average job

execution time in an ideal scenario is 15.09 minutes, whereas the execution time increased to 17.04 and

15.58 minutes respectively with 80% CPU load and with 80% memory load. This experiment indicates

that 80% of CPU load has affected job execution time four times more than 80% memory load, (i.e.,

(17.04-15.09)/(15.58-15.09)=3.98).

10

Figure 4. Wave2DMPI Execution performance CPU vs. Memory load factors

These experiments indicate that CPU and memory load do not have an equal impact to application

execution time and the ratio between CPU and memory factors varies between applications and nodes.

However, CPU load always surpass the memory load in affecting job execution time and the ratio is

always more than three. Hence, we have given three times higher weight to CPU power than memory

power when ranking each computing node. At the same time, we have confirmed that CPU load does not

affect job execution performance until CPU utilization exceeds 80%. The same way memory load does

not affect job execution performance until memory consumption exceeds 80%.

2.5 Migration algorithm

Job migration is the process of moving a job from one to another computing node. It is a form of dynamic

load balancing in distributed computing. A migration algorithm is a policy to govern job migration,

basically to determine timing and a destination to migrate, (i.e., when and where to migrate) a job. The

following describes our migration algorithm:

i) When to migrate

Timing to migrate a job is determined by the rank of the current executing node. A PFAgent

calculates its local node i’s rank from the system information as follows

11

 () (

⁄)

In Linux, the sar (System Activity Report) command is used to report system loads. “sar 1 1”

gives the CPU load information in the last one minute. The CPU idle percentage is calculated by

parsing the sar output.

The process status command (ps aux) gives the details of all processes of all users in terms of

CPU and memory information. Memory free percentage is computed from its output column

“RSS” (real memory size). Since our experiments indicated that, CPU power has a bigger impact

to job execution performance than memory usage, we have given a higher weight to CPU, (i.e.,

three times more than memory). The above experiments also indicated that job execution

performance is not affected until CPU load or memory load reaches 80%. This means that job

execution performance will get affected when the current node rank becomes 26 or less (rank =

20% + (20%/3) = 26%). Each PFAgent broadcasts its local system’s information every 60

seconds and estimates the best node every two minutes. To mitigate this time lag, we want to add

some buffer to this rank. Therefore we decided to move a job when the current node’s rank

becomes less than or equal to 45 (rank (ri) <= 45).

ii) Where to migrate

80% CPU load on a 1 GHz CPU is not the same as 80% CPU load on 2 GHz CPU. Hence, we

cannot depend on each node’s individual rank to determine the best node. We need to find out

each node’s relative rank with respect to its peers. The relative rank (Ri) of a node i is calculated

as follows

CPU power (ci) of a node i is calculated as

 ()

The CPU idle percentage is calculated from “sar”’s output together with other CPU-related

information, the number of CPUs (# CPUs), the number of CPU cores (#Cores), and the CPU

speed are calculated from linux command “proc/cpuinfo”.

Memory power (mi) of a node i is calculated as

 ()

12

Total memory is calculated from linux command “free –m”.

 () (
 ()

 ()
) (

(
 ()

 ()
)

⁄)

Here max(cpupower) and max(mempower) refers to the maximum CPU power and maximum

memory power of all the nodes in a user-defined cloud space. Once the relative rank is calculated,

each PFAgent sorts them in an ascending order. The top node in the sorted list is the higher

performance computing node. In summary, a node’s individual rank (ri) and relative rank (Ri) are

used respectively when and where to migrate.

13

Chapter 3: Performance Evaluation

We have used Wave2DMPI and Mandelbrot as benchmark applications to study difference between

AgentTeamework-Lite’s migration-based job scheduling and the default (i.e., static) job scheduling in

terms of execution. The default scheduling uses the same set of computing nodes until the completion of a

given job, whereas migration-based scheduling moves the job execution to better performing nodes.

Wave2DMPI is a two dimensional wave simulation application based on Schroedinger’s equation that

calculates wave height on each cell, using its surrounding cells’ wave height. This application is

parallelized with the Java MPI libraries [10]. The parallelization approach partitions a simulation space in

smaller stripes, each assigned to a different node.

Figure 5 illustrates the Wave2DMPI’s execution time with the default scheduling and migration-based

scheduling. This job is executed with three computing nodes and the simulation size was set to 1000

units. The figure indicates that migration-based scheduling completes the job execution approximately

40% faster than the default scheduling.

3.1 Default vs. Migration based scheduling

Figure 5. Wave2DMPI Default vs. Migration based scheduling Execution

14

Figure 6 records snapshots of the three computing nodes’ individual rank (ri) that participated in the

default scheduling when executing Wave2DMPI. During the course of execution, the nodes’ ranks kept

fluctuating due to their varying system performance. In the most time, the individual rank (ri) of these

nodes was hovering around 40, which means that other applications running on these nodes consumed the

system resources heavily (approximately 80%). This clearly explains why we see the longer execution

time with the default scheduling.

Figure 6. Wave2DMPI Execution nodes’ rank (Default scheduling)

Figure 7 illustrated a job migration itinerary when executing Wave2DMPI with AgentTeamwork-Lite’s

migration-based scheduling. It uses a combination of preemptive and non-preemptive job migration.

Preemptive job migration means that the job is preempted, forced to migrate, and resumed at a different

node. Non-preemptive job migration takes place before job execution (i.e., initial job execution). In the

figure, a job is initially submitted to the uw1-320-00 node, which spawns commander and sentinel agents.

Since the sentinel agent detects a better computing node than the uw1-320-00 node, it migrates to a next

node in the itinerary that is uw1-320-22 (in non-preemptive migration), creates a resource file, and starts

15

the execution. After a while, the sentinel agent detects that the current executing node’s (uw1-320-22’s)

individual rank (ri) is less than 46, thus stops the job execution, and migrates to a next node in the

itinerary which is uw1-320-19. Since this migration enables the program to execute on better computing

nodes, its execution time is faster than the default scheduling.

Job
Submission

9:25:13

UW1-320-00

9:25:13

UW1-320-22

9
:2

5
:1

4

UW1-
320-17

UW1-
320-16

UW1-320-19

UW1-
320-20

UW1-
320-16

9
:2

7
:1

7

UW1-320-17

UW1-
320-22

UW1-
320-16

Job
completion

9:31:21

9
:3

7
:1

5

9:37:22

Figure 7. Wave2DMPI Migration based scheduling execution

We have also conducted a performance evaluation with a sequential application (i.e., a Mandelbrot fractal

generator). Fractals are a geometric shape where each pixel refers to a point in a Mandelbrot set [11]. A

16

point is considered to be in the Mandelbrot set if it converges to a number after a predefined number of

iterations which requires computational intensive calculation. For example, a 600X800 pixel image can

use up to maximum iterations of 500,000 for each of its pixel. This program is developed in Java

programming language.

Figure 8 illustrates Mandelbrot’s execution time with the default scheduling and migration-based

scheduling. This job was executed with a single computing node to generate a 1000X1000 pixel fractal

image with the max iterations set to 200,000. The figure indicates that the migration-based scheduling

completes the job execution approximately 15% faster than the default scheduling.

Figure 8. Mandelbrot Fractal Default vs. Migration based scheduling Execution

Figure 9 records the snapshots of the computing node’s individual rank (ri) that participate in the default

scheduling when executing the Mandelbrot fractal. In this case, before executing the job, the node’s

individual rank (ri) was at 50, but during program execution, it dropped to below 10. At the end of the

execution, the rank comes back to 50 levels again. Most likely Mandelbrot application is consuming the

system resources heavily that caused the individual rank to drop from 50 to 10.

17

Figure 9. Mandelbrot Fractal Execution node’s rank (Default scheduling)

Figure 10 illustrates a job migration itinerary when executing Mandelbrot program with AgentTeamwork-

Lite’s migration-based scheduling. In the figure, a job was initially submitted to the UW1-320-00 node

that spawned a commander and sentinel agents. Since the sentinel agent detected that there are higher-

rank nodes than the UW1-320-00 node, it migrated to a higher-ranked node in the itinerary that was

UW1-320-20 and started the job execution. After a while, the individual rank (ri) of the node UW1-320-

20 dropped less than 46, hence the sentinel agent stopped the job execution, and migrated to a higher-

ranked node in the itinerary, which was UW1-320-16. Even with the sequential job execution, we

confirmed that AgentTeamwork-Lite’s migration-based job scheduling was executing job faster than the

default scheduling.

18

Job
Submission

11:21:23

UW1-320-00 UW1-320-20

1
1

:2
1

:2
4

UW1-320-16

1
1

:2
5

:3
2

11:21:23

End

11:33:12
1

1
:3

3
:3

3

Figure 10. Mandelbrot Fractal Migration based scheduling execution

3.2 AgentTeamwork-Lite overhead

We analyzed AgentTeamwork-Lite’s overhead in terms of job execution cost and migration cost. The job

execution cost is the time elapsed to run a job until its completion. The time elapsed to complete a job

execution with AgentTeamwork-Lite is a few seconds more compare to direct execution. Secondly, the

sentinel agent checks the job completion at a regular interval (i.e., every two seconds). Therefore, the

commander agent will always receive the delayed job completion notification that can be up to the

maximum of two seconds. Figure 11 illustrates the Wave2DMPI’s execution time with the direct and

AgentTeamwork-Lite’s execution. The average execution time difference between direct and

AgentTeamwork-Lite’s execution is 24 seconds.

19

Figure 11. Direct vs. AgentTeamwork-Lite execution

The job migration cost is the total time involved in stopping the job execution and resumes at a different

node. During the job migration neither the data nor the code is transferred over the network. It is just that

the sentinel agent exits form the current executing node and starts at a remote node. When the sentinel

agent resumes at a remote node, it passes additional command line switch “resume” to the user program

that resumes the program execution with latest data snapshot. Hence, the job migration cost is in

negligible amount (i.e., few milliseconds). Figure 12 represents job migration cost of Wave2DMPI with

AgentTeamwork-Lite.

Figure 12. Job migration cost of Wave2DMPI

20

Chapter 4: Related work

In this section, we differentiate AgentTeamwork-Lite from its related systems in terms of migration-based

scheduling, parallel application scheduling and resource discovery.

4.1 GridLab Resource Management System (GRMS)

GridLab Resource Management (GRMS) [12] is an open source dynamic grid scheduling with job

migration and rescheduling system based on Globus Toolkit 2.4 [13].GRMS connects to the low-level

Globus services deployed onto remote resources through a set of Java and C APIs that allow to implement

various scheduling and policy plugins. Let us focus on GRMS’ reschedule policy plugin that is closer to

AgentTeamwork-Lite’s job migration. The reschedule policy plugin checkpoints and moves a running job

in order to release the amount of resources required by a pending job in queue.

Both GRMS and AgentTeamwork-Lite uses an application-based check-pointing approach. The

difference is that AgentTeamwork-Lite’s job migration aims at improving the currently running

application’s execution time, whereas GRMS focuses on the current job migration to schedule a newly

incoming application when the system suffers from the lack of resources. Secondly, GRMS requires user

to specify resource information along with a job submission request, which is not required in

AgentTeamwork-Lite. In GRMS, resource discovery module uses both central (GIIS) and local

information services (GRIS), whereas in AgentTeamwork-Lite, resource discovery is done through local

PFAgent’s broadcast message.

4.2 Condor

Condor [14] is a workload management system specialized for compute intensive jobs. It facilitates a job

queuing mechanism, scheduling policies, priority schemes, resource monitoring, and resource

management. A condor-pool consists of a master node that runs as a central manager, and a number of

other machines that join the pool as participating resources. The central manager periodically receives

status updates from the machines that are part of the pool, and does match making for pending job

requests with appropriate, available resources. Condor moves job execution when the current executing

node does not meet user-specified resource requirements. A checkpoint (system-level check-pointed)

image is generated whenever it detects to move a job from one to another machine. A program must be

linkage-edited with the Condor compiler in order for the Condor libraries to intercept system calls and to

21

perform check-pointing while the program is running. However, the program should not invoke multi-

process calls (namely fork(), system(), etc..), inter-process communication, network communication,

alarms, and timers. Hence, Condor does not currently support job migration for parallel and multi-process

applications. Note that Condor-MW used to support master-worker parallel programs where the master

process had to take care of all snapshots of the worker-processes.

Contrary to centralized resource monitoring in Condor, AgentTeamwork-Lite performs decentralized

resource monitoring by allowing each node to broadcast its computing-resource information. Since

AgentTeamwork-Lite uses application-level check-pointing (in each of multiple processes) and creates a

resource file such as mpd.hosts in MPI, it supports job migration for both sequential and parallel

applications.

22

Chapter 5: Conclusion

Our main focus on this research was to develop a migration-based distributed job scheduling and

monitoring framework using mobile agents. This thesis presented AgentTeamwork-Lite’s system design

and its execution model. Its unique design relieves users from specifying the computing resource

requirements for their job execution. Our analysis has also demonstrated the advantages of

AgentTeamwork-Lite’s migration-based job scheduling over default scheduling as well as its capability to

schedule both sequential and parallel applications. Our future work includes the following areas.

1. Check-pointing wrapper:

 We must provide a common check-pointing wrapper library and interface to free

application developers from writing their own check-pointing implementation that is currently not

standardized and difficult. Secondly, the common interface will allow the AgentTeamwork-Lite to invoke

the check-pointing function in a regular interval instead of having applications initiate checkpoints.

2. Experiment in Cloud:

 Though AgentTeamwork-Lite has capability to work with cloud, we have not yet tried

that in the actual cloud. We have evaluated AgentTeamwork-Lite performance only in the UWB

distributed system laboratory. The next step is to test AgentTeamwork-Lite with cloud services including

Amazon EC2.

3. MASS Scheduling:

 AgentTeamwork-Lite currently supports scheduling Java and MPI applications. However,

it can be easily enhanced to schedule any programming including MASS.

4. AgentTeamwork-Lite portal:

 AgentTeamwork-Lite provides command line utilities to start daemon processes and to

schedule jobs. We need a portal to allow users to submit, and schedule their jobs over the internet. This

portal is currently under development in the UWB distributed system laboratory.

23

References

[1] M. Fukuda, C. Ngo, E. Mak and J. Morisaki, "Resource Management and Monitoring in
AgentTeamwork Grid Computing Middleware," in IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, August 2007.

[2] Z. Zhang and X. Zhang, "Realization of open cloud computing federation based on
mobile agent," in Intelligent Computing and Intelligent Systems, 2009. ICIS 2009. IEEE
International Conference, Shanghai, December 2009.

[3] B. S. a. E.-N. H. M. M. Hassan, "A framework of sensor-cloud integration opportunities
and challenges.," in In Proc. of the 3rd International Conference on Ubiquitous
Information Management and Communication, ACM, January 2009.

[4] R. Jedermann, J. Palafox-Albarran, J. Robla, P. Barreiro, L. Ruiz-Garcia and W. Lang,
"Interpolation of spatial temperature profiles by sensor networks," in Sensors, 2011
IEEE, Limerick, October 2011.

[5] G. Li, T.-M. Chan, K.-S. Leung and K.-H. Lee, "A Cluster Refinement Algorithm for Motif
Discovery," IEEE/ACM Transactions on Computational Biology and Bioinformatics, , vol.
v7, pp. 654-668, Oct.-Dec. 2010.

[6] E. P. alathe . . eung . ian and . hang egional cli ate odel ro ections for
the State of Washington," Climatic Change , vol. 102, no. 1/2, p. 51, Sep2010.

[7] D. L. Chao, M. E. Halloran, V. J. Obenchain and I. M. L. Jr, "FluTE, a Publicly Available
Stochastic Influenza Epidemic Simulation Model," PLoS Computational Biology, vol. 6,
no. 1, p. 1, Jan2010.

[8] C. Liu, Z. Zhao and F. Liu, "An Insight into the Architecture of Condor - A Distributed
Scheduler," in Computer Network and Multimedia Technology, 2009. CNMT 2009.
International Symposium, Wuhan, January 2009.

[9] H. Morohoshi and R. Huang, "A user-friendly platform for developing grid services
over Globus Toolkit 3," in Parallel and Distributed Systems, 2005. Proceedings. 11th
International Conference, July 2005.

[10] R. L. Graham, B. W. Barrett, G. M. Shipman, T. S. Woodall and G. Bosilca, "Open MPI,"
Parallel Processing Letters, pp. 79-88, 2007.

[11] B. M. Chapman and F. Massaioli, "OpenMP," Parallel Computing, vol. 31, no. 10-12, p.
p957, Oct 2005.

[12] T. Chuang, Design and Qualitative/Quantitative Analysis of Multi-Agent Spatial
Simulation Library, Bothell: Master's thesis, Master of Science in Computing and
Software Systems, University of Washington, 2012.

[13] M. Baker, B. Carpenter, G. Fox and S. H. Koo, "mpiJava: An Object-Oriented Java
Interface to MPI," Lecture notes in computer science, no. 1586, p. 748, 1999.

[14] "The Mandelbrot set," Australian Mathematics Teacher, vol. 67, no. 4, p. 36, 2011.

[15] K. Kurowski, B. Ludwiczak, J. Nabrzyski, A. Oleksiak and J. Pukacki, "Dynamic grid
scheduling with job migration and rescheduling in the GridLab resource management
system," Scientific Programming, vol. 12, no. 4, 2004.

24

[16] [Online]. Available: http://www.globus.org/.

[17] T. T. M. L. Douglas Thain, "Condor and the Grid," in Grid Computing: Making the Global
Infrastructure a Reality, John Wiley & Sons Inc., 2002 December.

25

Appendix A: Check-pointing Source Code

The following the check-pointing source code of Wave2DMPI program.

 // Saves current simulation space and system time into either data1.ser or

 // data2.ser, whichever file is older

 private void saveToFile() throws Exception{

 double space[][] = null;

 ObjectOutput out = null;

 boolean wroteTime = false;

 // rank 0 initializes output

 if (myRank == 0) {

 // for debug

 File output = swapFile(false); // get file to save to

 System.out.println("saving to " + output);

 out = new ObjectOutputStream(new FileOutputStream

 (output));

 }

 // collect sim spaces from 3 time periods: z[0], z[1], and z[2]

 for (int period = 0; period < 3; period++) {

 space = collect(period); // collect sim space from sub ranks

 // only rank 0 is responsible to save it.

 if (myRank == 0) {

 try {

 if (!wroteTime) {

 out.writeInt(time); // save current system time

 wroteTime = true;

 }

 out.writeObject(space); // save simulation space

 } catch (Exception e) {

 System.err.println(e); // print out error

 }

 }

 }

 if (myRank == 0) out.close(); // rank 0 closes output

 }

 private File swapFile(boolean resuming) throws IOException{

 File a = new File("data1.ser");

 File b = new File("data2.ser");

 // create files if they don't exist

 a.createNewFile();

 b.createNewFile();

 /*System.err.println("length : " + a.length() + "\t " + b.length());

 System.err.println("Datemodified : " + a.lastModified() + "\t " +

b.lastModified());*/

 // check if one of the file is empty to avoid EOF exception on resuming

 if (resuming){

 if (a.length() == 0 || b.length() == 0)

 return (a.length() == 0) ? b : a;

 else

 {

 if (a.lastModified() > b.lastModified())

 {

 if(a.length() >= (b.length()/2))

 return a;

 else

26

 return b;

 }

 else

 {

 if(b.length() >= (a.length()/2))

 return b;

 else

 return a;

 }

 }

 }

 // return the older file to be overwritten or resumed from

 return (a.lastModified() > b.lastModified()) ? b : a;

 }

 // Reads in previously saved time and simulation space data from

 // either data1.ser or data2.ser

 private void readFromFile() {

 resume = true;

 double[][] space = null;

 try {

 // only rank 0 is responsible to read from file

 if (myRank == 0) {

 // for debug

 String fileName = swapFile(true).getName();

 System.out.println("resuming from " + fileName);

 // read simulation values from the older data file

 ObjectInput in = new ObjectInputStream (new FileInputStream

 (fileName));

 // System.out.println("read time");

 this.time = (int)in.readInt(); // set sim time

 //System.out.println("set time");

 // distribute the sub space and sys time for every period

 for (int period = 0; period < 3; period++) {

 space = (double[][]) in.readObject(); // set sim space

 distribute(space, period); // send space

 }

 in.close();

 }

 else // other processes receive sub spaces

 for (int period = 0; period < 3; period++) {

 distribute(space, period); // get sub spaces

 }

 } catch (Exception e) {

 System.out.println("error at readFromFile");

 System.err.println(e);

 }

 }

27

Appendix B: User manual

1. To launch daemon process run the following command line

/net/metis/home3/dslab/FieldBaseMigration/agents/drop/java -cp *:. AgentLauncher uwplace /classpath

$(pwd) /command launch /portnumber <portNumber> /user <useraccount> /password <password>

[/nodes <nodeslist>]

Arguments:

 portnumber – Pornumber on which UWPlace daemon process communicates (Example: 12345)

 useraccount – User account to run daemon process. Before use this account, please make sure that

ssh profile is saved in all participating nodes to allow remote login without

providing the password every time.

 password - password for the user account

The above command line launches UWPlace daemon process in all nodes returned by “/etc/hosts”

command. If we need to restrict that to specific nodes, we can supply the optional switch “/nodes”

followed by comma separated node names (Example: /nodes mnode1.uwb.edu,mnode2.uwb.edu).

PFAgent should be started immediately after the daemon process to broadcast resource information

/net/metis/home3/dslab/FieldBaseMigration/agents/drop/java -cp *:. AgentLauncher pfagent /classpath

/classpath $(pwd) /command launch /portnumber <portNumber> /user <useraccount> /password

<password> [/nodes <nodeslist>]

2. To schedule a user program run the following command line

/net/metis/home3/dslab/FieldBaseMigration/agents/drop/schedule.sh $1 $2 $3 $4 $5 $6 $7 $8 $9

Arguments:

 Arg1 ($1) – Full path to AgentTeamwork-Lite’s code

(use : /net/metis/home3/dslab/FieldBaseMigration/agents/drop)

 Arg2 ($2) – Port number to communicate to UWPlace daemon process (should be same as above)

 Arg3 ($3) – User account to execute the job

 Arg4 ($4) – Password for the user account

 Arg5 ($5) – Full path to job folder

(Example: /net/metis/home3/dslab/FieldBaseMigration/mandelbrot)

 Arg6 ($6) - Number of computing nodes (1 for sequential program)

 Arg7 ($7) – Command line (Example: prunjava 3 or java -cp *:.)

 Arg8 ($8) – User program and Arguments

28

(Example: Mandellel.class_-1.5_0.5_0.0_1000_1000_100000_GRAD-

RED_agenthosts.png)

 Arg9 ($9): Additional files to upload to job execution directory. It should precede by “AF_”

 (Example:

AF_/net/metis/home3/dslab/NetBeansProjects/CSS497Project/upload/dslab@uw1-320-

lab.uwb.edu/Mandelbrot/WorkContract.class)

