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Time-Stretching Concept
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Time-Stretching - Intensity
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Experimental Arrangement
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Polymer Modulator

• PC/CLD polymer traveling wave modulators

• Optical network analyzer: 1 dB down at 20 GHz compared to 2 GHz

• Modeled effects: velocity mismatch and electrical loss

• Vπ ~ 7 V, 1.3 cm interaction length

• W-band response relatively flat

Measured and Calculated Optical Response
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Transmission Through Modulator

Influence Of Modulator 5 On Optical Spectrum
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Influence Of Modulator 3 On Optical Spectrum
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• Mach-Zehnders used with broadband 
femtosecond source

• Modulators reshape 50 nm spectrum
• Different modulators on chip introduce 

different amount of spectral reshaping
• Slight optical path mismatch
• Highly chirp pulses key
• Effect also observed in LiNbO3

modulators

Light
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Pulse Shape After System

• Two interfering highly chirped 
optical pulses
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For system parameters and period of 
1.5 ns

• Calculated effective optical path 
mismatch of 100 µm

• Calculated effective index mismatch 
0.005
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33 To 50 GHz Time-Stretched Signals

• Sweep oscillator 

• L1=1.5 Km

• L2=4.5 Km

• Measured Meff 3.86
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61.8 GHz Time-Stretched Signal

• Source GUNN diode at 61.8 GHz

• L1=1.5 Km

• L2=6.5 Km

• Measured Meff 5.13

• PSD shape not significantly 
changed
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101.7 GHz Time-Stretched Signal

• Source Klystron at 101.7 GHz

• L1=0.5 Km

• L2=5.0 Km

• Measured Meff 9.8

• Change in input pulse chirp

• Drop in signal level
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Stretch Ratios

• Discrepancies between calculated M and measured Meff

• Need to account for dispersive elements ahead of first fiber 
spool such as 50m fiber patch cord

• Then:

• where δ has length units and represents dispersion equivalent to 
that length of fiber

• Solutions for δ are correct in magnitude and self-consistent:

f (GHz) L1 (Km) L2 (Km) M Meff δ δ (m)
33-50 1.5 4.5 4.00 3.86 73
61.8 1.5 6.5 5.33 5.1 74

101.7 0.5 5 11.00 9.8 68
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Dispersion Penalty

• Sidebands slip out of phase in L2
due to group velocity dispersion

• Result: dispersion penalty 
(Coppinger et. al.)

• Tradeoff: M vs. aperture time vs. 
bandwidth.

• Practical limit for A/D 
preprocessing: “must stay in 1st 
lobe”

• Modulator operation exceeds this 
limit in our experiment
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SSB Modulation

Optical Field,
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• Amplitude limitation imposed by dispersion penalty removed
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Conclusions

• Demonstrated time-stretching of 102 GHz signal

• Enabled by broadband 1.55 µm polymer modulator

• Modulator performance spans useful bandwidth range 
determined by dispersion penalty

• Importance of optical path length mismatch observed

• Single-Sideband Modulator removes high-frequency 
attenuation


