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Re: Mathematical Definition of the Gini Index

This report explains the mathematical definition of the Gini as given in Brown (1994).

Derivation of the Gini Index

Suppose we have a sample 5-point data set {X0, X1, X2, X3, X4} and {Y0, Y1, Y2, Y3, Y4}, as displayed in
Figure 1, which is similar to Figure 1 of Brown (1994). Equation (3) of this reference defines the Gini
index G as

G = 1−
k−1∑
i=0

(Yi+1 + Yi)(Xi+1 −Xi) (1)

In our case, k = 5. Where does this definition come from?

On page 1247 of Brown (1994), Brown states “Defined graphically, the Gini coefficient formally is mea-
sured as the area between the equality curve and the Lorenz curve, divided by the area under the equality
curve.” Referring to Figure 1, the equality curve is the top curve, and the Lorenz curve is the bottom
curve. We can calculate the Gini index using this geometric definition for our sample data set and see if
it matches equation (1) above.

Looking at the bottom graph of Figure 1, we have that G is equal to the area A between the curves
divided by the area underneath the top line (i.e., the equality curve), which is equal to 1

2
∗:

G =
A

1/2
= 2A ⇔ A =

G

2
(2)

We can compute A by dividing the graph region outside of the in-between curve region into rectangles
and triangles, as shown in the bottom graph of Figure 1. The area of the entire graph region is 1×1 = 1,
since X and Y both have a range between 0 and 1. Thus, the area A between the curves is equal to the
total graph area (1) minus the areas of the rectangles and triangles shown on the bottom of Figure 1:

∗This area is equal to the area of the triangle underneath the upper line in Figure 1, which is 1
2
(1× 1) = 1

2
.
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A = 1−Areas of rectangles and triangles from Figure 1

Now, the upper triangle of Figure 1 has an area of 1
2 , so we have this, using the labels of the lower

rectangles and triangles from the bottom of Figure 1:

A = 1− 1
2
−

4∑
i=1

Area(Ti)−
3∑

i=1

Area(Ri)

Now, if we number the triangles from left to right as T1 through T4, we get these:

Area(T1) = 1
2 (X1 −X0)(Y1 − Y0)

Area(T2) = 1
2 (X2 −X1)(Y2 − Y1)

Area(T3) = 1
2 (X3 −X2)(Y3 − Y2)

Area(T4) = 1
2 (X4 −X3)(Y4 − Y3)

Thus,
4∑

i=1

Area(Ti) =
1
2

3∑
i=0

(Xi+1 −Xi)(Yi+1 − Yi). For the rectangles, we have

Area(R1) = Y1(X2 −X1)
Area(R2) = Y2(X3 −X2)
Area(R3) = Y3(X4 −X3)

So that
3∑

i=1

Area(Ri) =
3∑

i=1

Yi(Xi+1 −Xi) =
3∑

i=0

Yi(Xi+1 −Xi) [Since Y0 = 0, we can add a term for

i = 0 and not change the total sum].

Putting the above all together, we have

A = 1− 1
2 −

∑4
i=1 Area(Ti)−

∑3
i=1 Area(Ri)

= 1
2 −

1
2

3∑
i=0

(Xi+1 −Xi)(Yi+1 − Yi)−
3∑

i=1

Yi(Xi+1 −Xi)

= 1
2 −

3∑
i=0

(Xi+1 −Xi)
(

Yi +
Yi+1 − Yi

2

)
= 1

2 −
1
2

3∑
i=0

(Xi+1 −Xi) (Yi + Yi+1)

= 1
2

(
1−

k−1∑
i=0

(Yi+1 + Yi)(Xi+1 −Xi)

)

Since we showed in equation (2) that A = G
2 , we must have that G = 1−

k−1∑
i=0

(Yi+1 +Yi)(Xi+1−Xi), and

equation (1) is proven.
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A Couple Caveats

In the derivation of the Gini index, we assumed that the Lorenz curve was below the equality line (i.e.,
the line Yi = Xi). That is, we assumed that for each point (Xi, Yi), that Yi ≤ Xi.

If this is not the case, the Gini index will no longer be the area between the two curves divided by 1
2 .

Consider the two cases shown in Figure 2. On the top, we have that for each point, Yi ≥ Xi. On the
bottom, we have that Yi ≤ Xi for some points, and Yi ≥ Xi for others. In the first case (i.e., Yi ≥ Xi for
each point), the Gini index is equal to the negative of the area between the two curves. In the second
case, the Gini index is equal to the area below the equality curve minus the area above the equality curve.

Thus, when computing the Gini index, in order to make sure you really are computing the area between the
two curves, divided by the area underneath the equality curve, it’s a good idea to ascertain that Yi ≤ Xi

for each point. Checking into this for the document SJC gini decibles.xls, you are computing the
Gini coefficient with Y = Cum % Inc (column K) and X = Deciles (column L). A glance at the data
verifies that, indeed, Yi ≤ Xi for each point.

One more point: The formula for the Gini index is not correct if either X or Y has a range other
than between 0 and 1. That is, beware if you ever have a data set where it is NOT the case where
0 ≤ Xi ≤ 1, 0 ≤ Yi ≤ 1 for each point. This is because when we divide by the area underneath the
equality curve, we would be dividing by a number other than 1

2 . However, this is not the case with your
data, Linn.
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Figure 1: For sample 5-point data {Xi} and {Yi}, the equality curve (top curve) and the Lorenz curve
(bottom curve), similar to Figure 1 in Brown (1994). The bottom plot divides the area outside of the
between-curve region into triangles and rectangles.
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Figure 2: Curves similar to those shown in Figure 1, except that Yi ≤ Xi for each point (Xi, Yi) (above),
or Yi ≤ Xi for some points and Yi ≥ Xi for others (below).
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