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Abstract Arteriovenous fistulae are created surgically to
provide adequate access for dialysis patients suffering from
end-stage renal disease. It has long been hypothesized that
the rapid blood vessel remodeling occurring after fistula cre-
ation is in part a process to restore the mechanical stresses
to some preferred level, i.e., mechanical homeostasis. The
current study presents fluid–structure interaction (FSI) sim-
ulations of a patient-specific model of a mature arteriove-
nous fistula reconstructed from 3D ultrasound scans. The
FSI results are compared with previously published data of
the same model but with rigid walls. Ultrasound-derived wall
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motion measurements are also used to validate the FSI sim-
ulations of the wall motion. Very large time-averaged shear
stresses, 10–15 Pa, are calculated at the fistula anastomosis in
the FSI simulations, values which are much larger than what
is typically thought to be the normal homeostatic shear stress
in the peripheral vasculature. Although this result is system-
atically lower by as much as 50 % compared to the analogous
rigid-walled simulations, the inclusion of distensible vessel
walls in hemodynamic simulations does not reduce the high
anastomotic shear stresses to “normal” values. Therefore,
rigid-walled analyses may be acceptable for identifying high
shear regions of arteriovenous fistulae.

Keywords Vascular remodeling · Hemodynamics ·
Dialysis access · End-stage renal disease

1 Introduction

Hemodialysis is a common treatment for approximately
370,000 patients in the USA with end-stage renal disease
or ESRD (US Renal Data System 2012). To optimize the
procedure, the dialysis access site must be easily accessible
but must also be able to continuously provide high blood flow
rates, usually > 250 mL/min (Tordoir et al. 2003), to the dia-
lyzer. If there is insufficient blood flow through the access,
then dialysis becomes impractical or ineffective. To provide
these two combined features, which are not found together
in the human circulation, an arteriovenous (AV) fistula is
typically created surgically in the arm: an artery, usually
the radial, and a vein, usually the cephalic, are anastomosed
together, bypassing the high flow resistance of the capillary
bed in the hand and providing enhanced flow through the
artery and into the access vein.

123

Author's personal copy

http://dx.doi.org/10.1007/s10237-013-0527-7


P. M. McGah et al.

Unfortunately, as many as 60 % of AV fistulae will either
fail or require an intervention within one year to main-
tain clinical patency (Gibson et al. 2001; Lauvao et al.
2009). There are two major causes of patency loss: 1) occlu-
sion, brought on by aggressive intimal hyperplasia, and 2)
impaired dilation, whereby venous outward remodeling is not
sufficient to provide a high flow rate at the access site (Tor-
doir et al. 2003). In the USA alone, it is estimated that the
total health care expenditures related to access site compli-
cations and revisions amount to about $2 billion per year
(US Renal Data System 2012). Perhaps most striking is the
fact that ESRD patients in the USA represent 1.3 % of all
Medicare patients, yet the total annual Medicare expendi-
tures for ESRD treatments are $33 billion accounting for
7.9 % of all annual Medicare expenditures.

After the creation of the fistula, the vein undergoes a rapid
remodeling process typically lasting 12–16 weeks (Wong et
al. 1996). The venous lumen will often double in diame-
ter (Shemesh et al. 2007), and the venous wall will increase
in thickness and muscular tone (Kritharis et al. 2010). It has
long been hypothesized that hemodynamic forces constitute
the primary external influence on the remodeling process
(Kamiya and Togawa 1980; Zarins et al. 1987). Since an
AV fistula causes a dramatic rise in flow rate, oftentimes
more than a 20-fold increase, the wall shear stress is ini-
tially elevated to values outside of a normal physiologi-
cal range (Corpataux et al. 2002). Therefore, it is in turn
hypothesized that the vein and artery lumens increase, both
acutely and chronically, as a way to renormalize the value
of the viscous wall shear stress. Indeed, the remodeling
of the vessels has been shown to correlate with the ini-
tial time-averaged wall shear stress as evidenced by animal
models of AV fistulae (Kamiya and Togawa 1980; Zarins
et al. 1987) and ultrasound surveillance in dialysis patients
(Corpataux et al. 2002; Girerd et al. 1996). These studies
hypothesized that the rapid remodeling phase stops once the
mean wall shear stress in the fistulae reaches about 1.5 Pa
in the radial artery and about 1.0 Pa in the cephalic vein.
The renormalization of shear stress in the fistula vessels has
been interpreted as evidence of a “mechanical homeostasis”
(Humphrey 2008): the vessels seek to maintain a preferred
mechanical state through a process of growth and remodel-
ing. Shear-induced remodeling is widely hypothesized to be
regulated in part by the vascular endothelium (Owens et al.
2010).

Despite the pervasive use of the AV fistula for dialysis
access, the mechanisms which drive a fistula to either mat-
uration versus occlusion and failure remain obscure (Dixon
2006). Even though blood flow is thought to play an impor-
tant role in fistula remodeling, the characterization of either
beneficial or detrimental hemodynamic stresses occurring
within fistulae remains ambiguous (Carroll et al. 2011; Ene-
Iordache and Remuzzi 2012; Krishnamoorthy et al. 2008).

In prior work (McGah et al. 2013), we reported that the
wall shear stresses in four patient-specific computational
models of fistulae were well above what is typically consid-
ered the homeostatic value; much of the anastomotic lumens
were subjected to ≥15 Pa for most of or even all of the car-
diac cycle due to the complex shape of the anastomosis and
the relatively high flow velocities. However, the fistulae were
all over two years old, which is much longer than the initial
rapid remodeling phase, and were clinically patent at the time
of the imaging. Thus, the non-homeostatic shear stress val-
ues did not appear to hinder fistula clinical utility. However,
previous studies have assumed rigid walls in all cases.

Motivated by the results of McGah et al. (2013), we stud-
ied computational fluid–structure interaction (FSI) to investi-
gate the role of vascular wall distensibility in altering hemo-
dynamic stresses within a 3D ultrasound-derived patient-
specific model of an arteriovenous fistula. The previously
reported rigid-wall simulations are used as a baseline com-
parison. Additionally, it has long been hypothesized that the
mismatch of elastic properties between the vein and artery at
the anastomosis causes increased strain, leading to cellular
proliferation and intimal hyperplasia (Bassiouny et al. 1992).
Therefore, we also aim to quantify the cyclic wall strain in the
fistula. There have been no computational investigations of
fully coupled, 3D fluid–structure interaction of arteriovenous
fistulae to date. This study, therefore, represents an improve-
ment in the understanding of hemodynamics and biomechan-
ics of hemodialysis access sites.

2 Methods

Patient data of an AV fistulae in the forearm used for dialysis
access are examined in this study. The data were collected via
3D and Doppler ultrasound with a protocol approved by the
University of Washington Institutional Review Board. The
fistula was 7.6 years from time of surgical creation to time of
ultrasound examination and was fully functional for dialysis
access at the time when the data of this study were collected.
The fistula is an end-to-side anastomosis configuration where
the cephalic vein is excised and its proximal end is connected
to the side of the radial artery. Blood pressure was recorded
with a sphygmomanometer over the radial artery on the arm
opposite of the fistula.

Vessel imaging was performed with a custom three-
dimensional ultrasound imaging system that has been
described in detail elsewhere (Leotta et al. 2001, 2003).
Briefly, a magnetic tracking system (Flock of Birds, Ascen-
sion Technology, Burlington, VT) provides measurements of
the location and orientation of the ultrasound scanhead dur-
ing the examination. The ultrasound imager (SonixTouch,
Ultrasonix Medical Corporation, Richmond, BC, Canada)
and magnetic tracking system are interfaced with a personal
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computer equipped with custom software for simultaneous
acquisition of the ultrasound images and the associated loca-
tion data.

Three types of data were acquired: 1) three-dimensional
shape of the artery, anastomosis, and vein, 2) Doppler blood
velocity spectral waveform data, 3) wall motion measure-
ments along the artery and vein. The 3D configuration of the
vessels was acquired by continuously capturing a series of
cross-sectional 2D grayscale images at a rate of 30 frames/s as
the scanhead is manually swept along the vessels of interest.
The scanhead is swept at a rate of about 5–10 mm/s. Spectral
Doppler waveforms are also recorded at several locations in
the proximal vessels and in the anastomoses. The spectral
Doppler system records the distribution of blood velocities
over time (at 10 ms intervals) at selected regions within a ves-
sel. Each wall motion measurement was acquired by captur-
ing a 3-second sequence of 2D images of the vessel lumen at
30 frames per second with the scanhead held stationary over
the segment of interest. The image sequence is then reformat-
ted to show the motion from a single scan. The local diam-
eter and the local wall thickness of the vessel in the region
of interest were calculated in a post-processing step using
the software Carotid Analyzer (Medical Imaging Applica-
tions LLC, Coralville, IA). The reproducibility is ±70 µm
for both the time-dependent diameter measurements and the
wall thickness measurements.

To create a 3D model of the fistula, the vessel lumen was
segmented on a subset of the captured images using cus-
tom software (Legget et al. 1998). Additional custom soft-
ware within MATLAB (The MathWorks, Natick, MA) was
used to reconstruct 3D surfaces from cross-sectional outlines
(Leotta et al. 2001). The software connects the contour points
using B-splines to generate a 3D surface model. The repro-
ducibility in the cross-sectional areas of the reconstructed
vessels and anastomoses has been determined to be within
±2.4 mm2(≈ 10 %) (Leotta et al. 2003). The suture line of
the fistula, which denotes where the arterial and venous tis-
sue meet, is manually outlined on the 3D surface model. A
previous study demonstrated that the manual identification of
the suture line is reproducible to within 2–3 % with respect
to the total suture line perimeter (Leotta et al. 2005).

2.1 Material model

As a preliminary step for the following analysis, the
Lagrangian reference configuration of the solid vessel wall
is taken to be that of the vessel obtained from the ultra-
sound imaging which represents the position of the vessel
lumen time-averaged over the cardiac cycle. Although fluid–
structure interaction simulations in the cardiovascular sys-
tem are very challenging numerically (Taylor and Figueroa
2009), additional simplifications can be made in the AV fis-
tula studied here. The coupled fluid–solid problem can be

suitably linearized when certain conditions are satisfied such
as small deformations; radial deformations are typically as
low as 1–2 % in the normal brachial artery (Dammers et al.
2003).

In the classical theory of linear elasticity, the reference
configuration is chosen to be stress free (Gurtin et al. 2010).
However, that is not the case here as blood vessels in situ
are known to be in a mechanically stressed state (Humphrey
2002). Therefore, special consideration must be taken during
the linearization procedure. For a given solid body, the posi-
tion vectors X and x

(
X, t

)
denote the reference and current

positions, respectively. The displacement vector is denoted
as η

(
X, t

)
, and the displacement gradient tensor is denoted

as H
(
X, t

)
. The linearization of the equations of motion for

the body is appropriate when the displacement gradients are
small such that ||H|| � 1, where || · || is the tensor norm.
Given small displacement gradients, the Green–Lagrange
strain tensor, E, is equal to the infinitesimal strain tensor
such that E = 1

2

(
H + HT

) + O
(||H||2)

Furthermore, we posit that the vascular wall tissues for
both the artery and the vein are elastic materials whose stress
tensors can be described in terms of their respective strains,
i.e., S = S(E), where S is the second Piola–Kirchhoff stress
tensor. For small strain, the stress can be expanded in a Taylor
series about zero Green–Lagrange strain such that

S
(
E

) = S
∣
∣
E=0 + ∂S

∂E

∣∣
∣∣
E=0

:E + O
(||E||2)

= To + C:E + O
(||E||2). (1)

where

To ≡ S
∣∣
E=0 (2)

is the pre-stress tensor, and

C ≡ ∂S
∂E

∣∣∣∣
E=0

(3)

is the tangent elasticity tensor. The first Piola–Kirchhoff
stress, P, is therefore given by

P = (
I + H

) · S

= (
I + H

) · (
To + C:E) + O

(||H||2)

= To + H · To + C:E + O
(||H||2)

= To + E · To + � · To + C:E + O
(||H||2)

= To + (
I⊗To + C

):E + (
I⊗To

):� + O
(||H||2) (4)

where � = 1
2

(
H − HT

)
is the infinitesimal rotation tensor

and the product (M⊗N)i jkl = Mik N jl for arbitrary second-
order tensors M and N. This expression for the first Piola–
Kirchhoff stress is consistent with previous analyses (Baek
et al. 2007) based on the theory of “small-on-large” defor-
mations in that the stress can depend on small strains, small
rotations, and the pre-stress tensor.
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Regarding the linearity of the material, evidence suggests
that peripheral artery tissue can be approximated as linear
over the range of deformations of the normal cardiac cycle
based on ex vivo pressure/diameter measurements (Baek et
al. 2007) of the basilar artery. Veins, on the other hand, are
typically much more deformable than arteries under normal
venous conditions (Widmaier et al. 2006). However, under
the arterial-like conditions of an AV fistula, where the internal
pressure is much greater than that of the venous circulation,
experiments suggest that veins are much less compliant than
arteries at the same pressures. Above 30 mmHg, the veins
of the peripheral circulation, such as the saphenous (Dobrin
et al. 1988) or the jugular (Kritharis et al. 2010), become
increasingly stiff and are much less compliant than corre-
sponding arteries under the same pressures. Therefore, we
treat the venous tissue behavior as linear under the current
conditions given their relatively low distensibility.

For the material elasticity tensor, C, we suggest that the
same constitutive equation be used for both the arterial and
venous tissue of the fistula. However, we do not assume that
the material constants are the same for the different tissues.
In each case, we assume that the tangent elasticity tensor is
described by an isotropic Saint Venant–Kirchhoff-like mate-
rial such that

C = λs I ⊗ I + μs Is (5)

where λs and μs are (Lamé-like) material constants and Is is
the symmetric fourth-order identity tensor.

Several of the terms appearing in Eq. 4 can additionally be
neglected as they are “small.” For example, the stresses aris-
ing from rotations can be neglected as they are small relative
to the stresses arising from strains, i.e.,

∣∣∣∣(I ⊗ To
): �∣∣∣∣ �∣∣∣∣C: E

∣∣∣∣ (Baek et al. 2007). Likewise, the second term on
the right-hand side of Eq. 4, i.e., the strain tensor contracted
into the pre-stress tensor, is also hypothesized to be small,
i.e.,

∣∣∣∣I ⊗ To
∣∣∣∣ � ∣∣∣∣C

∣∣∣∣. This assumption will be justified in
Sect. 3.2 below. Therefore, the first Piola–Kirchhoff stress
tensor can be written as

P = To + P′, where P′ = C: E (6)

for all subsequent analyses unless otherwise stated. In this
case, P′ is symmetric due to the symmetries of both C and E.

Additional simplifications are made so that the mater-
ial parameters can be easily obtained from the ultrasound-
acquired wall motion measurements by a basic analysis. The
vessels, both the artery and the vein, are assumed to be thin
walled and cylindrically shaped. In addition, it is assumed
that there is some pre-stress, To within the vessel at the mean
(i.e., time-averaged) internal pressure, Po, with a given mean
radius, Ro, and mean wall thickness, ho, and that the defor-
mation of the wall is quasi-static. Then, the instantaneous
pressure, P , and radial displacements, ηr are related by

(P − Po) Ro

ho
=

(
2

Po Ro

ho
+ 4μs

)
ηr

Ro
. (7)

A derivation of this expression is given in Appendix 6.

2.2 Fluid computational method

The 3D Navier–Stokes equations are solved using ANSYS
FLUENT (Release 12.1, ANSYS, Inc. Cannonsburg, PA),
a finite-volume-based solver. Briefly, this technique divides
the total fluid domain into small, but finite, control volumes
within which the fluid problem is reformulated as an integral
statement describing the fluid velocity, u, and fluid pressure,
p. For the J th control volume, with a volume VJ and surface
area AJ , the governing fluid equations for mass and momen-
tum become
∫

AJ

u · nJ dA = 0 (8)

∂

∂t

∫

VJ

ρ f u dV +
∫

AJ

ρ f (
u ⊗ u

) · nJ dA = (9)

−
∫

AJ

p nJ dA +
∫

AJ

μ∇u · nJ dA

where nJ is the outward unit normal vector of control volume
J, ρ f is the fluid density, and μ is the dynamic viscosity. The
blood is treated as an incompressible and Newtonian fluid
with a density of 1,050.0 kg/m3 and a dynamic viscosity of
3.5 · 10−3 Pa · s (Lee and Steinman 2007). A second-order
upwind scheme is used for the spatial discretization of the
advective flux term in Eq. 9, while a central difference scheme
is used to evaluate the viscous flux term (Hirsch 2007). The
pressure term is spatially discretized using a weighted cen-
tral difference. The time integration is done by a second-
order pressure-implicit-splitting of operators (PISO) scheme
which is a type of projection method. The PISO scheme also
enforces the incompressibility of the flow at each time step.
The geometry is discretized with a semi-structured tetrahe-
dral mesh, using the package ANSYS® GAMBIT® (Release
2.4, ANSYS, Inc.). The tetrahedral volumes have a charac-
teristic width of 150 µm. The number of computational cells
in the fluid model is 6.23 million.

At the inflow artery, an unsteady Womersley velocity pro-
file with one mean and seven harmonic components is pre-
scribed as the fluid boundary condition. The prescribed flow
profile temporal behavior is determined from the in vivo
centerline velocity (Womersley 1955) as measured by the
Doppler ultrasound. At the outflow boundaries, �i , a trac-
tion condition is prescribed for the flow such that

p = Pi , and
∂u
∂n

= 0 on �i (10)

where Pi is the prescribed boundary pressure.
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Two-element Windkessel (i.e., resistance-capacitance)
models are used to determine the boundary pressure, Pi .
In vivo measurements of fistula outflow vein impedance
show that it is well approximated by a single resistive ele-
ment up to ≈ 10 Hz (Schwartz et al. 1991). However, two-
element models are used here as they are more numerically
stable. The Windkessel models are integrated in time by a
fully implicit second-order backward difference formula as
described previously (McGah et al. 2013). The Windkessel
elements are manually calibrated to achieve outflow rates
consistent with the in vivo Doppler ultrasound-derived flow
rates. The in vivo venous flow rate is calculated by multiply-
ing the cross-sectional averaged Doppler ultrasound veloc-
ity by the cross-sectional area of the vessel. This technique
gives an uncertainty in the in vivo flow rate of ≈ ±13 %
(Zierler et al. 1992). Flow rate in the distal artery is cal-
culated by applying a mass balance through the fistula and
asserting that the time-averaged flow rates must all sum to
zero.

2.3 Structural computational method

The structural dynamic equations for linear momentum are
solved by the displacement formulation of the finite element
method with an in-house code. The weak (Galerkin method)
form of the structural equations written in the reference con-
figuration becomes

∫

�s
o

ρs w · η̈ dV +
∫

�s
o

∇ow : P dV

=
∫

�N
o

w · to dA +
∫

�s
o

w · b dV (11)

where ρs is the density of the vessel wall, w is the weight-
ing function, b is a body force within the structure, �s

o is the
domain of the structure, and �N

o is the portion of the boundary
where tractions are prescribed. The structure is also assumed
to be thin walled, in which case, the tractions on the lumen
interface will be transmitted uniformly through the thickness
of the vessel (Figueroa et al. 2006) such that the lumen trac-
tion acting on the structure, tL , can be related to the body
force as

b = tL

hs
(12)

where hs is the structure thickness. The volume integrals can
be converted into 2D surface integrals since the structure is
thin and its properties do not vary across the thickness. The
weak form for the thin-walled structure is

∫

�L
o

ρs hs w · η̈ dA +
∫

�L
o

hs ∇ow : P′ dA

=
∫

�L
o

w · tL dA −
∫

�L
o

hs ∇ow : To dA (13)

where �L
o represents the luminal boundary. Boundary condi-

tions for the wall displacements need only be prescribed on
the inlet and outlet “rings.” For this study, zero displacement,
or clamped, boundary conditions are enforced.

The displacements of the vessel walls are represented
with linear membrane triangular elements augmented with
transverse shears. Only the three translational, but no rota-
tional, degrees of freedom are needed to describe the solid
motion with these elements (Figueroa et al. 2006). The
membrane condition is usually justified by the fact that
the cardiac pressure wavelength is O(1 m), but the vessel
diameters are O(1 mm). In the local coordinate system of
the element, xl , let the z direction represent the through
thickness coordinate. In the membrane state, the out-of-
plane normal stress is zero, i.e., Pl

zz ≈ 0, and the out-of-
plane derivatives are zero, i.e., ∂

∂z ≈ 0. Thus, there are
only five independent components for the local stress and
strain, i.e., P′ l = {

Pxx , Pyy, Pxy, Pxz, Pyz
}T and El =

{
Exx , Eyy, Exy, Exz, Eyz

}T. The local element strains are
related to the local nodal displacements, ηl , by the expression

El = B ηl (14)

where B is a matrix operator containing the spatial derivatives
of the shape functions (Hughes 2000).

Invoking the symmetries of the stress and strain tensors,
one can use a reduced second-order tensor to represent the
tangent elasticity tensor, which for a thin-walled problem
takes the form (Hughes 2000)

P′ l = Cl El (15)

where

Cl =

⎡

⎢
⎢⎢⎢
⎣

λ + 2μs λ 0 0 0
λ λ + 2μs 0 0 0
0 0 2μs 0 0
0 0 0 2μs 0
0 0 0 0 2μs

⎤

⎥
⎥⎥⎥
⎦

(16)

and where

λ = 2μsλs

λs + 2μs
.

The solid is treated as incompressible, in which case the first
Lamé-like parameter is very large, i.e., λs 	 μs , such that
λ ≈ 2μs . Also note that a Lagrange multiplier does not
need to be incorporated into the stress tensor to enforce the
incompressibility as the structure is thin walled.
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Given Eq. 16, the individual element stiffness matrix is
constructed in the local coordinate system and then rotated
into the global coordinate system where each element matrix
is assembled into the global stiffness matrix (Hughes 2000).
Similarly, the global mass matrix and the global element
force vector, representing the luminal tractions, are also con-
structed in a local frame before rotation and assembly. How-
ever, consider the pre-stress tensor in Eq. 13. The pre-stress in
the vascular wall arises to counteract the background hydro-
dynamic pressure in the vessel acting on the structure so that
structural equilibrium is maintained. Therefore, the pre-stress
term in Eq. 13 is assumed to be balanced with the traction on
the lumen arising from the time-averaged background pres-
sure, namely that
∫

�L
o

hs ∇ow : To dA =
∫

�L
o

w · t L
dA (17)

where t L
is the time-averaged luminal traction.

2.4 Fluid–structure coupling

Since structural displacements are assumed to be small, a
fixed Eulerian frame is used to describe the fluid domain and
lumen interface. Small, but non-zero, transpiration velocities
are imposed as boundary conditions onto the fluid arising
from the lumen motion (Deparis et al. 2003; Figueroa et al.
2006). The transpiration boundary conditions between the
fluid and structure along the lumen boundary, �L

o , are

u = η̇ (18)

σ f · Ns = t L (19)

where σ f is the fluid Cauchy stress tensor and Ns is the
outward unit normal of the structure.

A segregated solution algorithm is used for the fluid–
structure coupling whereby the fluid and structure equations
are solved separately but are continually iterated at each time
step until convergence is achieved below some specified tol-
erance. The structural time-stepping is accomplished with a
trapezoidal rule. An under-relaxation of the structural dis-
placements is used to alleviate numerical instabilities which
afflict segregated solutions strategies (Causin et al. 2005).
Briefly, let η∗

k+1 be the pre-relaxed structural displacement
at the k + 1 iteration for the n + 1 time step. The “relaxed”
displacement of the structure is therefore

ηn+1
k+1 = ωη∗

k+1 + (1 − ω)ηn+1
k (20)

and ω is the relaxation parameter, which is less than one.
Additionally, the fictitious mass technique of Baek and Kar-
niadakis (2012) for segregated solutions is also used to aid in
convergence. The fictitious mass acts to “slow down” the
structure’s motion but does not affect the overall system

Algorithm 1 FSI Coupling
1: Start
2: for n = 1 to n = n_max do {Time Step Loop}
3: for k = 1 to k = k_max do {FSI Loop}
4: Impose Structure Velocity, vn+1

k , on Fluid Boundary
5: Update Fluid Velocity, un+1

k+1 , and Pressure pn+1
k+1

6: Calculate Fluid Tractions on Lumen
7: Update Structure Displacement, η∗

k+1

8: Relax Structure Displacement, i.e., equ. 20, obtain ηn+1
k+1

9: Update Structure Velocity, v n+1
k+1

10: if Structure Converged, i.e., equ. 21 then
11: Break
12: else
13: k = k + 1
14: end if
15: end for{End FSI Loop}
16: n = n + 1
17: end for{End Time Step Loop}

dynamics once a converged solution is achieved. The con-
vergence of the system is judged by monitoring the L2 norm
of the change in vessel wall displacements such that

1√
Nnd

∥
∥η ∗

k+1 − η n+1
k

∥
∥

2 < TOL (21)

where Nnd is the total number of structural nodes and TOL
is the specified convergence tolerance.

The tractions from the fluid solution are imposed onto the
structure at each iteration, while the velocities of the structure
are imposed as boundary conditions onto the fluid at each
iteration. The solid and fluid meshes are perfectly matched
at the lumen, so no special interpolation scheme is needed.
There are about 177 thousand elements within the structure,
corresponding to about 266 thousand structural degrees of
freedom. The overall algorithm is presented as pseudocode
in Algorithm 1.

The FSI coupling has been verified for unsteady flow in a
straight elastic tube. More thorough details of both the finite
element solution validation as well as the coupling algorithm
can be found in McGah (2012).

3 Results

3.1 Fistula characteristics

The 3D reconstruction of the fistula is shown in Fig. 1
with the suture line delineating the portions into “arterial” or
“venous” tissue. The total length of the vascular model for
the fistula is about 75 mm. The diameters of the reconstructed
proximal artery, distal artery, and outflow vein are 4.68, 2.68,
and 7.96 mm, respectively. The period of the cardiac cycle is
0.85 s.

The in vivo flow rate, as measured by Doppler ultrasound,
in the proximal artery has a mean of 652 mL/min and a max of
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Fig. 1 Fistula 3D reconstruction. Red color denotes arterial lumen,
and blue color denotes venous lumen. The orientation of the model is
such that the skin is toward the −z direction

1041 mL/min. The flow rate in the proximal vein has a mean
of 630 mL/min and a max of 989 mL/min. The venous flow
rate is higher than the minimum required for adequate dial-
ysis, > 250 mL/min (Wong et al. 1996). The patient’s blood
pressure, measured with a sphygmomanometer on the upper
arm opposite of the fistula, is 132/56 mmHg. The mean arte-
rial pressure is approximated by adding 1/3 of the difference
between the systolic and diastolic pressures to the diastolic
value, which in this case results in a mean arterial pressure
of 81 mmHg. Note that it is typical for patients with AV fis-
tulae to have such low diastolic pressures (Corpataux et al.
2002). The venous pressure is estimated by subtracting from
the arterial values the pressure drops which were calculated
in prior rigid-walled simulations (McGah et al. 2013) of the
same fistula. In this case, the venous pressure is 127, 79,
and 55 mmHg for the systolic, mean, and diastolic pressure,
respectively.

3.2 Wall motion measurements

The arterial wall motion was recorded by ultrasound about
35 mm proximal to the anastomosis, x ≈ 0 in Fig. 1, while the
venous wall motion was recorded about 80 mm proximal to
the anastomosis, not included in the 3D reconstruction. Both
measurements are taken at points with an orientation facing
toward the skin. The mean diameter of the artery is 4.64 mm
with a wall thickness of 0.55 ± .07 mm. Maximum systolic
diameter is 4.73± .04 mm (mean ± standard deviation, three
cardiac cycles) corresponding to maximum circumferential
strain of 1.97 %. The mean diameter of the proximal vein is
7.68 mm with a wall thickness of 0.51 ± .07 mm. Maxi-
mum systolic diameter is 7.84 ± .02 mm (mean ± standard
deviation, three cardiac cycles) corresponding to a maximum
circumferential strain of 1.16 %. The measured strains jus-
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Fig. 2 In vivo wall motion measurements over three cardiac cycles.
Radial displacement versus time for a proximal artery and b proximal
vein. Vertical dashed line delineate individual cardiac cycles

tify the use of a small strain assumption over the cardiac
cycle motion for the full FSI computations. Time-dependent
in vivo wall displacements are shown in Fig. 2.

Invoking Laplace’s law, see Eq. 27 in Appendix 6, for the
mean circumferential wall stress in a thin-walled vessel, and
using the mean pressure of 81 mmHg, the mean wall stress in
the proximal artery is computed as To,θθ = 45.6 kPa. Using
a mean pressure of 79 mmHg in the proximal vein, the mean
wall stress is computed as To,θθ = 80.9 kPa.

Seven unique data points are used to determine the elastic
parameters for each vessel: three maximum systolic displace-
ments and four minimum diastolic displacements. The pres-
sure is assumed to be the same at each systole or diastole in
each cardiac cycle. Solving Eq. 7 for the arterial conditions
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Table 1 Wall mechanical properties derived from in vivo measure-
ments

Proximal
artery

Proximal
vein

Radius, Ro (mm) 2.32 3.88

Wall thickness, ho (mm) 0.55 0.51

Mean circumferential stress,
To,θθ , (kPa)

45.6 80.9

Max. circumferential strain, Eθθ , (%) 1.97 1.16

Incremental elastic modulus, μs , (kPa) 272 ± 64 780 ± 95

gives the modulus μs as 272 ± 64 kPa (mean ± standard
error of the mean). For the venous conditions, the modulus
μs is calculated as 780 ± 95 kPa (mean ± standard error of
the mean). The standard errors associated with the tangent
moduli are also taken as a measure of the random uncertainty
in the wall measurements. Wall properties are summarized
in Table 1.

It was stated without proof in Sects. 2.1 and 2.3 that several
terms in the expression for the stress tensor can be neglected
so that Eq. 4 can be reduced to Eq. 6. Justification is provided
here based on an order of magnitude analysis. The following
scales are used for the terms that appear in Eq. 4 for either
the arterial or venous tissue, respectively:

∣∣∣∣To
∣∣∣∣ ∼ To,θθ ,

∣∣∣∣I ⊗ To
∣∣∣∣ ∼ To,θθ∣

∣
∣
∣C

∣
∣
∣
∣ ∼ 4μs,

∣
∣
∣
∣E

∣
∣
∣
∣ ∼ Eθθ∣∣∣∣(I ⊗ To

): �∣∣∣∣ ∼ To,θθ · Eθθ ,
∣∣∣∣C:E∣∣∣∣ ∼ 4μs · Eθθ .

The scale for the pre-stress tensor, To,θθ , is taken to be the
mean circumferential stress, while the scale for the strain,
Eθθ , and rotation is taken to be the maximum circumferential
strain. Both quantities are given in Table 1.

Based on these estimates, the dyadic product of the pre-
stress is small compared to the tangent elasticity tensor, i.e.,∣∣∣∣I ⊗ To

∣∣∣∣ � ∣∣∣∣C
∣∣∣∣, since To,θθ � 4μs . The ratio of the pre-

stress to the tangent modulus is 2.6 and 4.2 % for the vein
and the artery, respectively. A similar argument can be made
to neglect the stresses occurring due to rotations, namely
that

∣∣∣∣(I ⊗ To
): �∣∣∣∣ � ∣∣∣∣C:E∣∣∣∣ since To,θθ · Eθθ � 4μs ·

Eθθ , giving the same order of magnitude estimate as above.
However, the total pre-stress is not negligible relative to the
tangent stiffness, i.e.,

∣∣∣∣To
∣∣∣∣ ∼ ∣∣∣∣C:E∣∣∣∣ since To,θθ ∼ 4μs ·

Eθθ .

3.3 FSI computations

The material properties and the thickness of the vein are
assumed to be spatially uniform over the whole vein. Like-
wise, the modulus and thickness of the artery wall are
assumed spatially uniform over the whole artery. This implies
that there is a “jump discontinuity” in the both the wall thick-

ness and the tangent modulus along the anastomosis suture
line. The density of the artery and venous tissue is set equal
to 1,200.0 Kg/m3. The background fluid pressure is taken to
be a constant of 80 mmHg.

3.3.1 Algorithm controls

A time step of 
t = .001 s is used for the FSI simulation,
corresponding to 850 time steps per cardiac cycle. The mesh
size, ≈ 150 µm, and time step size were determined in previ-
ous work (McGah et al. 2013) to resolve the wall shear stress
to within 5 % of a grid-independent solution estimated using
a Richardson extrapolation. The fictitious mass parameter
for the structure solution is set equal to 10.0. The under-
relaxation factor, ω, in Eq. 20, is set equal to 0.1. The rela-
tive residual tolerances in the fluid subiterations for mass and
momentum are set to ≤ 10−5. At each time step, the conver-
gence is found to be limited by the displacement of the wall.
The wall residual tolerance, Eq. 21, is set to ≤ 10−8 m, corre-
sponding to a relative residual of ∼ 10−4. Convergence of the
wall displacements required between 20 to 30 FSI iterations,
“k” index in Algorithm 1, in order to achieve the necessary
error tolerance. These convergence criteria are found a pos-
teriori to limit the error in the global (i.e., integral over the
domain) mass balance to ≤ 2 · 10−4 relative to the mean
arterial inflow rate.

The resistance and capacitance of the distal artery Wind-
kessel model are R = 3.10 · 1010 Pa · s/m3 and C =
2.567 ·10−13 m3/Pa, respectively. The resistance and capac-
itance of the proximal vein are R = 9.80 · 108 Pa · s/m3 and
C = 8.120 · 10−12 m3/Pa, respectively.

3.3.2 Solution initialization

The velocity and the pressure of the fluid from the previous
rigid wall simulation are used as the initial conditions for
the FSI simulation. The flow and pressure are taken from
the phase of the cardiac cycle during the systolic accelera-
tion when the surface-averaged lumen pressure is close to the
value of 80 mmHg which was chosen in order to minimize
the initial forcing, and hence acceleration, of the structure.
The unsteady FSI simulation is then started with zero dis-
placement and zero velocity for the structure. Two cardiac
cycles are completed and then discarded from the analysis to
eliminate initial transients.

3.4 FSI results

Simulated proximal arterial pressure is 122/47 mmHg (sys-
tolic/diastolic) with a mean of 79 mmHg. This compares
favorably with the in vivo measurements: 132/56 mmHg with
mean of 81 mmHg measured in the brachial artery contralat-
eral to the fistula. The simulated pressure in the proximal vein
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Fig. 3 Simulated pressure versus time on the boundaries of the proxi-
mal artery (Prox. Art.) and proximal vein (Prox. Vein)

at the domain outflow is 119/46 mmHg with a mean venous
pressure of 77 mmHg. The temporal history of the pressures
on the venous outflow boundary and arterial inflow boundary
is shown in Fig. 3.

The distensibility of the walls allows for storage of a vol-
ume of blood within the computational domain. Therefore,
the shape and the phase of the venous outflow rate are altered
compared to its rigid counterpart. The FSI simulation com-
puted a maximum venous flow rate of 971 mL/min and a
time average of 636 mL/min. For comparison, the rigid sim-
ulation (McGah et al. 2013) computed a maximum flow rate
of 1,012 mL/min and a time average of 632 mL/min. The
venous outflow rates for the rigid and FSI simulations are
shown in Fig. 4a.

The capacitance of the blood vessels does cause the
expected phase lag in the venous flow rate. A temporal lag
of 0.039 s (phase angle of 16.7◦) is computed between the
rigid and FSI cases for the phase of maximum venous flow
rate. The mass flux across the outer faces of the fluid mesh
elements on the lumen surface, which equates to the rate of
instantaneous mass storage, is shown in Fig. 4b. The stor-
age rate has a maximum of 173 mL/min and a minimum of
−102 mL/min which is about 15 % of the total flow through
the fistula. The characteristic velocities of the vessel wall are
O(1 mm/s).

3.5 Simulated wall displacements

The time signals of the computed displacements at spatial
points can be compared to the ultrasound measured in vivo
wall displacements in order to validate the FSI simulation.
Although this comparison is “circular,” in that in vivo dis-
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Fig. 4 Flow rates versus time a venous outflow rates for the rigid and
FSI simulation b Rate of blood storage in the fistula due to the disten-
sibility of the wall

placements have already been used to obtain the vessel mate-
rial constants, the comparison still shows that the simulation
produces wall motions which are consistent with the in vivo
conditions and thus justifies our modeling assumptions.

The mechanical strain is computed within the vessel wall
during a post-processing step. We use the second invariant
of the strain tensor, II

(
E

)
, as a measure of total strain in the

wall which, for an incompressible material undergoing small

deformations, is ||E|| ≡
√

−II
(
E

) =
√

1
2 Ei j Ei j . The maxi-

mum simulated strain at peak systole is located at the “apex”
of the anastomosis and is equal to 5.3 %. There is a jump in
the strain between the two tissues along the suture line. The
mean maximum systolic strain in the elements immediately
adjacent to the suture line is 3.00 % on the arterial side and is
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Fig. 5 Simulated wall-normal displacements versus time a Arterial
displacements and b Venous displacements

1.41 % on the venous side. Interestingly, the vein is normally
assumed (Ballyk et al. 1998) to suffer more from abnormal
stress concentrations due to the compliance mismatch at the
suture as veins are typically less stiff than arteries. However,
that is not the case in this fistula due to the larger stiffness
of the vein under arterial pressures. Caution must be consid-
ered when interpreting this result as the internal wall stress
computations may not be precise given the simplifications
and assumptions of the material model (e.g., constant wall
thicknesses or isotropic material).

Figure 5a plots the wall-normal simulated arterial dis-
placements versus time at a single material point. The mate-
rial point is located at the same position both in silico along

the vessel axis at x ≈ 0.5 mm on the proximal artery and in
vivo in the ultrasound-acquired measurements. Positive dis-
placement is toward the surface of the skin. The in vivo mea-
surements recorded three cardiac cycles, while the simulation
only recorded one cardiac cycle. Modest agreement is found
between the two data sets, e.g., compare with 2a. Peak in vivo
displacement are 45.7 ± 17.3 µm (mean ± SD, three cycles),
and a minimum displacement of −51.1 ± 22.8 µm. The sim-
ulation computed a maximum displacement of 75.3 µm and
a minimum displacement of −62.8 µm.

Figure 5b plots the wall-normal venous displacement ver-
sus time at an arbitrary, but typical, material point located at
x ≈ −1.5 mm. Positive displacement is toward the surface
of the skin. However, the in vivo measurement is located at a
point over 50 mm farther proximal, which is beyond the end
of the model domain. The ultrasound system measured peak
displacement of 43.0 ± 11.0 µm and minimum displace-
ment of −42.3 ± 17.0 µm, i.e., see Fig. 2b. The simulation
computed a maximum venous displacement of 213 µm and
a minimum venous displacement of −191 µm. Possible rea-
sons for the large discrepancy are discussed below in Sect. 4.

As an additional validation of the simulation, we com-
pare the strains computed in the FSI simulation to the strains
directly calculated form the ultrasound measurements (pre-
viously given in Table 1). The maximum strain magni-
tude occurring at the material point on the artery shown in
Fig. 5a is 2.32 %. In comparison, the maximum circumferen-
tial strain calculated directly from the ultrasound measure-
ments is 1.97 %. Similarly, the maximum strain occurring
at the material point on the vein shown in Fig. 5b is 1.16 %,
while the maximum circumferential stress calculated directly
from the ultrasound measurements is 1.12 %. The FSI sim-
ulation is therefore computing vessel strains consistent with
the in vivo measurements.

3.6 Wall shear stresses

The time-averaged viscous wall shear stresses computed in
the FSI case are compared with those in the rigid-wall case
reported previously (McGah et al. 2013). Exact definitions
of the instantaneous and time-averaged wall shear stress are
given in Appendix 7. To facilitate easy comparison between
the two cases, the lumen is divided up into small, nearly
equal-sized rectangular “patches” using the surface map-
ping and patching feature in the Vascular Modeling Toolkit,
or VMTK (www.vmtk.org). The average size of a patch is
10.40 mm2, and the total number of patches is 264. The time-
averaged wall shear stress is spatially averaged within each
patch for all cases. The rigid and FSI cases also use the same
patching topology.

The majority of the flow entering the fistula through the
proximal artery must make a 180◦ turn as it leaves through
the proximal vein. In both the rigid and FSI cases, the blood
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Fig. 6 Time-averaged wall shear stress maps on the fistula lumen in Pa. Subfigures (a) and (b) show results from the rigid and FSI cases, respectively.
The view is looking from the skin toward the fistula. The large value of the shear stress on the anastomosis is due to the flow impingement

flow entering through the proximal artery impinges onto the
distal side of the anastomotic wall. This produces a stagna-
tion point-like flow and results in very high shear stresses on a
ring around the stagnation point at the anastomosis. Instanta-
neous systolic shear stresses exceed 20 Pa, and time-averaged
shear stresses exceed 10 Pa at the anastomosis in both cases.
Figure 6 shows the time-averaged wall shear stress for (a)
the rigid case and (b) the FSI case. Strong secondary flows
and vortices are generated near the stagnation point and are
advected downstream into the outflow vein. The venous flow
stabilizes a few centimeters downstream of the anastomoses
as the vortices tend to decay.

The data for the patched shear stress data are presented in
Figs. 7 and 8 as a “limits of agreement” plot where each data
point represents the shear stress at a given patch location. The
FSI case systematically predicts lower shear stresses com-
pared to the rigid case. The differences have a clear downward
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Fig. 7 Agreement plot of time-averaged shear stress on lumen patches
of rigid versus FSI cases. Dots represent data from individual patches,
while the solid line is the identity line
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Fig. 8 Limits of agreement plot of time-averaged shear stress on lumen
patches between rigid and FSI cases. The abscissa is the shear stress
computed in the rigid case, and the ordinate is the difference in the time-
averaged shear stress between the FSI and rigid cases. Dots represent
data from individual patches, while dashed line represents the average
systematic trend of ≈ −21.5 %

trend with increasing shear stress. Spatially averaging the
time-averaged wall shear stress across all patches yields an
averaged value of 3.81 Pa for the rigid case and 2.98 Pa for the
FSI case and an average difference of 0.820 Pa, or −21.5 %.
The largest absolute difference is located on the anastomotic
lumen near the flow stagnation point where the FSI predicts
a patch time-averaged wall shear stress of 9.01 Pa, or ≈ 58 %
lower than the rigid case, 21.46 Pa, on the same patch. For
patches located on the anastomosis, the FSI, on average, pre-
dicts the time-averaged wall shear stress as 37.7 % lower
than the rigid simulation. Farther away from the anastomo-
sis, > 5 mm, the relative differences are not as large: average
differences are 11.4 % for the outflow vein, 20.4 % for the
proximal artery, and 17.4 % for the distal artery. At the seg-
ments farthest from the anastomosis, > 20 mm, the absolute
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values of the time- and- space-averaged wall shear stress over
each vessel segment are as follows: 1.19 Pa for the outflow
vein, 3.66 Pa for the proximal artery, and 0.92 Pa for the
distal artery.

Although the FSI simulation computed lower shear stress
than that of the rigid case, the magnitude of the wall shear
stress on the anastomotic lumen is still much larger than
what is considered the normal homeostatic value in the
peripheral vasculature. In mature radiocephalic AV fistu-
lae used for dialysis access, the normal homeostatic time-
averaged wall shear stress has been reported between 2.5 and
4.0 Pa (Dammers et al. 2005; Ene-Iordache et al. 2003) in the
feeding radial artery and as 1.0 Pa (Corpataux et al. 2002) in
the draining cephalic vein, which are based on Doppler ultra-
sound measurements. In the same studies (Dammers et al.
2005; Ene-Iordache et al. 2003), the maximum radial artery
wall shear stress has been reported between 4.0 and 7.0 Pa.
Here, however, time-averaged wall shear stress at the anasto-
mosis flow stagnation point are computed as 10–15 Pa for the
FSI case and as 15–25 Pa in the rigid case. These values are
an order of magnitude higher than what is typically consid-
ered homeostatic in the cephalic vein. However, the current
results are roughly in agreement with more recent hemody-
namic simulations of mature human (Carroll et al. 2011) and
porcine models (Krishnamoorthy et al. 2008) of AV fistulae
which reported very high wall shear stresses, > 20 Pa, on
fistulae anastomoses.

A scalar quantity, “the highly stressed area,” given by
Eq. 35 in Appendix 7, is computed for the FSI simulation.
The highly stressed area is a scalar value which has been used
previously (McGah et al. 2013) to quantify the extent of the
lumen which is exposed to some arbitrary, but large, threshold
value of instantaneous shear stress. A comparison of the com-
puted highly stresses area, Aτ , using different values of shear
thresholds for both the rigid and FSI cases is shown in Fig. 9.
The highly stressed area data are normalized with the square
of the proximal artery diameter, DA. The differences between
the rigid and FSI cases becomes greater as a higher shear
stress threshold is chosen. Using a threshold of 7.5 Pa gives
normalized highly stressed areas of 17.3 (rigid) and 17.1
(FSI). Yet, using a threshold of 15 Pa gives a larger difference
with normalized highly stressed areas of 6.73 (rigid) and 3.09
(FSI). Despite a systematic reduction compared to the rigid
case, the FSI simulation still predicts that a significant portion
of the anastomosis is subjected to instantaneous wall shear
stress greater than 15 Pa, about 2-3 times greater than what is
typically considered the normal maximum wall shear stress.

4 Discussion

Although the qualitative picture of the wall shear stress on
the arterial and venous sides of the AV fistula outlined by the
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Fig. 9 Highly stressed area, Aτ , normalized by the proximal artery
diameter, DA, using different values of the shear threshold for both the
rigid and FSI cases

rigid wall and FSI simulations is consistent, there are quanti-
tative differences in the time-averaged wall shear stress pre-
dictions between the rigid and FSI simulations. Differences
at the anastomosis are as high as 50 %, while differences at
the proximal vessels away from the anastomosis are less pro-
nounced: about 10 % in the proximal vein and about 20 % in
the proximal artery. The shear stress predicted by the FSI
simulation is nearly always lower than the result from rigid
simulations. This is the expected behavior: in a distensible
wall simulation, the vessel can “yield” and reduce the veloc-
ity gradient at the lumen interface. Poiseuille’s law shows
that the shear rate is inversely related to the cube of the vessel
diameter (assuming that the flow rate is constant). Therefore,
a 2 % increase in the vessel diameter would reduce the wall
shear stress by about 6 %.

The results of Figs. 7, 8 and 9 show that the distensi-
bility attenuates the higher wall shear stresses more so than
lower magnitudes. This suggests a relative indifference of the
results between rigid wall and FSI simulations at high shear
magnitudes. There are also small differences in the highly
stressed area, Aτ in Fig. 9, using the lowest value of wall shear
stress threshold, in this case 7.5 Pa, which is several times
the normal physiological shear stress in peripheral vessels.
The mechanosensitive response of the endothelium at these
stress levels would be saturated; shear-dependent endothe-
lial nitric oxide production has been shown to asymptote to
a constant level at ≥5 Pa in steady flow in vitro experiments
of bovine aortic endothelial cells (Metaxa et al. 2008). Fully
accurate values of wall shear stress, particularly high values,
may have a minor effect when incorporated into theoreti-
cal models of vessel growth and remodeling as the shear
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stress “dose-response” relationship saturates above this cer-
tain threshold.

If one considers the opposite, that is that the response of the
vascular tissue to the values above these thresholds is impor-
tant, then the lower shear stress predictions may be important.
For example, if endothelial signaling is sensitive to values of
shear stress between 10 and 20 Pa, then the computation
of lower stresses with FSI simulations points to significant
challenges in predicting the wall remodeling in AV fistula.
Certainly more work is needed to understand the mechanobi-
ological response of vascular endothelial cells under such
extreme shear stress conditions occurring in AV fistulae.

4.1 Utility of rigid-wall simulations

Other authors have reported large reductions in wall shear
stress computations between FSI and rigid hemodynamic
simulations. In one of the first computational studies of car-
diovascular fluid–structure interaction in 1995, Perktold and
Rappitsch (1995) reported relative differences of 25 % in wall
shear stress in a distensible and rigid idealized model of the
carotid bifurcation. A more recent study of Bazilevs et al.
(2009) performed FSI simulations in a patient-specific model
of the vena cava and pulmonary arteries after the Fontan pro-
cedure. Their FSI simulations predicted wall shear stresses
15–20 % lower than the corresponding rigid simulations. The
differences were most pronounced at vessel bifurcations.
These relative reductions in shear stress are roughly in agree-
ment with the results reported here.

Some investigators, such as Bazilevs et al. (2009), have
suggested that it is therefore necessary to incorporate wall
distensibility in order to accurately predict the wall shear
stress. Others, such as Lee and Steinman (2007), have sug-
gested that the error in wall shear stress introduced by a rigid
assumption is minor relative to the uncertainties such as the
reconstruction of the vessel and prescription of flow rates;
errors in the wall shear stress due to the geometric recon-
struction have been reported to be as high as 30–40 %. Thus,
it is argued that wall distensibility is of secondary importance
given current levels of geometric precision and the complex-
ity of FSI simulations.

The results of the FSI here do cast a degree of uncertainty
onto the results of a previous study (McGah et al. 2013) of
rigid-walled simulations. Nevertheless, the overall conclu-
sions of the rigid-wall analysis are still justified by the FSI
analysis. Very high wall shear stresses (>10 − 15 Pa), well
above what is typically considered the homeostatic point,
are still observed at the anastomosis in the FSI simulations.
Although the extent of high wall shear stresses is reduced in
the FSI results, the high stresses nonetheless persist. There-
fore, the inclusion of distensible vessel walls does not reduce
the very high values wall shear stress in AV fistulae to “nor-
mal” levels.

Yet, despite the abnormally high shear stresses, the fistula
showed no stenoses and was clinically patent at the time of the
ultrasound examination. At least in this single case, it appears
the fistula can be subjected to wall shear stresses well above
the normal homeostatic value without its clinical patency
being compromised. This finding is, however, in contrast to
previous hypotheses (Carroll et al. 2011; Misra et al. 2008)
regarding the role of hemodynamic shear stress in AV fistula
failure. More work is needed to articulate the role of very
high wall shear stress in the growth and remodeling of the
outflow vein in AV fistulae.

Furthermore, it is hypothesized here that the hemody-
namic trends across the patients derived from the rigid sim-
ulations may be valid, even if the absolute values are sys-
tematically altered. This hypothesis would support the use
of rigid-walled hemodynamic analyses as it still can provide
valuable information as part of a screening mechanism for
patients at risk of fistula failure. Rigid-wall analyses could
still be used to calculate relative risk across patients which
could correlate to important clinical outcomes.

4.2 The mechanism of wall shear stress reduction

The large reduction in wall shear stress in the FSI simula-
tion for regions at or near the anastomosis is much higher
than what would be expected due to the effect of increased
vessel diameter alone based on Poiseuille’s law; with max-
imum displacements at the anastomosis of 5 %, one would
expect reductions in shear of 15 %. We therefore conjecture
that an additional hemodynamic mechanism attenuates the
wall shear stresses near the anastomosis: vessel wall motion
changes the thickness of the viscous boundary layer occur-
ring at the flow impingement point. The fluid in the imping-
ing jet is redirected radially outward from the stagnation
point along the distal wall of the anastomosis. A thin viscous
boundary layer develops on the anastomosis between the fast
radially outward motion of the flow jet and the slow fluid
near the lumen wall (due to the no-slip condition). In rigid-
wall simulations, there is a sharp velocity gradient, and hence
shear stress, across this boundary layer that partially accounts
for the increased shear around the anastomosis stagnation
point. In the FSI simulations, the wall motion introduces a
small “transpiration” velocity at the anastomosis wall. The
added momentum transfer between the outer fluid jet and
the fluid near the anastomosis wall will thicken the bound-
ary layer and lessen the velocity gradient, reducing the shear
stress.

4.3 Agreement of wall displacement measurements

The simulation predicts arterial wall displacements which
agree only modestly against in vivo measurements. Pre-
dicted displacements on the proximal artery are almost 50 %
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higher than the in vivo measurements. Although the relative
error between the simulated and in vivo may seem large, the
absolute error between the two is nevertheless small. The dif-
ference in the maximum arterial displacement between the
simulated and in vivo results is 29.6 µm. This is a very minor
difference relative to the additional length scales of the prob-
lem such as the radius of the proximal artery (≈ 2.3 mm).

An important source of error is the elastic modulus uncer-
tainty, ≈ 25 %. The large cycle-to-cycle variations in the
ultrasound-derived diameters also make the determination of
a reference radius, needed for defining displacement, more
difficult. The wall thickness measurements also contain ran-
dom uncertainties (10–15 %) which are also not accounted
for in the standard errors of the elastic moduli shown in
Table 1. Additional discrepancies may also be due in part to
the choice of boundary conditions of the FSI simulation. The
basic in vivo analysis assumed that the vessel was very long
such that axial strain was negligible. However, the end effects
of the wall motion do produce non-negligible axial strain.
The axial strain was about 10 % relative to the circumferen-
tial strain at peak systole at the chosen simulated material
point. In addition, the analysis of the in vivo measurements
assumed the vessel was a straight, cylindrical shape. The 3D
reconstruction of the lumen is not perfectly circular, nor per-
fectly straight, which also introduces additional sources of
error.

For the venous wall displacements, the difference between
the simulated and in vivo data was even larger; the simu-
lation predicts displacements a factor of 5 larger than the
in vivo measurements. The comparisons are made at two
different material points on the vein, as the point for the
ultrasound-derived motion was not included in the 3D recon-
struction. Although one would not expect quantitative agree-
ment between the displacements measured at points that are
so distant with respect to the anastomoses, more than 50 mm
apart, there are still several important sources of error to be
discussed. The disagreement may first be due to parametric
uncertainty, for example in the elastic modulus. Secondly, the
cross-sectional shape of the vein in the FSI model is highly
elliptic, whereas the in vivo measurements are made in a
segment where the vein cross-section is more circular. The
shape of the cross-section can strongly influence vessel stiff-
ness and displacement. The simulation data are extracted at a
point on the major, or wider, side of the vessel, which would
have a larger local radius of curvature and thus, a smaller
local mechanical stiffness resulting in larger displacements.

Nevertheless, the simulations predict maximum wall
strains for both the artery and the vein which are in better
agreement with the ultrasound-derived values. In light of this,
the FSI simulations do reasonably produce the low-frequency
wall motion associated with the cardiac cycle. Even still,
the current FSI simulations tended to predict displacements
which are higher than the in vivo values. Thus, the FSI analy-

sis may even exaggerate the influence of wall distensibility
on the hemodynamics.

4.4 Study limitations

First, this study examines only one patient model, and the
results may not be easily generalizable to larger cohorts of
patients. There is a clear systematic under-prediction of wall
shear stress, shown in Figs. 8 and 9, for this single patient,
but it is unknown how variable this trend is across patients.
Certainly, studies with a larger number of patients are needed
to ensure robust correlations.

Second, this study does not include longitudinal informa-
tion of the fistula’s natural history and progression. It is not
known whether significant remodeling was occurring either
immediately before or after the time of our ultrasound exami-
nation. Nonetheless, such an occurrence would seem unlikely
given that the fistula was over seven years old and fully func-
tioning at the time of the examination as remodeling after the
initial 12–16 week period is rare.

Third, the material model used here is simple and should
be improved upon in future studies. Although the simula-
tion produces reasonable displacements, there is less cer-
tainty about its ability to predict accurate stress distributions.
More realistic constitutive equations incorporating material
anisotropy and heterogeneity or variable wall thicknesses are
needed to accurately describe the state of stress at a compli-
cated shape such as an anastomosis.

Lastly, the coupling algorithm, specifically the under-
relaxation scheme, should be improved upon in future FSI
simulations of AV fistulae. The rate of convergence of the
fluid–structure iterations is particularly slow, which led to
the choosing of a large value of the structural density,
1,200 kg/m3, in order to speed up computational time. Bet-
ter methods, such as (quasi)-Newton iterations, should be
incorporated to ensure an efficient, but also robust, numeri-
cal solution.

5 Conclusions

In this study, we have presented results of a fully coupled
fluid–structure interaction numerical simulation of an arte-
riovenous fistula, the first of its kind in the open litera-
ture. Ultrasound measurements of in vivo vessel wall motion
are used to validate the simulations ability to predict dis-
placements of the low-frequency vessel motion due to the
propagation of the arterial pressure wave. The FSI simu-
lations predicted systematically lower time-averaged wall
shear stresses compared to the analogous rigid-walled simu-
lations. Nonetheless, the predicted time-averaged wall shear
stress at the fistula anastomosis in the FSI simulation is still
very large, >10−15 Pa, much larger than what is typically
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considered normal in the peripheral arteries and veins. The
results of a previous analysis (McGah et al. 2013) of AV fis-
tulae using rigid-wall boundary conditions, which also pre-
dicted very large wall shear stresses on the anastomoses, are
likely still justified as the inclusion of distensible vessel walls
in hemodynamic simulations does not reduce the high anas-
tomotic shear stresses to “normal” values.

Furthermore, we would agree with Lee and Steinman
(2007) in that rigid-walled image-based hemodynamic sim-
ulations can still be justified in certain contexts as the current
uncertainties in the geometric reconstruction may outweigh
the complexity of including wall distensibility. In this con-
text, rigid simulations can still predict values of wall shear
stress within the same order of accuracy of the FSI equiva-
lent simulations. Along a similar line of thought, rigid-wall
simulations may still be justifiable, and clinically useful, if
the results are used to establish relative risks across patients.
Nevertheless, distensible walls are certainly necessary in
other contexts such as understanding the physical mecha-
nisms associated with thrills and bruits in dialysis access
vessels (Lee et al. 2005).
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6 Derivation of simplified wall motion equations

The first Piola–Kirchhoff stress, Eq. 4, and the the Cauchy
stress in the solid, T, are related to each other by the expres-
sion

T = 1

J
P · FT (22)

where F is the deformation gradient tensor and J is the
determinant of the deformation gradient tensor, which for
an incompressible material is equal to 1. Multiplying Eq. 4
through by the transpose of the deformation gradient, and
assuming small deformations, we obtain

T = (
To + E · To + � · To + C:E) · (

I + HT) + O
(||H||2)

= To+E · To+To · E+C:E+� · To−To · �+O
(||H||2)

= To + (
I ⊗ To + To ⊗ I + C

):E
+(

I ⊗ To + To ⊗ I
): � + O

(||H||2)
(23)

and where the tensor product (M⊗N)i jkl = Mil N jk for arbi-
trary second-order tensors M and N.

For the simplified analysis, we assume that the fistula
vessels are thin-walled cylinders undergoing a quasi-static
and axisymmetric inflation over the cardiac cycle. The axial

strains, Ezz , can be assumed to be much smaller than the
circumferential strains, Eθθ since the lengths of the vessels,
∼100 mm, are much larger than the vessel radii, ∼1 mm.
Shear strains and stresses arising from rotations are zero for
a simple inflation. Therefore, the circumferential stress, Tθθ ,
and radial stress Trr in terms of the strains are

Tθθ = To,θθ + (
2 · To,θθ + Cθθθθ

)
Eθθ + Cθθrr Err (24)

Trr = To,rr + (
2 · To,rr + Crrrr

)
Err + Crrθθ Eθθ . (25)

In the membrane state, the radial component of the stress is
negligible such that Trr ≈ 0 and To,rr ≈ 0 and the radial
strains can be eliminated from the above equations such that

Tθθ = To,θθ + (
2 · To,θθ + Cθθθθ

)
Eθθ (26)

where Cθθθθ = Cθθθθ − Crrθθ Cθθrr
Crrrr

. One can also invoke the
law of Laplace for a thin-walled cylinder which relates the
internal pressure within the vessel to the stress, in which case

Tθθ = P Ro

ho
(27)

Trr = − P

2
(28)

which is a statically determinate state of stress for the cylin-
der. The circumferential strain for a long cylinder in terms of
the radial deformations is simply Eθθ = ηr/Ro. Thus, com-
bining Eq. 26 with Eq. 27, and writing the strains in terms of
displacements, one obtains

(P − Po) Ro

ho
=

(
2

Po Ro

ho
+ 4μs

)
ηr

Ro
(29)

which is the expression previously given in Sect. 2.1.

7 Calculation of wall shear stress

The total wall viscous shear stress traction acting on the solid
wall with unit normal in the current configuration, ns , is given
as

τ (x, t) = μ
((∇u

) + (∇u
)T

)
· ns (30)

where μ is the fluid viscosity. Given that the displacements
are small, the unit normal in the current configuration can be
approximated with the unit normal in the reference configu-
ration, Ns , such that

ns = Ns + O
(||H||).

The instantaneous wall shear stress is computed as the
absolute value of the wall shear stress vector at position x
and time t such that

τ(x, t) = (
τ 2

s (x, t) + τ 2
m(x, t)

)1/2 (31)
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where τs and τm are the two components of the wall shear
stress vector which are perpendicular to the wall-normal vec-
tor. The wall-normal component of the wall shear stress is
neglected. The time-averaged wall shear stress, TAWSS, over
n number of cardiac cycles is computed by

TAWSS(x) = 1

n · T

n·T∫

0

τ(x, t) dt (32)

where T is the period of the cardiac cycle.
Furthermore, we define a “wall shear stress duty factor,”

DF(x), which quantifies the fraction of the cardiac cycle for
which the wall shear stress is above a certain stress threshold
as

DF(x) = 1

n · T

n·T∫

0

φ(x, t) dt (33)

where

φ(x, t) =
{

1 if τ(x, t) ≥ τo

0 if τ(x, t) < τo
(34)

and where τo is some shear stress threshold. The “highly
stressed lumen area,” Aτ , is then defined as

Aτ =
∫

A

DF(x) dA (35)

where A is the luminal surface area. This is an arbitrary yet
simple measure of high shear acting on the vessels. Since the
duty factor can only range from 0 to 1, the stressed area is
weighted by the length of time the wall shear is above the
given threshold.
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